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Abstract: It has been demonstrated, that spike-timing-dependent plasticity (STDP) learning rule can be applied to train 
neuron to become selective to a spatiotemporal spike pattern. In this paper, we propose a model of neural 
network that is capable of memorizing prolonged sequences of different spike patterns and learn aggregated 
data in a larger temporal window.  

1 INTRODUCTION 

There are strong experimental evidences that at least 
some living neural systems exchange information in 
almost binary fashion, in so called temporal spike 
codes (Prut et al., 1998; Gerstner and Kistler, 2002; 
Fellous et al., 2004; VanRullen et al., 2005, Kayser 
et al., 2009). Underlying concept of temporal coding 
states that precise spike timing encodes the 
information processed by neurons. It is an 
alternative to an established concept of rate coding, 
when count of spikes in certain time window 
encodes the information. There are known 
prominent models of neural networks based on rate 
coding, such as networks based on Bienenstock-
Cooper-Munro (BCM) theory (Bienenstock et al., 
1982). However, there are evidences that rate coding 
alone cannot account for the efficiency of 
information transmission in some biological neural 
systems (Gerstner et al., 1996; VanRullen and 
Thorpe, 2001). 

Discovery of spike timing-dependant plasticity 
(STDP) learning rules strongly advocates in favor of 
temporal coding. Some researches refer to STDP as 
Hebbian learning, although STDP do not exactly fit 
Hebbian postulate. STDP learning rules are well 
established biological processes that guard amount 
of synaptic strength change depending on time 
difference between incoming (presynaptic) and 
outgoing (postsynaptic) spikes. There has been 

discovered a number of different STDP rules. STDP 
rules vary depending on synapse type or even on a 
position on a dendrite (Bi and Poo, 1998; Woodin et 
al., 2003; Abbott and Nelson, 2000; Caporale and 
Dan, 2008). 

STDP learning rule that is common to the 
excitatory-to-excitatory synapses, in a certain range 
of parameters perfectly fits for training of neurons to 
respond to a repeated temporal code. There is an 
experimental evidence that pyramidal neurons of rat 
operates in this range (Feldman, 2000). In this case, 
the neuron trained with this STDP rule acts as a 
coincidence detector (Abbott & Nelson, 2000). 
Unsupervised learning of temporal codes by 
applying STDP training has been already explored 
by the number of authors (Masquelier et al., 2008, 
2009; Song et al., 2000; Guyonneau et al., 2005; 
Gerstner and Kistler, 2002). 

We focus our research on temporal coding and 
STDP learning rule. 

In a recent paper Masquelier et al. (Masquelier et 
al., 2009) demonstrated winner-takes-all (WTA) 
artificial neural network that is capable of learning 
multiple spatiotemporal patterns in a noisy 
environment. However, such model is capable of 
learning only very short patterns in order of a few 
milliseconds. Although Masquelier experimented 
with 50ms length training sample patterns, neurons 
eventually learned only the very beginning of the 
pattern or a later part of it if the beginning was 
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occupied by competing neuron. We executed a 
similar experiment and found that neurons became 
selective only for 1 or 2 milliseconds of the pattern. 
The rest of the pattern could be removed or replaced 
with a different pattern without any changes in a 
neuron selectivity.  

It is evident that central neural systems of 
humans and many other advanced species are 
capable of learning long lasting patterns of sensory 
inputs, such as speech signals, observed motion 
patterns etc. If STDP training leads neurons to 
learning of coincidences of spikes in a window of a 
few milliseconds, then how is it possible for neurons 
to learn long lasting pattern of dynamic of sensory 
input? In other words, how would we train neurons 
to learn patterns of occurrences of different temporal 
codes? 

In this paper we propose the model of 
unsupervised artificial neural network with STDP 
training rule that is capable of learning prolonged 
sequences of different short spatiotemporal patterns.  

The model represents itself a combination of two 
WTA layers that are similar to the one demonstrated 
by Masquelier et al. (Masquelier et al., 2009) and 
inner layers for temporal memory and temporal 
modulation.  

In the early stages of research we did not seek to 
achieve high biological realism, rather created a 
model that serves as a proof a concept that known 
STDP rules alone can lead to learning of long lasting 
combinations of spatiotemporal patterns. 

2 UNDERLYING BIOLOGICAL 
MECHANISMS 

2.1 Leaky Integrate-and-fire Neuron 

In this section we provide mathematical model of 
leaky integrate-and-fire neuron that we used in the 
model. 

 
Figure 1: Neuron action potential as a function of time. 
Phases of action potential: 1 - resting potential, 2 - initial 
depolarization, 3- regenerative depolarization, 4 - 
repolarization, 5 - hyperpolarization. During phases 3 and 
4 neuron is in period of complete refraction. 

Underlying mechanism of neuron action 
potential (AP), in other words spike, was explained 
by Hodgkin and Huxley (Hodgkin and Huxley, 
1952). For readers' convenience we added an 
illustration of different phases of action potential, 
since we refer to hyperpolarization phase later in this 
paper (Fig 1.) 

Function of action potential: 

(ݐ)ܲܣ = ܹ ቆܭௗ ݁ି∆௧ − ܭ ቆ݁ି∆௧ − ݁ି∆௧ೌቇቇ (1) 

where Δt = t - tspike; constants Kdpl = 3, Khpl = 5 and 
Wap=40 define the amplitude of the function of 
action potential; Tm=10ms is the membrane time 
constant that defines the slope of the 
hyperpolarization phase, Tap=0.5ms is the constant 
that defines the slope of the spike. 

We executed our experiments in precision of one 
millisecond relative to the function of action 
potential, therefore we refer to single iteration of a 
simulation as one millisecond.  

Synaptic strength wj defines amplitude of 
postsynaptic potential (PSP) that would be raised in 
postsynaptic neuron membrane by presynaptic spike. 
Depending on synapse type, postsynaptic potential 
can be positive excitatory (EPSP), or negative 
inhibitory (IPSP). If the sum of PSP reached 
threshold, that would trigger neuron to produce 
action potential, in other words to fire a spike (see 
Fig. 1).  

Function of postsynaptic potential raised by 
spike from individual synapse: 

ܲܵ ܲ(ݐ) = ߶ݓ ൬݁ି∆௧ ቀ1 + ቁ(ݐ)ߢ − ݁ି∆௧ೞ ቀ1 + ቁ൰(ݐ)௦ߢ  (2) 

where Δt = t - t pre; φ = 1 for excitatory synapses and 
φ = -1 for inhibitory; time constant of the synapse 
Ts=2.5ms; membrane time constant Tm=10ms is the 
same as in equation 1. In simulation of the model, 
we optimized PSP calculations and instead of 
keeping PSP history for each synapse, we used 
accumulated exponential slopes in variables κm and 
κs. This is simple, but, to our knowledge, novel 
approach that helped to economize computing costs. 
κm and κs are updated at the moment of each 
presynaptic spike. See equations 3 and 4:  
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(ݐ)ߢ = ൞ݓ(షభ)ݓ()  ݁ି∆௧ ቀ1 + ݐ)ߢ − 1)൰ ݐ ݂݅  = ݐ)ߢݐ − ݁ܿ݅ݓݎℎ݁ݐ           (1    (3) 

(ݐ)௦ߢ = ൞ݓ(షభ)ݓ() ݁ି∆௧ೞ ቀ1 + ݐ)௦ߢ − 1) ቁ ݐ ݂݅  = ݐ)௦ߢݐ − ݁ܿ݅ݓݎℎ݁ݐ             (1  (4) 

Here Δt is a time difference between times of 
current and previous presynaptic spikes, wj 
prohibited to decay to 0. wj(t-1) and wj(t) denominates 
synaptic strength before and after STDP 
modification. Equations 3, 4 can be derived by 
solving trivial equation 5, assuming that at zero 
point κ0 = 0 and t1-t0 = const and t1-t0 = t-t0 when t1 
= t: 

݁ି(௧ି௧బ)(1ݓ + (ߢ + ଵ݁ି(௧ି௧భ)ݓ = ଵ݁ି(௧ି௧భ)(1ݓ +  ଵ) (5)ߢ

Neuron membrane potential at any time: 

(ݐ)ܲ = ൝ ݐ ݂݅          (ݐ)ܲܣ = (ݐ)ܲܣ௦ ݐ  +  (ݐ)ܲܵܲ  (6) ݁ܿ݅ݓݎℎ݁ݐ   

2.2 Spike Timing-dependant Plasticity  

STDP rule is a function of time difference between 
presynaptic and postsynaptic spikes that guards the 
amount of change of synaptic strength. In our model 
we used single STDP rule, see Fig. 2. Long-lasting 
decrease of synaptic strength is called long term 
depression (LTD), lasting increase is called long 
term potentiation (LTP).  

 
Figure 2: STDP rule of excitatory synapses (a) STDP as a 
function of spike timing difference. Based on Bi and Poo 
(Bi and Poo, 1998). (b) Schematic explanation of STDP, 
as a function of time difference between times of 
presynaptic and postsynaptic neuron spikes. 

STDP function used in our model is expressed in 
equation 7. Synaptic strength change for excitatory 
synapses, where Δt = tpost - tpre: 

ݓ∆ = ۔ە
்ܣۓ ⋅ ݁ ∆௧ಽು ݐ∆ ݂݅    < ்ܣ−0 ⋅ ݁ ି∆௧ಽವ  ݂݅ ∆ݐ > ݐ∆ ݂݅          00 = 0  (7) 

Synaptic strength values are limited between 
Wmin and Wmax, which in our model, vary depending 
on synapse type. To simplify the calculations of 
postsynaptic potentials, we prohibited synapses to 
decay less than 1*10-6. See equations 3 and 4. See 
section 0 for ALTP, ALTD, TLTP and TLTD constants. 

In our model we used closest neighbor rule, that 
is only two closest spikes participate in modification 
of synaptic strength. Alternatively all-to-all rule 
could be used. 

3 THE MODEL 

Model diagram is displayed in Fig. 3. It consists of 
six main layers: L1 and L5 are competitive 
winner(s)-takes-all (WTA) layers (in our model we 
did not prohibited a few neurons to learn the same 
pattern, therefore we should say winners). L1 and L5 
have corresponding inputs from L0 and L4. L3 is a 
layer of temporal memory; it is modulated by layer 
L2. In our model we did not attempt to match any 
layers in cortex or hippocampus, network structure 
and layer names are purely arbitrary.  

 
Figure 3: Diagram of the network model with temporal 
memory. Blue color denotes inhibitory interneurons. In 
real simulation inhibitory neurons are replaced by direct 
inhibitory synapses. Grayed lines denote synapses from 
L2, L2.1 subnetwork of a temporal modulation. Doted 
lines denote that it is the same neuron, split in a diagram 
for better visibility. Layer L4.1 added only for 
programming convenience and in our experiment it served 
as input multiplier for L5 WTA network. 
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Neurons in layer L0 periodically fire a sample 
pattern. L0 neurons also fire spontaneously with a 
probability PL0 in an each iteration of an experiment 
(each one millisecond). Spontaneous firing produces 
a Poisson noise. Noise increases probability of LTD 
in synapses L0 to L1 and is responsible for strength 
decay of synapses that do not participate in sample 
pattern. Though, we used a noisy input in our model, 
it is not mandatory, for neurons can successfully be 
trained without it, although noiseless patterns 
wouldn't be realistic. In that case, synapses that do 
not carry spikes from sample wouldn't be affected by 
STDP. 

Neurons in layer L1 receive input from L0 and 
are interconnected with inhibitory synapses. 
Strengths of inhibitory L1 to L1 synapses are 
constant. 

Layer L1 produces input for L1.1 interneurons 
via strong synapses with fixed weights. Strengths of 
L1 to L1.1 synapses are large enough to arouse a 
postsynaptic spike from resting potential with single 
presynaptic spike. Layer L1.1 is introduced for the 
reason that later memory read would not affect L0 to 
L1 synapses.  

Layer L2, including neurons L2.1, is used for 
temporal modulation. Excitation of L2, L2.1 neurons 
imitates wave propagation in excitable media in 
single direction, only one neuron fires at the same 
time; it is looped. While L2 neurons produce a chain 
of spikes during excitation period, L2.1 produces 
only single spike. Weights of synapses outgoing 
from L2 and L2.1 do not change. See Fig. 4 for 
details. 

 
Figure 4: Temporal modulation of five neurons in layer L3 
that receive input from a single neuron from layer L1.1. 
Layer L2 excites each neuron in L3 for approximately 
40ms. If in that window L3 neuron receives EPSP from 
L1.1, it produces a spike and corresponding synapse 
updated by strong LTP. After 220ms L2.1 neuron raises 
additional spike in L1.1 and adds weak EPSP to the 
neuron groups in L3 and all L4 neurons. L3 that has a 
memory of previous spike, passes compressed pattern to 

L4. See network diagram in Fig 3. In particular case L1.1 
neuron fired three times, as a result L3 produced a pattern 
10101.  

Each synapse from L1.1 neuron to L3 neuron 
represents a binary memory unit. It memorizes a fact 
of a spike from L1.1 relative to corresponding L2 
neuron timing. L3 neurons are grouped by synapses 
from L1.1. Each L3 in a group receives a strong 
excitatory input from different L2 neuron. This 
input, however is not strong enough to produce a 
spike. Initially L1.1 to L3 synapses are weak and are 
prohibited from growing strong enough to raise a 
spike without additional excitation from L2 or L2.1. 
If L3 neuron is excited by spikes from L2 and during 
that period L1.1 fires, it would fire and synapse 
strength would grow by strong LTP.  

During the experiment, strengths of synapses 
L2.1 to L3 do decay over time, so that memory slot 
could be reused on next L2, L2.1 loop iteration. It is 
known that LTP in living synapses lasts from a few 
hours to months or longer (Abraham, 2003) 
therefore synaptic strength decay in our model is 
consistent with biological features of synapses. 

L2.1. neurons activate memory read. Each L2.1 
has strong synapses to all L.1.1 neurons, weak 
synapses to all L4 neurons and weak synapses to 
subgroups in L3. L3 neurons grouped by L2.1 
represent the memory window. Spike from L2.1 
raises a spike in L1.1 by its own. Excitation from 
L2.1 to L3 is much weaker than from L2 and 
produced by a single spike, therefore only strong 
synapse from L1.1 to L3 can raise a spike in L3.  

Layer L4 serves as an input to WTA layer L5. L4 
has moderate fixed strength synapses from L3; 
therefore a spike from L3 can raise a spike in L4 
only when L4 neuron is excited by L2.1.  

We added layer L4.1 only for programming 
convenience. We found that multiplying inputs to 
WTA layer would make training process more 
robust in a wider range of parameters. Also it 
increases a chance of beneficial permutation of 
initial synaptic strengths. Since we experimented 
with relatively small network, we duplicated inputs 
to L5 to gain more stable training process. In case of 
a larger network this would not be necessary. 
Alternatively L4.1 layer can be replaced by 
multiplying synapses from L4 o L5, instead of 
adding the entire layer of interneurons. Analogically 
to layer L0, L4.1 produces Poisson noise. 

Layer L5 is analogical to L1; however we tuned 
it with different STDP parameters. Additionally, we 
introduced stochastic threshold in L5 neurons, see 
section 0. 
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Layer L1 was trained during entire simulation, 
while training of layer L5 started only after first 
100000 iterations of a simulation. We simply 
prohibited neurons in layer L4 from firing at the first 
stage of experiment.  

3.1 Parameters of the Simulation 

We used genetic algorithm to tune L1 and L5 WTA 
sub-networks, the rest of the parameters are 
completely arbitrary.  

General parameters of the model simulation 
listed in tables 1, 2 and 3. For parameters of training 
sample data and for special case of layer L5 
threshold see sections 0 and 0. 

Table 1: STDP Parameters for synapse types. 

Synapse type Parameter 

From To Wmax ALTP ALTD TLTP TLTD 

L0 L1 0.56 0.064 0.037 9.01 55.71 

L1.1 L3 21 30 0.03 24 34 

L4.1 L5 0.75 0.32 0.076 8.37 459 

Table 2: Initial synaptic strengths. 

Synapse type 
W0 

Synapse type 
W0 

From To From To 

L0 L1 0.44* L2.1 L3 8 

L1 L1 1.411 L2.1 L4 18 

L1 L1.1 30 L3 L4 10.9 

L1.1 L3 15 L4.1 L4 28 

L2 L3 2.5 L4.1 L5 0.68* 

L2.1 L1.1 40 L5 L5 5 

*. Initial synaptic strengths randomly distributed around mean 
values W0 in range +/- 2.5% of W0. 

Table 3: Sizes of layers and threshold values. 

Layer Number of neurons Neuron threshold 
L0 250 - 
L1 20 6.89 

L1.1 20 11.71 
L2 125 - 

L2.1 25 - 
L3 250 11.71 
L4 100 11.71 

L4.1 200 11.71 
L5 20 10.976 

For evolutionary tuning we used multi-agent 
system with a population of 100 agents. Each agent 

represented itself a functional WTA network. 
Genome of each agent contained initial and maximal 
synaptic strengths: W0 and Wmax; parameters for 
STDP function: ALTP, ALTD, TLTP and TLTD. Initial 
genome values for each agent were normally 
distributed around arbitrary mean values. In each 
generation, each agent was trained 20 times with 
different training sample sets. Synaptic strengths 
were reset at the beginning of each training. Errors 
made by each agent were counted for all 20 
trainings. When the training was completed, the 
worst performed agents (60% of the population) 
were replaced by the new mutants made from the 
best performed agents. Each gene mutated with 
probability 0.3; new value was random in a range +/- 
5% from inherited value. We did not use any 
crossover. Multiple experiments with different initial 
values were executed for a few hundreds of 
generations each. Genome values of the best 
performed agent from final generation were used as 
parameters for the model.  

3.2 Training Samples 

Sample spike patterns produced from layer L0 
represented itself five 4x250 matrixes of 0 and 1 
values. One indicated spike time relative to the 
sample start time and column position. Spikes were 
distributed uniformly across all sample matrix with 
occurrence probability p=0.04. For convenience, we 
called L0 samples “letters" and denominated in 
minuscule letters a, b, c and d. "Letters" were 
displayed with 40ms intervals. During the gaps 
between letters and during letter display, L0 
produced random spikes with the same probability 
p=0.04. During first 100000 iterations letters were 
displayed in random order. 

After 100000 iterations, letters were combined 
into consistent "words", denominated by capital 
letters A, B, C and D. Each “word” was made from 
five non repeating letters, that is made from random 
permutations of a, b, c, d. Words were displayed in 
random order and aligned to start right after L2.1 
scan time. During scan time L0 produced random 
letter. Internals between letters remained the same 
40ms. 

Additionally we injected Poisson noise into L0 
and L4.1outputs. We generated Poisson noise by 
firing random spike with probability PL0=0.04 for 
layer L0 and with probability PL41=0.01 for layer 
L4.1. In our experiments spike density during 
display of samples was higher than in intervals 
between samples; however it has already been 
demonstrated that neurons can successfully learn 
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when density is the same (Masquelier et al., 2008, 
2009). What are theoretical boundaries of noise to 
sample spike density ratio, when STDP learning 
would start to fail is a good question, it requires 
further theoretical research to answer.  

3.3 Learning Conditions in Layer L5. 
Introducing Stochastic Threshold 

Patterns of "words" produced by L4 layer are quite 
different from strictly fixed samples of "letters". 
Pattern represents itself only single "column" of 
incoming spikes, however these are not 
synchronous. Spikes fluctuate in 2-3 milliseconds 
range (See Fig. 5).  

 
Figure 5: Mean deviation from pattern center in a single 
"word" in L4 output (L4 to L4.1 synapses). Error bars 
denominate standard deviations. Data retrieved from a 
single experiment, the pattern repeated 521 times, only 
consistent spikes that were repeated more than 80% of 
times taken into account. 

Fluctuations in patterns of "words" are caused by 
variations of synaptic strength in L1.1 to L3 
synapses and also depend on pre-existing value of 
postsynaptic potential in L4 and L3 neurons. We did 
not made analysis of which factor is dominant. 
Another important detail is that due to presence of 
errors in L1, not all spikes are equally consistent. In 
Fig. 5 displayed L4 to L4.1 synapses that produced 
consistent spikes at the range 83% to 100% of all 
occurrences of the "word". In the rest of the 
synapses spike occurred in less than 3% of the times. 

Initially we failed to achieve L5 layer training in 
these conditions within acceptable error rate. 
Usually all neurons learned a single pattern or a few 
at once. We solved this problem by introducing 
stochastic threshold in L5 neurons: when neuron 
reached its firing threshold, it didn't fire immediately 
but with probability 0.8. This accelerated inhibition 
from "lucky" competing neurons. 

It must be noted, that attempts to apply stochastic 
threshold in layer L1 only increased error rate. 

4 RESULTS 

We conducted a series of simulations of the entire 
model in continuous mode. Also, because of high 
computing cost of simulation of the entire network, 
in order to estimate performance we conducted 
experiments witch each of WTA sub networks 
separately. Each of the simulations took 700000 
iterations; first 100000 iterations were dedicated to 
train L1 layer only with random “letters”. Typical 
output from layer L5 at the beginning and at the end 
of the training is displayed in Fig. 6.  

 
Figure 6: Spike output from layer L5 at the beginning and 
at the end of the training. Output from each of 20 L5 
neurons aligned along vertical axis. Letters above pattern 
denominate one of 5 sample "words" displayed at the time. 
(a) Output at the beginning of the training. Even though 
WTA network exposed to a very few appearances of each 
sample of "word", consistent pattern started to emerge at 
the very beginning of the training. (b) Output at the end of 
the training. 

4.1 Overall Performance of the Model 

For estimation of the error rate, at the end of the 
experiment we counted responses of individual 
neurons relative to the sample occurrence times 
during last 5000 iterations. For layer L1 we used 
bias of 8 iterations latency for neuron response, and 
bias of 16 iterations for layer L5. The sample to 
which neuron was the most selective was assigned to 
the neuron as a learned one. If neuron response 
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count was less than a half of average sample, such 
neuron was treated as non selective to any sample. 
Each missed sample or neuron response out of the 
biased sample window was treated as error. We did 
not analyze the cases when neuron learned more 
than one sample, instead treated responses to other 
samples as errors. 

 
Figure 7: Mean error rate and selectivity distribution in 
WTA layers L1 and L5. Data obtained from 100 
experiments, each experiment made for 700000 iterations. 
(a) Mean error rate in layer L1. Sample patterns were 
regenerated for each experiment. Zoomed part of the 
series indicates a drop of error rate after stochastic 
appearance of one of the five samples (random letters) 
were replaced by consistent sequences (random words). 
(b) Distribution of the number of neurons selective to one 
sample in layer L1. (c) Mean error rate in layer L5. Three 
pre-recorded sample patterns of “words” were used in 100 
experiments, each in 1/3 of experiments. (d) Distribution 
of the number of neurons selective to one sample in layer 
L5. 

We conduced 100 of experiments to estimate 
mean error rate for layers L1 and L5 separately. 
Initial synaptic strengths were reset at each 
experiment. Errors were counted in sliding 3000 
iteration window for L1 and 18000 iterations for L5. 
Window sizes were proportional to rate of samples 1 
to 6: each word consisted of 5 letters plus 1 letter for 
scant time. Window was moved by step of 1000 
iterations (See Fig. 7). For layer L1 we generated 
sample “letters” at each experiment, for layer L5 we 
used recorded input from three different simulations 
of the entire model. Therefore, our estimation of L5 
error rate contains larger bias. 

Layer L5 produced significantly larger error rate, 
at the last 10000 iterations of experiments it reached 
mean value of 4.514, while L1 produced only 1.207.  

There is an interesting observation in layer L1 
error rate: at the moment when random “letters” are 
replaced by consistent sequences, we see modest but 
steep drop in error rate (Fig. 7(a)). Most likely this is 
caused by reduced rate of sequences of the same 
"letter", what makes a trained neuron harder to fire 
subsequently, because of previous hyperpolarization. 

 There were noticeable differences between layer 
L1 and L5 in distribution of neurons selective to the 
single pattern (See Fig. 7 (b) and (d)). Mean values 
of the number of neurons per single sample were 
quite close: 3.956 for L1 and 3.99 for L5, but 
significantly different standard deviations: 1.24 for 
L1 and 2.59 for L5. There were no any non-learned 
samples in L1, but in L5 non-learned samples 
occurred with the rate 0.046. Rate of neurons that 
did not learn any pattern was significantly larger for 
layer L1 and was 0.22, while in L5 it was 0.05. We 
cannot tell which factor had the biggest influence to 
this difference: different set of parameters, stochastic 
threshold in L5, difference of input patterns, or it 
was simply caused by biased measurements of layer 
L5. It requires detailed theoretical study of limiting 
and optimal parameters of STDP rules. 

5 DISCUSSION 

We demonstrated the model of an unsupervised 
neural network that is capable of learning prolonged 
combinations of spatiotemporal patterns of spikes in 
continuous mode. In this way we demonstrated that 
STDP learning rules alone can be applied to train 
neural network to learn long lasting sequences 
combined of short samples. Moreover, the model is 
capable of memorizing and reproducing sequences 
in which network input samples were displayed. 
Reproduction of sequences can be achieved by 
subsequently activating L2.1 neurons. 

The fact, that memory of events in time can be 
reproduced, implies that such memory could be 
copied, transferred, compared etc. Also, it should be 
relatively easy to extend our model enabling it to 
learn combinations of "words", although that would 
require additional, more complex modulation in 
different time scales. 

5.1 Biological Plausibility of the Model 

The model itself and a range of parameters of 
simulation are arbitrary and cannot be used as a 
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reference to a simulation of true biological process. 
However, the model is based on known biological 
processes, and presence of temporal coding is 
supported by experimental evidence. 

Since we designed our network to be as simple 
as possible, there are, probably, many ways to 
implement a neural network with similar or the same 
features that would be more realistic in biological 
sense or would have a better performance.  

For an instance, for temporal modulation it 
would be more realistic to use inhibitory neurons 
instead of excitatory. There are experimental 
evidences that gamma rhythm oscillations are 
generated by inhibitory interneurons (Cardin et al., 
2009).  

We used only the simplest closest-neighbor 
approach to STDP learning rule. Other variations 
could be considered for future experiments. For an 
instance, a possible impact of triplet rule (Pfister and 
Gerstner, 2006) should be taken into account.  

5.2 Limitations of the Model and 
Guidelines for Future Research 

The model requires explicit timing for the 
occurrence of training samples. In order to use our 
model for real world data, timing of sensory input 
must be aligned to activation periods of layer L2. 
However, additional chains of modulation that 
synchronizes sensory input with L2 layer activation 
periods and/or vice versa should solve this problem. 

Another obvious limitation of the model is a 
"blind spot" at each memory read, however this 
problem could be overcome by multiplying L1.1 to 
L4 layers, in that way creating overlapping or sliding 
memory window. 

Simplistic structure of WTA networks used in 
our model is disputable as well. With increase of 
different sample count, intervals between the same 
repeated sample would increase as well, that would 
make learning harder and harder. Training individual 
or groups of neurons one-by-one with a limited 
number of samples would solve the problem and 
boost the performance. However, how we would 
implement this approach for a short temporal code in 
rapidly changing environment is a question that we 
cannot answer yet. Well known adaptive resonance 
theory (ART) (Carpenter and Grossberg, 2009) 
solves similar problem by introducing a self 
organized network and a resonant state between 
input and already learned data. However, the 
achievement of resonance necessary for ART 
requires a prolonged state of neural activity (rate 
code) that is not the case of our model. Although, 

various modifications of our model that would 
introduce additional rate code are possible. This is 
also a matter of future research. 

The nonlinear nature of STDP and leaky 
integrate-and-fire neuron makes the tuning of the 
parameters of WTA networks a really challenging 
task. We used genetic algorithm for this matter, 
however, we cannot claim that we reached optimal 
point of the model parameters. There is little known 
of theoretical limits and optimal points of STDP 
rule. Our next step will be detailed theoretical 
research of STDP in the noisy environment from 
perspective of the probability theory and statistics.  
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