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Abstract: LLE(Local linear embedding) is a widely used approach for dimension reduction. The neighborhood selection
is an important issue for LLE. In this paper, theε-distance approach and a slightly modified version ofk-nn
method are introduced. For different types of datasets, different approaches are needed in order to enjoy higher
chance to obtain better representation. For some datasets with complex structure, the proposedε-distance
approach can obtain better representations. Different neighborhood selection approaches will be compared by
applying them to different kinds of datasets.

1 INTRODUCTION

LLE(Roweis and Saul, 2000) is a well known ap-
proach for showing the structure of high dimensional
data within low dimentional embeddings. The first
step of LLE algorithm is to find out the neighborhoods
of every points. Traditionally, thek-nearest neighbor
approach is the most widely used one. This approach
has many advantages such as easy to implement, suit-
able for most of cases when the distribution of the
dataset is uniform enough and have no complex struc-
tures, fast enough and can be parallelized and further
accelerated (Yeh et al., 2010).

But for some other type of dataset, thek-nn ap-
proach will face difficulty since the number of se-
lected nearest neighbors can only be a fixed integer
over full dataset, the possible LLE embedding will be
limited if the dataset is not very large, but contains
complex structure. Ifk is small, the structure is hard
to extract, while for largek, the complex structure
may be destroyed because of generating errornous
connections from one possible sub-structure to an-
other. Also, for non-uniform sampling, the selection
of k may also be a problem. For these kind of prob-
lems, theε-distance approach is suggested for attempt
to get better embeddings.

Although there are already attempts for modifying
neighborhood functions, such as weighted neighbor-
hood (Chang and Yeung, 2006; Pan et al., 2009; Wen
et al., 2009; Zuo et al., 2008), clustering approaches
(Wen et al., 2006), or includingk-means (Wei et al.,
2010; Wen et al., 2006). But these modified ap-

proaches are mostly analyzed and based on original
k-nn method only. In this paper, theε-distance will be
taken into main consideration as a different concep-
tual method fromk-nn for trying to deal with more
complex datasets.

Since the neighborhood selection approach is
changed, following the original LLE algorithm, the
weight computation is not affected significantly,
while the minimum eigenvalue finding needs some
modification since the neighborhood selection is no
more balanced across all points, the matrix is more
likely to hold more zero eigenvalues so that the origi-
nal way of finding smallest eigenvalue may not work
properly. The further modification details for finding
minimal eigenvalues will be discussed later.

The rest of the paper is organized as following:
In section 2, the detail ofε-distance approach will be
introduced. In section 3, the experiments on different
sets of data will be discussed. Before the experiments,
some more details and minor modifications for LLE
will be addressed. In section 4 is the final thought
about the comparison.

2 METHOD

2.1 Neighborhood Selection

In this paper, we focus on the nearest neighbor ap-
proaches using in LLE. The original approach used in
LLE is k-nearest neighbors, which just look into full
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Figure 1: Example for 8-nn selection.
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Figure 2: Example for selection within radiusε =
√

0.05.

data and find outk nearest points from each point as
its neighbors.

For theε-distance approach, a point is a neighbor
of a certain pointp if the distance from the point top
is no more than a preset distanceε. Example neigh-
borhood selection from 8-nn can be shown in Fig-
ure 1, while neighborhood selection fromε-distance
within radiusε =

√
0.05 can be shown in Figure 2.

2.2 Regularization

After the neighborhood selection, a process for com-
puting neighborhood weights are performed. When
the number of nearest neighbor selected is larger than
the data dimension, the regularization should be taken
into account, and the regularization parameter and
strategy will have significant impact on the final LLE
embedding result (Daza-Santacoloma et al., 2010).
In this paper, the regularization method for each ap-
proach is equivalent to the orginal LLE implementa-
tion in order to have better focus on effects of dif-
ferent neighborhood selection approaches. The reg-
ularization parameter using by the original LLE im-

plementation is 10−3, but for theε-distance approach,
the regularization parameter can be manually tuned.

2.3 Minimal Eigenvalues

After the neighborhood weight vectors{w} are com-
puted, the last step for LLE is to compute thed small-
est eigenvalue of the matrixM = (I −W)′(I −W).
d means the final embedding number of dimensions,
andW means the collection from all weight vectors
w.

Since theε-distance method will not generate bal-
anced number of neighbors such ask-nn does, the ma-
trix M generated fromε-distance method is expected
to have worse condition than the matrix fromk-nn.
Since LLE needsd smallest eigenvalues which are
not zero, and the precision of computer number is al-
ways limited, the original eigenvalue searching mech-
anism fork-nn which directly search nearest to the
true zero eigenvalues will encounter problem if we
apply it directly on theε-distance method. Because
machine precision is limited, the matrixM originally
should be stated as at least positive semi-definite, so
that the eigenvalues ofM should be larger than or
equal to zero. But when it comes to computing eigen-
decomposition, we can only obtain the corresponding
eigenvalues as between some negative machine ep-
silon and positive machine epsilon instead of some
true zeros. So the proposed modification is using the
original eigenvalues searching program to guess the
smallest eigenvalue significantly larger than machine
epsilon and then findd smallest eigenvalues near to
the smallest eigenvalue.

For the initial guess of the smallest eigenvalue,
since directly finding the eigenvalues nearest to 0 per-
forms well onk-nn approach and the modifiedk-nn,
so the initial guess for the two methods will remain
0. Forε-distance approach, this parameter can be set
and the program will try to find the possible smallest
eigenvalue by multiplying with a factor of 1.5 for each
step from the initial guess of the smallest eigenvalue
which should be larger than machine epsilon.

3 EXPERIMENT

Before performing experiments, there are some is-
sues other than the focused neighborhood selection
approaches should be considered.

3.1 K-nn Modification

Commonly, thek in thek-nn method should be inte-
ger, but this restriction is too strong so that the number
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of possible embeddings can be generated fromk-nn
is heavily limited. For resolving this issue, a simple
modification for fractionalk-nn is to perform original
k-nearest neighbor and insert one more neighbor for
some certain points which have nearestk+1-th neigh-
bor. By this modification, we can generate much more
possible embeddings from the modifiedk-nn method.
If the best result of the method is considered as still
not good enough, the problem will be mostly in thek-
nn selection approach instead of insufficient number
of configurations caused by the integer constraint of
k.

3.2 Parameters

The parameters can be separated as regularization pa-
rameters, eigenvalue solving parameters, andk-nn or
ε-distance parameters. The regularization term us-
ing in the LLE algorithm are set to equal for all dif-
ferent neighborhood selection methods. The regular-
ization parameter can be tuned in theε-distance ap-
proach since the numbers of connections are differ-
ent for each point, while thek-nn and modifiedk-
nn use the default parameters in the original source.
Other parameters such as the number of neighbors for
k-nn, the radius and corresponding parameters forε-
distance are determined by grid search.

3.3 Datasets

There are several artificially created datasets to test
the ability of different approaches. The first dataset
is started from the swiss roll dataset to ensure the us-
ability of each approach. The swiss roll dataset con-
tains 1000 points as in Figure 3. The second dataset
is a dataset with a knot structure with 2000 points
distributed non-uniformly as in Figure 4. The third
dataset is a database of gray-level face images for the
same person with different angles and moods which
can be considered as true data. The number of images
is 1965 and the resolution of images is 28x20.

3.4 Result

For the swiss roll dataset, the 7-nn, and 8-nn result
can be shown in Figure 5 and 6. So using the integer
number ofk-nn cannot really extract the swiss roll to
fill the embedding plane since the even higherk will
map the swiss roll to an unseparable plane. With 7-nn
plus 500 next nearest neighbors, the result is as Figure
7, which expands data more to fill the plane. For the
ε-distance approach, the radiusε=

√
21, with the reg-

ularization parameter 10−3, and the initial minimum
solution guessing is 10−14. The result can be shown in

Figure 3: The swiss roll dataset.

Figure 4: The knot dataset.

Figure 5: The 7-nn embedding result for swiss roll.

Figure 6: The 8-nn embedding result for swiss roll.

Figure 8. The two proposed modifications have bet-
ter chance to find proper embedding surface for swiss
roll dataset.
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Figure 7: The fractional nearest neighbors embedding result
for swiss roll.

Figure 8: Theε-distance embedding result for swiss roll.

For the knot dataset, the best embedding result for
k-nn is 7-nn, the corresponding result can be shown in
Figure 9. For this result, the original one tube struc-
ture is successfully extracted. For the fractional near-
est neighbors, the best selection for representation is
6-nn plus 1700 next nearest neighbors, the result can
be shown in Figure 10. Although the structure is a lit-
tle bit fractured, but the big structure is not collapsed,
and the representation is clearer than the 7-nn result.
For theε-distance approach, the best result is for ra-
dius ε =

√
0.39, with regularization parameter equal

to 0.001, and the initial guess for minimum eigen-
value is 4×10−14. The result can be shown in Figure
11, which is similar to the fractional nearest neigh-
bors’ result. All methods can extract the one tube
structure from the original knots, but the represen-
tation for fractional nearest neighbors andε-distance
approach are considered as better than only usingk-
nn.

For the face dataset, the 12-nn template fork-nn
approach can be shown in Figure 12. The regular-

Figure 9: The 7-nn embedding result for knot.

Figure 10: The fractional nearest neighbors embedding re-
sult for knot.

Figure 11: Theε-distance embedding result for knot.

ization parameters for different LLE methods are all
zeros since the data dimension 560 should be much
larger than the number of neighbors needed for em-
beddings. For the fractionalk-nn approach, the re-
sult for 12-nn plus 327 more nearest neighbors can be
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Figure 12: The 12-nn embedding result for face dataset.

Figure 13: The fractional nearest neighbors embedding re-
sult for face dataset.
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Figure 14: Theε-distance embedding result for face dataset.

shown in Figure 13. Theε-distance method encoun-
tered difficulties because nearest neighbors of some
points are still very far away in comparison of direct
distance from pixel to pixel. The radiusε =

√
1.05,

ε =
√

3.45, with initial guess 10−14 can be shown
in Figure 14. The numbers of removed isolated data
points are 1024 forε =

√
1.05 and 89 forε =

√
3.45.

The corresponding green line in the figure indicates
a path for a reference face translation as in Figure 16.
The corresponding green line on the original and frac-
tionalk-nn embedding can be shown in Figure 15.
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Figure 15: The reference face translation forε-distance em-
bedding.

Figure 16: The reference face translation forε-distance em-
bedding.

4 CONCLUSIONS

From results shown above, we know that for differ-
ent dataset, using different approaches obtain slightly
different representation results.k-nn is not always
the best for analyzing neighborhoods. The proposed
ε-distance approach may extract the structure better
than k-nn if we really do not have many data sam-
ples, but the data shown complex structures. For the
fractional nearest neighbors, the increasing number of
choices for embedding configuration can also help for
finding better embedding representations of the data.
So the two approaches can be used for alternative of
the conventionalk-nn to have more ways to find out
the hidden data structure.
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