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SOLVING NUMBER SERIES
Architectural Properties of Successful Artificial Neural Networks
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Number series, Artificial neural networks.

Any mathematical pattern can be the generation principle for number series. In contrast to most of the appli-

cation fields of artificial neural networks (ANN) a successful solution does not only require an approximation
of the underlying function but to correctly predict the exact next number. We propose a dynamic learning
approach and evaluate our method empirically on number series from the Online Encyclopedia of Integer Se-
quences. Finally, we investigate research questions about the performance of ANNs, structural properties, and
the adequate architecture of the ANN to deal successfully with number series.

INTRODUCTION

Number series can represent any mathematical func-
tion. Take, for instance

(i) 4,11, 15, 26, 41, 67, 108, 175, ...
(ii) 5,6,7,8,10,11, 14,15, ...
The first problem (i) represents the Fibonacci se-

riest. The second problem (ii) represents two nested
series? one starting with 5 the other with 6. In num-
ber series principally any computable function can be
hidden and the set of operators is not restricted. Math-
ematically, number series are described by a function
g:N ¥ Rand can contain the periodic sinus function,
exponential functions and polynomial functions, and
even the digits of p — there is no restriction whatso-
ever on the underlying function. There is an Online
Encyclopedia of Integer Sequences (Sloane, 2003)
(OEIS)? available online with a database to down-
load and a Journal of Integer Sequences®. A small
subset of number series problems are used in intel-
ligence tests for determining mathematical pattern-
recognition capabilities. Inevitably, identifying pat-
terns requires learning capabilities. As artificial neu-
ral networks (ANN) are the silver bullet in Artificial
Intelligence for learning approaches — it seems only
consequent to test how far we can get with a first ap-

proach in untackling the mystery of number series.

lag+ ;= ap+1 +an withag :=4anday :=11
2an42 1= ans1+ (@ne1 an)+1
3http://oeis.org/
4http://www.cs.uwaterloo.ca/journals/J1S/
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Not all number series have a similar difficulty,
some problems are easy to solve while others are
nearly impossible to deal with. A simple measure
might be to identify the underlying function and to
count the number of operations. However, the number
of operations is typically a symbolic measure (Marr,
1982) and does not necessarily correspond with ar-
chitectural properties in the neural networks. Solving
number series pose an interesting problem as it com-
bines deductive and inductive reasoning. Deductive
reasoning is necessary to identify the rule between
the given numbers, while inductive reasoning is nec-
essary to predict the next number. So far neural net-
works have been used for approximations, but rarely
for predicting exact number — a necessary condition
for solving number series. Related to these prob-
lems is the prediction of time series (Martinetz et al.,
1993; Connor et al., 1994; Farmer and Sidorowich,
1987), but the numbers to be predicted are integers
(and not — as usual — reals), which can pose even
more difficulty, the numbers adhere to mathematical
laws and are not empirically observed. In this sense,
we are much closer to the research fields trying to
reproduce “logical properties” (like propositional or
boolean reasoning (Franco, 2006)) and not time se-
ries analysis. Other related approaches use ANNs for
example for teaching multiplication tables by train-
ing on empirical findings of pupils performances to
identify and provide a guideline for pupils educational
materials (Tatuzov, 2006). In this case, the networks
used, simulate the pupils behavior and had to learn
multiplication skills. In contrast to this approach, we
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are not interested in modeling error trials.

In the following, we propose a method using arti-
ficial neural networks and — to the best of our knowl-
edge — a novel dynamic approach to solve number se-
ries problems. The approach is evaluated against over
50.000 number series taken from the OEIS. To ana-
lyze the structural properties of successful networks
and to identify the best configurations, we will sys-
tematically vary the architecture of artificial neural
networks.

2 DYNAMIC LEARNING

For our attempt to solve number series with artificial
neural networks (McCulloch and Pitts, 1943; Russell
and Norvig, 2003), we use three-layered networks (cf.
Figure 1) with error back-propagation and the hyper-
bolic tangent as the activation function. If x is the
length of the largest number in the given part of a
number series, we use

~n
=5 (1)

as input function to project the interval of numbers in
the number series to the interval [ 1;1]. Analog, we
project the output of the networks back to the original
scale with the function

fo=n (10 @)

with the same x as for input and rounded the result to
get an integer value. We trained the networks on all
but the last given number, which they had to predict.
To achieve this goal we trained the networks rather
to extrapolate the given number to extend the number
series then to classify or interpolate it. The weights
were initially randomly assigned with small positive
and negative values between zero and one. A momen-
tum factor of 0:1 was used.

For our analysis, we systematically varied the
learning rate, the number of input nodes, and the num-
ber of nodes within the hidden layer. Taken together
the ANNs can be described by the formula f(i;h;1),
with the number of input nodes i, the number of nodes
within the hidden layer h, and the learning rate I.
These variations should allow for a comparison of the
different ANNSs, provide us with enough variability
to successfully solve number series and to identify
successful architectures for ANNSs solving these prob-
lems.

To generate patterns for training and testing a net-
work, we built patterns as tuples of training values
and one target value. The number of training values
of a pattern is equivalent to the number of input nodes
i of the network used. Starting with the first number,
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Figure 1: Architecture of an ANN with 3 input nodes and 3
hidden nodes we used to predict the next value of a subse-
quence of a number series. The ANNs were trained on three
successive numbers of a sequence a; to ap (cf. Table 1).

a subsequence of training values was shifted through
the number series. As corresponding target value, the
next number of the subsequence was used (cf. Ta-
ble 1).

Table 1: Pattern generation example for an ANN using the
dynamic approach with three input nodes and a number se-

dict. Four training patterns (p1;:::; p4) are used each with
three training values (vi;Vi+1;Vi+2) and one target value
t = n|+3

Pattern ny ny n3 ng ns ng ny ng
p1 Vi v2 vz ot

p2 Voo vz vg ot

p3 Vi Vg vs ot

P4 vy Vs vg ot
Ps Vs Vg V7 ?

Since the last given value of the number series
with length n remains as target value and we need
at least one training and one test pattern, the max-
imum length of a subsequence of training values is
n 2. Hence, for a network configuration with m in-
put nodes exactly n m patterns were generated. Con-
sequently, the first (n m) 1 patterns were used for
training, while the last one remained for testing and
thus predicting the last given number of the sequence.
Therefore, the last given number of the number series
— the main target value — was never used for training
the ANNSs.

The training of the network was iterated on the
patterns for a various number of times. We system-
atically varied the iterations. After the training phase
of the network we tested if the network captured the
inherent pattern with the last pattern without a given
target value and compared it to the actual number of
the number series.
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Table 2: Results of an empirical analysis with 17 participants for 20 number series and the performance of 840 network
configurations with five variants of training iterations. A step—width of 0.125 for the learning rate was used.

ID Number Series Correct  Incorrect No  No. of solving configurations
responses responses  response with iterations:

05k 1k 5k 10k 15k
EO01 12,15,8,11,4,7,0,3 15 2 306 385 475 530 554
E002 148,84,52,36,28,24,22,21 12 2 3 555 637 670 689 683
E003 2,12,21,29,36,42,47,51 14 1 2 405 440 502 539 551
E004 2,3,5,9,17,33,65,129 13 1 3 3 7 61 192 218
EOO5 2,5,8,11,14,17,20,23 9 3 5 581 618 659 667 675
EO06 2,5,9,19,37,75,149,299 6 4 7 0 0 0 0 0
E007 25,22,19,16,13,10,7,4 16 1 562 615 648 667 670
E008 28,33,31,36,34,39,37,42 17 121 183 315 332 342
EO09 3,6,12,24,48,96,192,384 13 1 3 0 0 0 0 0
E010 3,7,15,31,63,127,255,511 12 3 2 0 0 0 0 0
EO11 4,11,15,26,41,67,108,175 8 1 8 6 14 32 22 18
EO12 5,6,7,8,10,11,14,15 10 1 6 83 91 65 114 202
E013 54,48,42,36,30,24,18,12 16 1 274 299 338 376 401
EO14  6,85,7,4,6,3,5 16 1 134 169 198 219 213
E015 6,9,18,21,42,45,90,93 14 1 2 48 24 94 101 103
E016 7,10,9,12,11,14,13,16 14 3 111 202 380 404 409
EO17 = 8,10,14,18,26,34,50,66 13 1 3 57 46 30 29 24
E018 8,12,10,16,12,20,14,24 17 37 75 41 51 71
E019 8,12,16,20,24,28,32,36 15 2 507 546 594 613 634
E020 9,20,6,17,3,14,0,11 16 1 255 305 397 406 411

2.1 Human Performance

In a previous experiment (Ragni and Klein, 2011)
with humans we tested 20 number series to evaluate
reasoning difficulty and to benchmark the results of
our ANN. All number series can be found in Table 2.
We only briefly report the results. Each of the 17 par-
ticipants in this paper and pencil experiment received
each number series in a randomized order and had to
fill in the last number of the series. The problems
differed in the underlying construction principle and
varied from simple additions, multiplications to com-
binations of those operations. Also nested number se-
ries like 5;6;7;8;10;11;14;15::: (cp. (ii) from the
introduction) were used.

For our analysis with ANNs we varied the learn-
ing rate of the configuration (f(i;h;1)) between 0:125
and 0:875 with a step-width of 0:125 and later on
with a step-width of 0:1 ranging from 0:1 to 0:9
(0:125 I 0:875(or0:1 1 0:9)). The number of
nodes within the hidden layer was iterated from one to
twenty (1 h 20). The number of input nodes was
varied between one and six nodes (1 i 6). Forall
configurations only one output node was used. The
number of training itations was varied in five steps
starting with as low as 500 iterations on each pattern
before testing. Then raised the number in four steps
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over 1:000, 5:000 and 10:000, up to 15:000 iterations.

Table 3: Results of solving configurations with a step—width
of 0.1 for the learning rate out of 1080 configurations.

ID No. of solving configurations
with iterations:

05k 1k 5k 10k 15k
E001 410 496 626 669 715
E002 698 800 863 871 887
E003 516 575 663 708 733
E004 8 11 83 246 283
E005 723 800 843 854 882
E006 2 4 0 0 0
E007 711 756 828 845 861
E008 165 238 409 425 437
E009 0 0 0 0 0
E010 0 0 0 0 0
EO011 6 16 45 32 29
EO12 103 111 88 151 257
E013 334 354 437 477 506
E014 166 202 274 277 285
E015 61 48 127 127 132
E016 155 259 485 527 523
E017 78 64 41 25 25
E018 38 108 59 71 87
E019 646 667 743 775 797
E020 304 400 517 521 528

There are three number series which were not
solved by any ANN configuration tested with a
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0:125 step-with configuration. ~ All others could
be solved (cf. Table 2). With a smaller step-
width for the learning rate (0:1) the number series
2;5;9;19;37;75;149::: was solved too, but the two
other number series remain unsolved (cf. Table 3).

Comparisons between the different configurations
show a negligible difference between the number of
iterations (cf. Table 2 and 3). It seems that 1.000
iterations might be already a good approximation for
solving number series.
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Figure 2: Results for ANN configurations with Ir = 0:125,
1 i 6, and 10.000 training iterations applied to the 20
problems depicted in Table 2.

The input nodes divide the number of solutions
in three classes (cf. Figure 2): We get the worst
results for ANNs with six input nodes. One and
five input nodes span the next level, and finally two
to four input-nodes solve the problems considerably
well, with a peak for an ANN with two input nodes
and about 15 hidden nodes. In average, if we increase
the learning rate the number of solved tasks decreases
with an increasing number of hidden nodes. Networks
with only one input node showed a slightly different
behavior. For these networks, the number of solved
tasks increases with the learning rate and decreases
with learning rates above 0:625. Taken together this
first analysis already shows that simple number series
can be adequately solved. An interesting result is that
the higher the number of input nodes is — the worser
are the results. We will see that this does not hold for
arbitrary number series from the OEIS.

2.2 The OEIS Number Series

To assess the power of our dynamic approach we
chose to use the number series from the OEIS
database. The OEIS database contains a total of
187.440 number series. We selected those number se-
ries which consist of at least 20 numbers (to be able
to apply our dynamic training method) with values

smaller or equal to 1:000. This constraint is sat-
isfied by exactly 57:524 number series, which were
chosen to be used to benchmark our ANN approach
with dynamic learning.

Due to the large number of problems, we varied
the learning rate (0:125 |  0:875), the number of
nodes within the hidden layer (1 h  7) of the con-
figuration (f(i;h;1)). We used four, eight and twelve
input nodes and only one output node. For all config-
urations, the number of training itations was 1:000.

The best ANN, in the sense of solving the most
number series, with four input nodes (and two hid-
den nodes and a learning factor of :75 ) was able to
solve 12:764 number series problems and all 49 tested
ANN configurations with four input nodes together
were able to solve 26:951 of the number series. The
best ANN, in the sense of a minimal deviation over all
tasks, was achieved by a network with four nodes in
the input layer and two in the hidden layer and a learn-
ing rate of :375. The deviation of the prediction and
the actual value, summed over all tasks, was 859:144.
The deviation of the network, solving the most tasks
was 868:506.

The best ANN with 8 input nodes (and two hidden
nodes and a learning rate of :75) solved 13:591 num-
ber series tasks and all 49 settings together were able
to solve 31:914 of the total of 57:524 tasks. The min-
imal deviating network was the analog as in the case
of four nodes in the input layer. Its overall deviation
was 904:134. The deviation of the network, solving
the most tasks with eight nodes in the input layer, was
926:262.

Considering the configurations with 12 input
nodes, the most number series (14:021) were solved
by a configuration with two nodes in the hidden layer
and a learning rate of :75. Over all number series this
configuration deviated by 992:875. The minimal de-
viating configuration in this case was the one with two
nodes in the hidden layer and a learning rate of :25.
Its deviation was 962:510. All configurations (with
i = 12) together, were able to solve 33:979 number
series correctly.

The configurations solving the most number se-
ries are summed up in Table 4, showing that with
an increasing number of input nodes the number of
solved problem increases, too. This is also true for
the number of solved number series over all tested
configurations. In contrast, as shown in Table 5, with
an increase of the input nodes the deviation of each
task summed over all tasks rises. Combining these
results, this means that with an increasing number of
input nodes more number series could be solved, but
the prediction of the unsolved problems deviate more
from the correct solution.
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Figure 3: Results for ANN configurations (Ir= learning rate, in = input nodes) with 10.000 training iterations applied to the

20 problems depicted in Table 2.

To capture the performance of this approach, we
additionally analyzed deviations of 5and 10 from
the correct solution. The configurations solving the
most problems and also the number of solved prob-
lems over all configurations rise drastically, which is
also shown in Table 4.

Table 4: Configurations with 4, 8 and 12 input nodes (in),
solving the most number series of the OEIS database. Re-
sults are shown for exact solutions, 5,and 10 around the
exact solution.

Input  Exact 5 10

4 12:764 with  39:003 with  44:848 with
h=2,Ir=75 h=2,Ir=:75  h=5, Ir=:875

8 13:591 with  39:065 with  45:064 with
h=2, Ir=:75 h=2, Ir=:625 h=4, Ir=:875

12 14:021 with  39:052 with  45:086 with
h=2,Ir=:75 h=2,Ir=:375 h=2, Ir=:75

Table 5: Configurations with the smallest deviation summed
over all number series of the OEIS database.

deviation and configuration

No. input nodes

4 859:144 with h =2, Ir=:375
8 904:134 with h =2, Ir=:375
12 962:510 withh =2, Ir=:25

Again, solving means, they were able to correctly
predict the next number of the series, even though
they had never trained it. Figure 4 depicts the results
of the ANNSs based on the OEIS problems.
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3 CONCLUSIONS

The problem of selecting an adequate neural network
architecture for a given problem has come recently
more and more to the research focus (Gomez et al.,
2009). Similar questions have been lately investi-
gated for Boolean functions (Franco, 2006). We fol-
lowed this research line in dealing with number series.
To identify the adequate structures, we systematically
varied input nodes, hidden nodes, and the learning
rate to compare the different artificial neural networks
structures. Using a dynamic learning approach, we
are able to predict 90% correctly (18 of 20) of sim-
ple number series (which typically appear in intelli-
gence tests). If we use the above specified subset of
the OEIS database as a benchmark we are still able to
solve about 59% of the number series correctly (about
33:979 of 57:524 number series, cp. Table 6). Re-
laxing the goal to compute the correct number and
allowing deviations of 10 allows to capture 50:139
number series.

A first conclusion we can draw is that the struc-
ture of the artificial neural networks can determine the
success of solving a number sequence — there is a sys-
tematic pattern between learning rate, input nodes and
the number of nodes within the hidden layer — show-
ing that 2-4 input nodes and about 5-6 hidden nodes
provide the best framework for solving typical intel-
ligence test like number series. If the number series
can be mathematically much more complex number
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Figure 4: Results for ANN configurations with 1.000 training iterations applied to a subset of the OEIS database.

series, then eight input nodes seem much better than
four input nodes while the number of hidden nodes
remain stable.

Table 6: Number of solved number series of the OEIS
database over all 49 tested configurations. Results are

shown for exact solutions, - 5, and - 10 around the exact
solution.

No. input nodes  exact 5 10

4 26:951 44:689 48:176

8 31:914 46:349 49:580

12 33:434 47:076  49:931

The right artificial neural networks seem — as a
method — powerful enough to expand into one of the
still privileged realms of human reasoning — to iden-
tify patterns and solve number series successfully.
The structure of the used ANNSs can provide useful
insights.

Future work will systematically investigate to
what extend other types of artificial neural networks
and approaches show a better performance than back
propagating ones used in this approach.
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