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Abstract: In this paper, we propose a semi-supervised spectral clustering method able to integrate some limited super-
visory information. This prior knowledge consists of pairwise constraints which indicate whether a pair of
objects belongs to a same cluster (Must-Linkconstraints) or not (Cannot-Linkconstraints). The spectral clus-
tering then aims at optimizing a cost function built as a classicalMultiple Normalized Cutmeasure, modified
in order to penalize the non-respect of these constraints. We show the relevance of the proposed method with
an illustrative dataset and some UCI benchmarks, for which two-class and multi-class problems are dealt with.
In all examples, a comparison with other semi-supervised clustering algorithms using pairwise constraints is
proposed.

1 INTRODUCTION

The term ”spectral clustering” refers to a family of un-
supervised clustering algorithms. It is more and more
used thanks to its effectiveness and its simplicity of
implementation which comes down to the eigenvec-
tors extraction of a similarity matrix computed on the
dataset (Ng et al., 2002). Similarity matrix gathers
the complete information used by the method, telling
for each pair of instances how close they are. Con-
trary to some traditional clustering algorithms such as
K-means algorithm, the spectral clustering method al-
lows to deal with ”non-globular” clusters of points.

In recent years, methods incorporating prior
knowledge in their clustering process have emerged
as relevant and effective in several applications, such
as image segmentation (Meila and Shi, 2000), infor-
mation retrieval or document analysis (Han and Kam-
ber, 2006). The prior knowledge is generally provided
in two forms: class labels, and pairwise constraints.
Labelling data is a hard and long task. Pairwise con-
straints simply indicate if two instances must be in the
same cluster (Must-Link) or not (Cannot-Link). They
are easier to collect from experts than labels (Wagstaff
and Cardie, 2000). However, few works take an inter-
est in semi-supervised methods allowing to deal with
multiclass problems (K ≥ 2). Indeed, recent algo-
rithms mainly focus on two-class problems (K = 2).

In this paper, we propose a new algorithm able to
integrate constraints in the multiclass spectral clus-
tering process, using a penalty term in a way simi-
lar to the constrained Principal Components Analy-
sis (Zhang et al., 2007) used in dimension reduction.
The proposed algorithm aims at minimizing the MN-
Cut (Multiple Normalized Cut) criterion, while penal-
izing the non-respect of the given set of constraints.
Moreover, a convenient weight, easily interpretable,
is introduced in order to balance the MNCut and the
penalty term, i.e. the impact of the original struc-
ture of the data and the contribution of the constraints.
This method is compared with two recent algorithms,
and some proposed variants, on an artificial sample
and UCI datasets (http://archive.ics.uci.edu/ml/). The
results are finally presented, for different proportions
of known constrained pairs.

The paper is organized into three sections. The
first one is theoretical and presents the spectral clus-
tering algorithms and some semi-supervised methods
dealing with pairwise constraints. The second one
presents our semi-supervised K-way spectral cluster-
ing method. The last section assesses the perfor-
mances of our method and some recent algorithms
using synthetic dataset and public databases extracted
from UCI repository.

72 Wacquet G., Hébert P., Caillault Poisson É. and Hamad D..
SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS.
DOI: 10.5220/0003682500720081
In Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2011), pages 72-81
ISBN: 978-989-8425-84-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



2 STATE OF ARTS: K-WAY
SPECTRAL CLUSTERING,
PAIRWISE CONSTRAINTS

2.1 Graph Embedding and MNCut

Spectral clustering is generally considered as a clus-
tering method aiming at minimizing aNormalized Cut
criterion betweenK = 2 clusters (NCut), or aMulti-
ple Normalized CutbetweenK ≥ 2 clusters (MNCut)
(Meila and Shi, 2000)(Ng et al., 2002)(Shi and Ma-
lik, 2000). The first measure, NCut, assesses how
strongly a cluster of points (or vertices in a graph)
is linked to the other points, in relation to its own co-
hesion. The second one deals with multiple clusters
(K ≥ 2) and is set to the average of the NCut measures
over the whole clusters.

2.1.1 Notations

In order to prepare the NCut minimization problem
formulations, some notations are first introduced, us-
ing an usual graph formalism.

• Let X = {x1, . . . ,xi , . . . ,xN} be a set ofN objects,
to be clustered;

• this set X is described by a weighted graph
G(V,E,S): V is the set of nodes corresponding
to the objects;E is the set of edges between the
nodes andS is a weights matrix whose elements
Si j = Sji ≥ 0 tell how strongly related (or close)
objectsxi andx j are;

• let D be the degree matrix of graph G, i.e. a di-
agonal matrix whose components are equal to the
degrees of the nodes:Dii = ∑N

j=1Si j ;

• let C = {C1, . . . ,CK} be a partitioning ofX into
non-empty disjointK subsets;

• each groupCk is described by its volume
Vol(Ck) = ∑xi∈Ck

Dii and its “cohesion” degree
Cut(Ck,Ck) = ∑xi∈Ck ∑xj∈Ck

Si j ;

• the Cut between two groups is defined by
Cut(Ck,Ck′) = ∑xi∈Ck ∑xj∈Ck′

Si j .

2.1.2 MNCut Minimisation as Eigenproblem

In a two-class problem, theNormalized Cutbetween
subsetsC1 andC2 is defined as:

NCut(C1,C2) =Cut(C1,C2)

(

1
Vol(C1)

+
1

Vol(C2)

)

.

(1)
In a K-way clustering problem, NCut criterion is gen-
eralized by theMultiple Normalized Cut(MNCut):

MNCut(C) =
K

∑
k=1

Cut(Ck,C\Ck)

Vol(Ck)
=

K

∑
k=1

(

1− Cut(Ck,Ck)

Vol(Ck)

)

(2)

Many authors of spectral clustering algorithms
have shown that the minimization of MNCut criterion
can be achieved by solving an eigenvalue system (or
generalized eigenvalue system). Their optimal clus-
tering processing can be resumed in three steps:

1. Computation and normalization of the similarity
matrix S. The result is generally a normalized
Laplacian matrixL.

2. Spectral Mapping. SomeK vector solutions of an
eigenvalue system such asLzk = λkzk based on the
matrix issued from Step 1, are computed to form
the matrixZ = [z1,z2, . . . ,zK ]. If the eigenvalues
are not distinct, the eigenvectors are chosen such
that zT

i Dzj = 0 f or i 6= j. Z is then normalized
into a matrixU , whose eachi-th row is used to
map objectxi .

3. Partioning. A grouping algorithm like K-means
clusters the points in the spectral space, and as-
signs the obtained clusters to the corresponding
objects.

Now, some usual spectral algorithms are de-
scribed, in order to illustrate both paradoxal aspects:
the quasi-equivalence of their solutions, and the dif-
ference between the formalisms they adopt.

K = 2. Shi and Malik. In their paper (Shi and Ma-
lik, 2000), the authors define the indicator vector of
clusterC1 asu∈ {−1,1}N: ui = 1⇔ xi ∈ C1. NCut
criterion is then written as:

NCut(G,u) =
∑xi>0,x j<0−uiu jSi, j

∑xi>0 Di,i
+

∑xi<0,x j>0−uiu jSi, j

∑xi<0Di,i
.

(3)

With variable changev= (1+u)−b(1−u) with
b= ∑xi>0Dii/∑xi<0Dii , infering both conditionsvi ∈
{1,−b} andvTD1= 0, the above equation becomes a
Rayleigh quotient:

min
v

NCut(G,v) = min
v

vT(D−S)v
vTDv

. (4)

By relaxing the constraints on indicator vectoru′

to take on real values, the minimization is obtained
by solving the generalized eigenvalue system:(D−
S)v= λDv that satisfies the constraintvTD1= 0. By

setting z = D
1
2 v, a standard eigensystem, easier to

solve, is derived:D− 1
2 (D−S)−

1
2 z= λz.
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So in Step 1, Shi and Malik compute the Laplacian
matrix L = D−Sand its normalized variantL = I −
D− 1

2 SD− 1
2 .

In Step 2, they extract the second smallest eigen-
vectorz of L, which is then transformed to approx-
imate the optimal vector indicator looked for:v =

D− 1
2 z. First eigenvectorz0, collinear toD

1
2 1, is left

in order to satisfy conditionvTD1= 0.
In Step 3, the objects are split into two clusters

based on the values ofv (the optimal NCut splitting
value being looked for).

K = 2. Von Luxburg. In his tutorial (Luxburg,
2007), the author defines the indicator vector of clus-
ter C1 as u ∈ {a,−a−1}N: ui = a ⇔ xi ∈ C1, with

a =
√

Vol(C2)
Vol(C1)

. NCut criterion is then written as a
quadratic function ofu:

NCut(G,u) =
1
2 ∑

i, j

(ui −u j)
2Si j

=uT(D−S)u= uTLu.

(5)

The problem solved is the same than Shi and Malik’s
one:

min
z

NCut(G,z) = min
z

zTLz, s.t. zTz= 1, (6)

with exatly the same formal conditionuTD1= 0.
The same steps are then followed.

K >= 2. Shi and Malik, Von Luxburg. These au-
thors(Shi and Malik, 2000; Luxburg, 2007) general-
ize the NCut criterion to the Multiple-NCut (MNCut)
criterion, by proposing an average criterion:

MNCut(G,U) =
K

∑
k=1

NCut(G,uk),

whoseK vectorsuk, denote indicator vectors parti-
tioningX in K clusters.

Two authors((Meila and Shi, 2000; Luxburg,
2007)) propose to solve this problem, by considering:
uk ∈ {0, 1√

Vol(Ck)
}N, and uik = 1√

Vol(Ck)
⇔ xi ∈ Ck.

These indicator vectors are column-wise gathered in
matrixU .

They finally express their problem, in a way simi-
lar to caseK = 2:

min
Z

MNCut(G,Z) = min
Z

K

∑
k=1

zk
TLzk, s.t. zk

Tzk = 1,

(7)

with additional formal condition U = D− 1
2 Z:

UTDU = I . Let’s note that conditionukD1 will be
verified, although it is no more justified.

Consequently, the firstK eigenvectors ofL (i.e.
with the K smallest eigenvalues) minimize the cri-
terion and allow to estimate theK cluster indicator
vectors. In order to retrieve discrete cluster indica-
tor values, the eigenvector extraction is followed by a
K-means step on the row ofU = D− 1

2 Z.
Shi and Malik (Shi and Malik, 2000) describe the

same solution, but from a direct generalization from
caseK = 2.

K >= 2. Ng et al.’s. The authors (Ng et al., 2002)
proposed an other algorithm based on Weiss (Weiss,
1999) and Meila and Shi (Meila and Shi, 2000) that
also solved the spectral problem (eq. 7), but without
formulating any optimization problem in terms of in-
dicator vectors.

They proposed to modify the initial similarity ma-
trix: Sii = 0, and to use theK highest eigenvectors
zk of LNg = D− 1

2 SD− 1
2 , orthogonal to each others, to

map data. Let’s remark that these eigenvectors are the
K lowest eigenvectors ofI−LNg= L. Then, instead of

computing a matrixU = D− 1
2 Z from matrixZ stack-

ing the extracted eigenvectors, they rather project data
points in the spectral space on the unit-sphere, by nor-

malizingZ into U : Ui j = Zi j /
√

∑ j Z
2
i j .

Step 3 is K-means too, initialized by points at most
orthogonal.

Despite the diversity of the formalisms used to
define the indicator vectors, all these authors finally
solve the same objective function (eq. 7), which in-
volves the same normalized Laplacian matrixL.

2.2 Spectral Clustering Methods using
Pairwise Constraints

2.2.1 Pairwise Constraints Information

We now focus on additional knowledge, formalized
as pairwise constraints. The set of objectsX and its
similarity matrixS is now completed with the follow-
ing two sets of pairs of objects (Wagstaff and Cardie,
2000):

• pairs of points that must belong to different clus-
ters:{xi ,x j}∈ C L , with {xi ,x j}⊆ X , theCannot-
Link set of pairs;

• pairs of points that must belong to the same clus-
ter: {xi ,x j} ∈ M L , with {xi,x j} ⊆ X , theMust-
Link set of pairs.

NCTA 2011 - International Conference on Neural Computation Theory and Applications

74



Spectral clustering methods integrating this type of
information has previously been proposed, first by
Kamvar et al. (Kamvar et al., 2003), and more re-
cently by Wang and Davidson (Wang and Davidson,
2010). Both methods are now presented, while hight-
lighting some of their weakness.

2.2.2 Spectral Learning Method

In (Kamvar et al., 2003), the constrained spectral clus-
tering method described is built as a basic spectral
clustering method, in which two steps are modified:

• the similarity matrixS, built by applying a gaus-
sian kernel on a set ofN points describing the ob-
jects inX , is modified in the following way: for
each pair{xi,x j} ∈ M L , elementsSi j = Sji are
set to 1; and for each pair{xi ,x j} ∈ C L , elements
Si j = Sji are set to 0;

• then, similarity matrixS is not normalized as in
the MNCut-graph paradigm, but in anormalized
additiveway: (S+dmaxI −D)/dmax, with dmax the
maximal rowsum ofS; the obtained matrix is a
symmetric Markov transition probabilities matrix;
the authors underline that must-linked pairs have
a higher mutual transition value than other pairs;
eigenvectors are then extracted from this normal-
izedS, and their rows are unit-length normalized.

The main weakness of this variant is that must-
linked (respectively, cannot-linked) similarities are ar-
bitrarly set to their maximal (r., minimal) theoriti-
cal values: 1 and 0. About the maximal value, and
even for the minimal value (although the paper is
focused on Markov’s probability matrix formalism),
this choice may be discussed: greater or smaller val-
ues could have been prefered. With sucha priori val-
ues, it’s difficult to know if the constraint on pairs of
points is excessive, weak, or well balanced.

2.2.3 Flexible Constrained Spectral Clustering
Method

In their paper (Wang and Davidson, 2010), Wang and
Davidson express their constrained spectral cluster-
ing problem, as a constrained optimization problem,
which is solved by an eigenvector extraction. Their
approach is consequently less empirical than the pre-
vious one, and it gives an answer to the problem of
tuning the strength of the constraints.

The semi-supervised spectral clustering problem
is detailed withK = 2. The indicator vector looked
for is denotedu∈ {−1,+1}N, and the satisfaction of
pairwise constraints is measured thanks to a matrixQ:

Qi j = Q ji =











−1 if {xi ,x j} ∈ C L ,
+1 if {xi ,x j} ∈M L ,
0 else.

(8)

With such aQ matrix, the measureuTQu increases
with the number of satisfied constraints.

The problem is then formulated as a constrained
optimization problem, lettingz = D

1
2 u and Q =

D− 1
2 QD− 1

2 :

min
z

zTLz,

s.t. zTQz≥ α, zTz=Vol(G), z 6= D
1
2 1.

(9)

The first constraint lower-bounds the satisfaction
of constraints, the second one normalizes the indica-
tor vector, and the last one is intented to avoid the triv-
ial solution of spectral clustering (i.e. the “constant”
indicator vector).

The problem is finally solved using Lagrange mul-
tipliers, but the infinite set of solutions has to be re-
duced by constraining this multipliers.

A feasible set of eigenvectorsz, is then set as the
solutions of the following generalized eigenproblem
whose eigenvaluesλ are strictly positive (because of
the constraints satisfaction):

Lz= λ(Q− θ
Vol(G)

I)z. (10)

And the optimalz is then selected as the one min-
imizing the MNCut measurezTLz, while differing
from the trivial solutionD

1
2 1. Final indicator vector

solutionu is then obtained from the usual:u= D− 1
2 z.

Parameterθ is used to weight the constraints im-
pact: θ < λmaxVol(G), with λmax the largest eigen-
value ofQ. The authors propose the followinga pri-
ori value:

θ = λmax×Vol(G)×
(

0.5+0.4× # Constraints
N2

)

.

As shown in their paper (Wang and Davidson,
2010) in caseK = 2, this algorithm outperforms Kam-
var’s method, which directly modifies the similarity
matrix using 0 and 1 values.

In caseK > 2, although the authors generalize the
method by selecting not only the first, but the top-
K generalized eigenvectors corresponding to the pos-
itive eigenvalues, we generally observe lower perfor-
mances on UCI benchmarks, sometimes even lower
than Kamvar’s method ones.

As a possible explanation of these differences, we
remark that theK-dimensional spectral subspace is
not built as in the original spectral clustering method:
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Figure 1: Rand Index on two UCI datasets, functions of the
percentage of known labels. (FCSC-θSP: modified version
of FCSC, FCSC: original version of FCSC, SL-L: modified
version of SL, SL: original version of SL).

in particular, propertiesuT
k D1= 0 anduT

k Duk′ = 0 are
generally not satisfied. Although they are not always
constrained in the originalMNCutminimization prob-
lem (it depends on the formalism used), they could
favour better clustering.

Let’s finally remark that, on contrary to Von
Luxburg’s approach, the conditions verified by the
eigenvectors are not justified by the formalism used
(uk ∈ {−1,1}N): neither equationszT

k Lzk′ = 0⇔ k 6=
k′ andzT

k (Q− θ
Vol(G))zk ⇔ k 6= k′, nor equationuT

k D1.

3 SEMI-SUPERVISED K-WAY
SPECTRAL CLUSTERING
ALGORITHM

Our problem formulation consists in a MNCut prob-
lem, where the objective function is modified, in such
a way to penalize the non-respect of constraints. Un-
like to FCSC method, the spectral subspace is ob-
tained from a basic spectral clustering algorithm.

3.1 Penalty Cost

This penalty cost could be expressed on the indicator
vectoruk. First, we should have to decide which bi-
nary domain of values{a,b} to use, such thatuk ∈
{a,b}N. But we prefer here to consider that this do-
main choice does not matter a lot: all the spectral
clustering methods presented in Section 2 including
Wang’s one, whatever this domain is, finally define
the spectral subspace from the top-K eigenvectorszk

from Laplacian matrixL = D− 1
2 SD− 1

2 , i.e. the ones
minimizingL = I −D− 1

2 SD− 1
2 . The penalty cost will

then depend on these eigenvectorszk, stacked in ma-
trix Z.

Then, previous methods post-transform these vec-
tors, either by aD− 1

2 pre-multiplication, or by a pro-
jection on the unit-sphere. We consider here this last

choice, as in different previously presented methods
(Ng et al., 2002)(Kamvar et al., 2003).

Because of this final projection, we decide to
make the penalty cost depend on the angles be-
tween spectral projections given by theK eigenvec-
tors. Penalty term PC is defined by dot products be-
tween constrained points, considering that this mea-
sure suits well to the alteration of angles:

PC= PC(C L ,M L ,α,β,Z)

=
−α
|C L | ∑

{xi ,xj }∈C L

K

∑
k=1

zik.zjk +
β

|M L | ∑
{xi ,xj }∈M L

K

∑
k=1

zik.zjk

=
K

∑
k=1



− α
|C L | ∑

{xi ,xj }∈C L
zik.zjk +

β
|M L | ∑

{xi ,xj }∈M L
zik.zjk



 .

Weights α and β are used to balance the con-
tributions of the must-linked and cannot-linked con-
straints. Zhang et al. incorporate a quite similar
Pairwise-Constraints penalty cost in a PCA method
(Zhang et al., 2007), but with an Euclidean distance
measure. As they do, we now express penalty cost PC
as a matrix product, using a more general cost matrix
Q than Wang’s one:

Qi j = Q ji =











− α
|C L | if {xi,x j} ∈ C L ,

+ β
|M L | if {xi,x j} ∈M L ,

0 else.

(11)

PC term is then written in the following way:

PC=
1
2 ∑

i, j

K

∑
k=1

zikzjkQi j =
K

∑
k=1

zT
k Qzk. (12)

3.2 Penalized MNCut Cost Function

This penalizing term is now combined to the MNCut
criterion, so as to build a pairwise constrained spectral
clustering optimization problem:

J = J(G,C L ,M L ,Z)

= MNCut(G,Z)+PC(C L ,M L ,α,β,Z).
(13)

Minimizing this objective function allows to char-
acterize a spectral projection reflecting both the origi-
nal structure of data and the constraints proposed. We
now want to reveal the criterionPCas a Rayleigh quo-
tient, in order to set our problem as an eigenproblem.

MNCut and PC costs are now introduced in Equa-
tion 13:

J =
K

∑
k=1

zT
k Lzk+

K

∑
k=1

zT
k Qzk =

K

∑
k=1

zT
k (L+Q)zk. (14)
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The penalized optimization problem can then set
as:

min
Z

K

∑
k=1

zT
k (L+Q)zk, s.t. zk

Tzk = 1. (15)

This problem is clearly related to the basic spec-
tral clustering’s one Equation 7, except that the nor-
malized Laplacian matrixL is penalized by matrixQ
carrying the set of pairwise constraints.

3.3 Setting the Balance between the
Two Parts of Criterion J

Considering that aML information has the same im-
portance as aCL information, and that the necessary
strength to force them may be equal, we setα = β;
in the following part, these weights will be tuned by
variableγ.

In addition, we propose a normalization makingJ
easier to interpret. The MNCut expressionzT

k Lzk be-
longing to[0,1] and the penalty onezT

k Qzk belonging
to [λQmin,λQmax], we propose to normalize matrixQ
using its minimal and maximal eigenvaluesλQmin and

λQmax: Q=
Q−λQmin

λQmax−λQmin
.

Thanks to balancing termγ, criterion J now be-
longs to[0,1], and the final problem is set as:

min
Z

K

∑
k=1

((1− γ).zk
TLzk+ γ.zk

TQzk),

s.t. zk
Tzk = 1.

(16)

3.4 “Mono-cluster” Solution u0 = D
1
21

Because of the penalty term used, this vector is not
solution of our optimization problem for mostQ ma-
trix, on contrary to basic spectral clustering’s one or
even to Wang’s constrained spectral clustering prob-
lem. This can be seen as a weakness, because it’s
make mono-cluster vectors more difficult to recog-
nize and to reject: in basic spectral clustering, all the
eigenvectors orthogonal toz0 (the smallest eigenvec-
tor of L) are necessarily valid solutions.

To overcome this problem, a simple Euclidean
distance can be used instead of the dot product penalty
measure: matrixQ would then be modified by the
substraction of a diagonal matrixR composed of its
rowsums: Rii = ∑ j Qi j . With this penalty measure

used onU = D− 1
2 Z rather than onZ, mono-cluster

vectoru0 becomes a solution of the obtained eigen-
system, quite similar to the one proposed; so it can be
easily rejected. But in practice, the obtained results on

all the benchmarks tested were less performant; that
is why this solution was left.

In caseK = 2, we then decide to reject the mono-
cluster solution obtained from vectorsu containing
only positive (or negative) values.

In caseK > 2, we maintain the usage ofK eigen-
vectors, considering that this mono-cluster vector has
high chance to take part in the subspace building. All
the experiments made did not appear to be penalized
by this point, as it will be shown in the next section.

The algorithm in its K-way variant is resumed be-
low (cf. Algorithm 1).

Algorithm 1: Semi-Supervised K-way Spectral Clustering.

Spectral projection step
1. For a given data matrixX ∈ ℜN×P, with N points

described in aP-features space, compute a sim-
ilarity matrix S between these points ; for exam-

ple: Si j = e
− d2(xi ,xj )

2σ2 , with σ a scale parameter, and
d a distance measure.

2. SetSii = 0.
3. Compute the constraints weighting matrixQ:

Qi j =











− 1
|C L | if {xi ,x j} ∈ C L ,

+ 1
|M L | if {xi ,x j} ∈M L ,

0 else.

4. Compute the minimum and maximum eigenval-
ues (denotedλQmin andλQmax) of Q.

5. Compute the constraints weighting matrixQ:

Q=
Q−λQmin

λQmax−λQmin

6. Compute thedegreediagonal matrixD ∈ ℜN×N:
Dii = ∑ j Si j .

7. Compute the normalized Laplacian matrix:L =

I −D− 1
2 SD− 1

2 .
8. Find, theK lowest eigenvectors{z1, . . . ,zK} of

matrix:
(1− γ)L+ γQ,

and form the matrixZ = [z1, . . . ,zK ] ∈ ℜN×K .
9. Normalize the rows ofZ to be unit-lengthed (pro-

jection on the unit-sphere).
Spectral clustering step

1. Apply aK-means clustering on the data matrixZ.
2. Cluster each point ofX as its corresponding point

in Z was clustered.
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4 EXPERIMENTAL RESULTS

In this section, our Semi-Supervised Spectral Clus-
tering method (denoted SSSC) is applied first on
some illustrative synthetic examples, then on public
benchmarks belonging to the UCI repository. For
each dataset, some pairwise constraints are generated
from the known labels, and results are analyzed using
objective evaluation measures like MNCut, satisfied
constraints rates, or Rand Index. These results are
then compared with outputs of a set of similar meth-
ods (like Kamvar’s and Davidson’s ones).

4.1 Algorithms for Comparison

For all experiments, the proposed algorithm is com-
pared with the following seven clustering methods:

• SC: the basicSpectral ClusteringNg’s algorithm
(cf. 2.1.2), as a control reference unsupervised
method, in order to assess the impact of the added
pairwise constraints on the initial clustering;

• SL: the original semi-supervisedSpectral Learn-
ing algorithm introduced in Section 2.2.2;

• SL-L: a modified version of the SL algo-
rithm, whose Laplacian matrix is replaced by the
one used in our SSSC method (i.e.L = I −
D− 1

2 SD− 1
2 );

• FCSC: the originalFlexible Constrained Spectral
Clustering method introduced in Section 2.2.3,
weighted by the valueθ obtained from the rule
given by the authors;

• FCSC-θ: a variant of FCSC, where the
weight θ is a posteriori choosed in the range
(λminVol(G),λmaxVol(G)) introduced by the au-
thors, using an exhaustive search;

• FCSC-θSP: a variant of FCSC-θ, which consists
in incorporating the projection on the unit-sphere
step;

• FCSC-θ2SP: a variant of FCSC-θSP, where pa-
rameterθ is looked inside a range larger than the
one proposed by the authors.

In order to facilitate the comparison of the meth-
ods, without promoting our SSSC method, some ho-
mogenisations were done. Except for methods FCSC
and FCSC-θ, the projection step on the unit-sphere is
applied. The integration of this step in the algorithms
facilitates the comparison and allows to not promote
our SSSC method.

In all FCSC variants except the original one, the
weighting matrix used for experiments is the one de-
fined in Algorithm1. The weights of each kind of con-

straints are then similar and depend on the number of
contraints defined.

For SSSC and FCSC variants (except the original),
the weight of the penalty termθ or γ is a posteriori
optimized, by discretizing their definition interval into
100 equidistant values, and choosing the one which
maximizes the criterion:

E = (1−MNCut)+M L satis f ied+ C L satis f ied, (17)

whereM L satis f ied andC L satis f ied are the respective
rates of satisfiedM L andC L constraints.

For FCSC-θ and FCSC-θSP, the optimalθ in
searched in the range[λminVol(G),λmaxVol(G)]. The
authors show that this range is sufficient to assure
the existence ofK vectors satisfying the constraint of
their optimization problem; moreover, it contains the
values in which the constraints are at most satisfied
(Wang and Davidson, 2010).

For FCSC-θ2SP, we decide to enlarge the range
used: [−100× max(|λmin|, |λmax|) × vol(G),λmax].
The lower bound is an empirical value choosed in or-
der to make their constraint problem converge to the
unconstrained spectral clustering method, like in our
method.

4.2 Illustrative Example

To study the effect of constraints in clustering, we
propose to use pairwise constraints in a multiclass
problem.

The dataset is composed of 400 data samples
drawn from a mixture of five bivariate Gaussian dis-
tributions, as shown in Figure 2(a). The proportion of
each Gaussian distribution is set to1

5. In this case, the
desired number of clustersK is set to 4.

Three pairwise informations are considered: two
ML constraints between data points from different
clusters, and oneCL constraint between two data
points from the same Gaussian cluster (cf. Figure
2(a)). These pairwise constraints were deliberately
chosen so as to make the expected clustering differ
from the natural minimal cut obtained by the Spectral
Clustering algorithm (SC) (i.e. we try to break the
natural cut of the dataset).

For this example, the similarity matrix is built
from a Gaussian kernel with a scale parameterσ set
to 1, and withd set to the Euclidean distance.

Figure 2 shows the clusterings resulted for the
eight methods tested. Here, FCSC clustering is not
shown because its optimization problem can not be
solved for the given value ofθ; in fact, the proposed
rule is clearly not suitable to caseK > 2.

While all others methods fail to break the natural
cut, the proposed SSSC, FCSC-θSP and FCSC-θ2SP
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succeed in imposing the three constraints, as shown in
Figure 2(f), (g) and (h). The combination of the three
pairwise constraints succeeds in affecting the cluster-
ing, even with a “non-natural”CL constraint.

In order to complete the analyse of these cluster-
ing results, some performance indicators such as MN-
Cut values and the total proportion of satisfied con-
straints (ML andCL) are shown in Table 1.
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FCSC-θ2SP. SSSC.

Figure 2: Clustering results on Bivariate Gaussian clusters
with 2 ML and 1CL constraints.

Worst MNCUT values are obtained from SSSC,
FCSC-θSP and FCSC-θ2SP methods, but they are the
only ones which satisfy the pairwise constraints, nec-
essarily at the expense of MNCut. The MNCut for
SSSC is smaller than for FCSC-θSP and FCSC-θ2SP,
as shown in Table 1.

In this case, FCSC-θSP does not appear very
performant: despite its high rate of satisfied con-
straints, it tends to isolate the data points linked

by these pairwise constraints, in contrary of SSSC
and FCSC-θ2SP. Weights of proposed interval
[λminVol(G),λmaxVol(G)] appear too high in this
case.

Table 1: MNCut values and percentage of satisfied con-
straints, for the different methods with 2ML and 1CL con-
straints.

Methods MNCut %(ML+CL)
SC 0.004 0.0
SL 0.0151 0.0

SL-L 0.013 0.0
FCSC / /

FCSC-θ 0.030 0.0
FCSC-θSP 0.048 100.0
FCSC-θ2SP 0.042 100.0

SSSC 0.031 100.0

This experiment shows that the introduction of
prior knowledge is well managed by SSSC method
and FCSC modified method (variant FCSC-θ2SP).
The comparison with the basicSpectral Clustering
method shows that supplying prior information, in the
form of pairwise constraints, allows to improve the
clustering accuracy.

Moreover, in this example, the proposed SSSC
method succeeds in conjointly satisfying both con-
straints and minimal MNCut score, in a more efficient
way than all other algorithms.

4.3 Application to UCI Datasets

In this section, our Semi-Supervised K-way Spectral
Clustering method is applied to some datasets well-
known in the classification world (UCI datasets). For
each example, some given proportions of objets are
randomly selected, so as to build sets of labelled ob-
jects. Then, they are used to deduce bothC L and
M L constraints sets. For each percentage tested, we
enlarge the previous sets of constraints with new in-
formations. The quality of the clusterings obtained is
measured by the Rand index, which reflects the simi-
larity between the complete known partition (ground
truth) and the one obtained, depending on the num-
ber of pairs of points classified similarly in the two
partitions (Wagstaff and Cardie, 2000). The perfor-
mance scores are averaged over 10 repetitions of the
constraints generation process.

Table 2 shows the six datasets used. The data
preprocessing is described in (Wang and Davidson,
2010). For each example, the similarity matrix is built

using a Gaussian kernel:Si j = exp(− ||xi−xj ||2
2σ2 ) where

σ is the scale parameter equal to the mean of the vari-
ances of features.

Figure 3 shows the performance measures of all
the methods applied on these UCI datasets, in terms
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Wine (K = 3). Dermatology (K = 6). Glass2 (K = 6).

Figure 3: Rand Index (mean, maximum and minimum), functionsof the percentage of known labels, on UCI datasets.

Table 2: UCI datasets.

Nb. Ob-
jects

Nb. Fea-
tures

Nb.
Classes

Glass1 214 9 2
Hepatitis 80 19 2
Ionosphere 351 34 2
Wine 178 13 3
Dermatology 366 34 6
Glass2 214 9 6

of Rand index, i.e. the rate of pairwise relations equal
to the real ones. As it can be observed:

• Globally, methods like SSSC and some FCSC
variants achieve to significantly improves the ba-
sic spectral clustering (corresponding to abscissa
0). Increasing the number of constraints globally
improves the performances, and this increase is
faster between abscissa 0% and 5%. This means
that best methods are able to improve the cluster-
ing with small amongs of pairwise constraints.

• For K = 2, the best results are obtained from
methods SSSC and all FCSC variants except
FCSC-θ2SP: their Rand indexes are the highest
and the more stable: they do not decrease with
the number of constraints added.

SL-L and FCSC-θ2SP show quite lower perfor-
mances. The superiority of FCSC over FCSC-
θ2SP may be explained by the fact that FCSC-
θ2SP searches the optimal value ofθ in a larger
range than FCSC-θSP, but with the same dis-

cretization step (100 values): some interesting
values may consequently be omitted. This tends
to show that the choice of this parameter is not
so obvious in FCSC method. SL-L becomes in-
teresting, only with high numbers of constraints:
weigths 0 and 1 seem too low (in absolute value)
to impact the clustering.
Then SL gives the lowest Rand indexes: the
Laplacian used does not achieve to minimize the
NCut measure.

• ForK > 2, SSSC gets better performances than all
others methods. FCSC-θ2SP and SL-L give sec-
ond best results. FCSC-θSP’s ones are lower (the
range ofθ being too small). Then the methods
FCSC-θ and SL give very low Rand indexes: both
weigths and projection step are required to assure
good performances. FCSC original method does
not appear, because the constrained problem is not
solved with the proposedθ value.

Table 3 shows some performance indicators of the
different methods applied on a specific example,Der-
matology, whose number of clustersK is set to 6. In
each category,percentage of known labelsby perfor-
mance indicator, the best result is printed in bold type.

The proposed method thus appears to be very
competitive versus the other methods tested. Indeed,
for these datasets, SSSC method frequently reaches
the highest rates of satisfied constraints (over 99% for
each case), while keeping a satisfactory MNCut value
for each percentage of known labels (almost always
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Table 3: Evaluation measures on ”Dermatology” dataset
(K = 6) with different numbers of constraints.

%

known

labels

Methods %

ML

% CL % To-

tal

MNCut Rand

Index

0 SL / / / 0.245 0.805
SL-L / / / 0.013 0.827
FCSC / / / 0.011 0.814
FCSC-θ / / / 0.011 0.814
FCSC-θSP / / / 0.013 0.827
FCSC-

θ2SP

/ / / 0.013 0.827

SSSC / / / 0.013 0.827

2 SL 100.0 87.1 93.5 0.251 0.808
SL-L 100.0 94.1 97.1 0.059 0.850
FCSC / / / / /
FCSC-θ 48.8 70.7 59.7 0.085 0.800
FCSC-θSP 37.4 80.7 59.1 0.109 0.869
FCSC-

θ2SP

100.0 100.0 100.0 0.036 0.894

SSSC 100.0 99.7 99.9 0.013 0.880

5 SL 100.0 84.1 92.1 0.273 0.806
SL-L 100.0 95.7 97.9 0.038 0.900
FCSC / / / / /
FCSC-θ 65.0 77.6 71.3 0.102 0.799
FCSC-θSP 62.8 92.3 77.6 0.139 0.890
FCSC-

θ2SP

96.7 95.0 95.9 0.040 0.909

SSSC 100.0 98.4 99.2 0.018 0.914

100 SL 100.0 100.0 100.0 0.063 1.000
SL-L 100.0 100.0 100.0 0.063 1.000
FCSC / / / / /
FCSC-θ 75.8 70.3 73.0 0.334 0.714
FCSC-θSP 72.5 87.7 80.1 0.095 0.847
FCSC-

θ2SP

87.6 93.9 90.8 0.037 0.927

SSSC 100.0 100.0 100.0 0.045 1.000

lower than other methods).
For example, for a small percentage of known la-

bels (5%), the total proportion of satisfied constraints
(ML and CL) for SSSC is better than for the oth-
ers methods (99.2%) and the MNCut value is small
(0.018). Moreover, this value is coherent with the one
obtained for the basic spectral clustering (correspond-
ing to 0% of known labels and equal to 0.013) and is
smaller than for SL, SL-L and the four FCSC meth-
ods. Best Rand index is achieved too (0.914): final
result for SSSC is then closer to the optimal cluster-
ing than other methods.

For a lower percentage (2%), SSSC method sat-
isfies not exactly all constraints (99.9%), contrary to
FCSC-θ2SP. But its MNCut is the lowest (0.13 versus
0.36).

5 CONCLUSIONS

In this paper, we proposed a new efficient K-way
spectral clustering algorithm, usingCannot-Linkand
Must-Link as semi-supervised information. Like in
its unsupervised version, the clustering problem is set

as an optimization problem, consisting in minimiz-
ing an objective function proportional to theMultiple
Normalized Cutmeasure. This measure is here bal-
anced by a weighted penalty term assessing the non-
satisfaction of the given constraints.

Some comparisons with similar methods have
been carried on synthetic samples and some UCI
benchmarks. Different variants of the compared
methods have been proposed, in order to make the
methods more comparable, so as to get fair conclu-
sions. In all cases, the results illustrated that the most
performing methods, ours and the modified Wang’s
algorithms, are able to rapidly adjust the initial clus-
tering to a more convenient one, satisfying the given
constraints, even with quite low numbers of con-
straints. Our method seems to be part of this head
group of methods, its clusterings often achieving the
lowest MNCut values, and the highest satisfied con-
straints rates in the two-class and multi-class cases.
These experiments highlighted the importance of two
steps in this kind of semi-supervised spectral cluster-
ing methods: first, the usual projection step of basic
spectral clustering appears as crucial; then, a lot of
efforts have to be done to tune the constraints weight.
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