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Abstract: Atomic Force Microscopy (AFM) is a fundamental tool for the investigation of a wide range of mechanical 
properties on nanoscale due to the contact interaction between the AFM tip and the sample surface. The 
focus of this paper is on an algorithm for the reconstruction of 3D stem-differentiated cell structures 
extracted by typical 2D surface AFM images. The AFM images resolution is limited by the tip-sample 
convolution due to the combined geometry of the probe tip and the pattern configuration of the sample. This 
limited resolution limits the accuracy of the correspondent 3D image. To drop unwanted effects, we adopt 
an inferential method for pre-processing single frame AFM image (low resolution image) building its super-
resolution version. Therefore the 3D reconstruction is made on animal cells using a Markov Random Field 
approach for augmented voxels. The 3D reconstruction should improve unambiguous identification of cells 
structures. The computation method is fast and can be applied both to multi- and to single-frame images.  

1 INTRODUCTION 

In this paper, we adopt an inferential procedure 
providing a high-resolution algorithm for the single-
image AFM raw data and then the construction of a 
3D routine for the improved resolution images. 
When applied to cell populations, the 3D 
reconstruction, as developed in this paper, is a useful 
tool for the recognition of cell patterns and organs 
and it could be used for a fast in situ analysis for 
biologists and biomedical scientists. 

In the last two decades, AFM has been 
developed well beyond the topographic imaging 
tool. It has become an important instrument for 
manipulation and material property characterizations 
at the nanometer scale. The precision of positioning 
has always been the key driver for AFM technology 
and scanning probe microscopy in general. 
Nevertheless, uncontrolled hardware drift, such as 
piezo creep and thermal drift, can cause image 
distortion and limiting resolution. Some solutions 
based on offline corrections (Yurov and Klimov, 
1994), hardware optimization (Hug et al., 1992; 

Altmann et al., 2000; Beyder et al., 2006), image 
based real-time compensation (Clayton and Devasia, 
2005), or image-based adaptive control has been 
proposed (Belikov et al., 2008; D’Acunto and 
Salvetti, 2011). An AFM probe tip measures the 
topography of a surface by looking the vertical 
deflection of a cantilever and then associating a z-
height value to the correspondent vertical deflection. 
The resulting image is obtained plotting the function 
zi=f(xi,yi), for any couple (xi,yi) of the sample 
surface. The focus of this paper is to build a method 
for a 3D reconstruction after the acquired AFM 
image is processed in order to obtain its High-
Resolution (HR) representation.  

HR methods are techniques that enhance the 
resolution of an imaging system. In optical based 
imaging, HR techniques break the diffraction-limit, 
analogously, HR methods can improve the 
resolution of digital imaging sensors. HR techniques 
can be divided in two categories, single-frame or 
multiple-frame, respectively. Multiple-frame HR use 
the sub-pixel shifts between multiple low resolution 
images of the same scene. On the contrary, single 
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frame HR methods attempt to magnify the image 
without introducing blur. These last methods use 
other parts of the low resolution images to make an 
extimation on what the high resolution images 
should look like. AFM imaging requires to work 
using a single-frame approach: given a single image 
of sample scanned at low resolution, return the 
image that is mostly likely to be generated from a 
noiseless high resolution scan of the same sample 
portion. After HR equilavent image is reached, 3D 
recostruction is made possible using a Markov 
Random Field (MRF) approach. In a MRF method 
we consider a couple (hm, N), where a stochastic 
process is indexed by an augmented voxel hm for 
which, for every couple (x,y) of the 2D image, any 
augmented voxel depends only on its immediate 
neighbours of the N set, where N is a parameter 
space. The choice of N depends by the system 
variables conditional probability distributions, where 
system variables provide the basic tool for modelling 
spatial continuity.  

We apply our method to cells derived by stem 
primitive cells and differentiated in osteocytes or 
adipocytes, or fibroblast. Any differentiated stem 
cell develops specific organs and functions, and 
recognition such organs is not a trivial question. The 
3D reconstruction is useful when does not lose 
information of the primitive image and gives the 
possibility to identify unambiguous such specific 
organs.  

2 INFERENTIAL GENERATIVE 
MODEL 

Despite the AFM ability to reach high spatial 
resolution, the acquired surface topography image 
can sometimes not correspond to the real surface 
features due to the effect of the instrument on the 
object producing artefacts. These artefacts can be 
generally taken into consideration while 
qualitatively interpreting the AFM results. However, 
3D reconstruction tools require quantitative 
estimation and reconstruction of sample true 
geometry. During scanning, two major AFM 
artefacts can appear: a profile broadening effect due 
to the tip-sample convolution and the height 
lowering effect due to the elastic deformation of 
studied samples.  

The first effect can be schematised as follows: 
the tip moving across an object surface can be 
approximated by a sphere of radius R moving along 
a sphere of radius r surface, i.e., the tip describes arc 
of radius R+r. The lateral dimension of the surface 

objects is rc=2(R⋅r)1/2 and the relative height of the 
object 

Δz=r[1-(1-(rc/(R+r))2] (1)
The minimum separation between two asperities or 
local pattern that can be detected is d= (8RΔz)1/2, that 
is also the lateral resolution. 

Before to build the 3D structures, the source 
images are processed in order to improve their 
resolution. To do this operation, we adopt a 
Bayesian method. Hardie et al (Hardie et al, 1997) 
demonstrated that low-resolution images can be 
updated using super-resolution image estimate, and 
that this improves a Maximum a Posteriori (MAP) 
super-resolution image estimate. Pickup et al. 
(Pickup et al., 2009) used a similar joint MAP 
approach to learn more general geometric patterns, 
configuring the correspondent super-resolution 
images and valuing the prior parameters 
simultaneously. Another remarkable result for the 
inferential super-resolution has been reached by 
Tipping and Bishop (Tipping and Bishop, 2003), 
they used a Maximum Likelihood (ML) point 
estimate of the image parameters found by 
integrating the high-resolution image out the 
registration problem and optimising the marginal 
probability of the observed low-resolution images 
directly.  

We follow a generative model based on an idea 
as proposed by Torres-Mendez et al. (Torres-
Mendez et al., 2007) carried out from single-frame 
methods. The basic idea can be summarized as 
follows: given a Low Resolution (LR) image α of 
size hα×wα pixels, we want to estimate the 
correspondent HR image ω of size hω×wω, with 
equal or greater size of the input image α. From α, 
we must generate L images of smaller size (scaled), 
that we can call observable images l, with l=0…L. 
Any point in the LR image is considered as a node in 
a Markovian process, and a possible neighbourhood 
node in the HR image is defined by a pairwise 
potential. If we denote xi as a set of hidden nodes in 
the output ω, and the yi as the observable nodes in α 
image, and defining the pairwise potential between 
the variables xi, and xj, by Ψij and the local evidence 
potential associated with the variables xi and yj by 
Φi, the joint probability correspondent to the 
Markovian process can be written as 
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where Z is a normalization constant. Our problem 
consists to maximize P(x,y), maximization that 
corresponds to find the most likely state for all 
hidden nodes xi, given all the node yi. To remove 
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ambiguities, we decide to assign high compatibility 
between neighbouring pixels that have similar 
intensity values and low compatibility between 
neighbouring pixels that present drastic changes in 
their intensity values. The value of any single pixel 
in HR ω image is obtained estimating the maximum 
a posteriori (MAP) solution associated to the MRF 
model as given by eq. (2) 

( )αωω
ω

PMAP maxarg=  (3)
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Being the conditional probabilities impossible to 
be exactly computed, because it is impossible to 
represent all the possible combinations between 
pixels, we adopt a Markov Chain Monte Carlo 
(MCMC) method to approximate the best solution of 
(3). The HR images so obtained are still 2D 
representation of the acquired AFM images. The 
correspondent 3D reconstruction is discussed in the 
next section 

3 3D RECONSTRUCTION 
MODEL  

The typical visual rendering of AFM images 
describes the recorded structures assessing a gray 
intensity (o colour intensity) to the z=f(x,y) measured 
value. This is not properly a 3D reconstruction. 3D 
reconstruction is possible in tomography-based 
techniques thanks to the multi-acquisition of images 
at different angles and then recollected in a unique 
image via Radon anti-transformation, for example. 
When the source is composed by a unique image, 
the 3D reconstruction is rather complicated, and the 
possibility to introduce artefacts or unwanted effects 
is high. Our method is based on learning a statistical 
model of the local relationship between the observed 
range data and the variations in the intensity image 
and uses this model to compute unknown depth 
values. The intensity of any point is supposed to be a 
Markov process. Unknown depth values are then 
inferred by using the statistics of the observed range 
data to determine the behaviour of the Markov 
process. The presence of intensity where range data 
is being inferred is crucial since intensity provides 
knowledge of surface smoothness and variations in 
depth. The advantage of our approach is to carry out 
knowledge directly from the observed data, without 

to introduce constraints that could be inapplicable to 
particular environments. Although if our method 
seem to be very close to a traditional shape-from-
shading method (where depth inference from 
variations in surface shading), the substantial 
difference is in the inferential engine that connects 
the final 3D reconstruction to a suitable processing 
of original data.  

3.1 Reconstruction Methodology 

Our goal is to infer a dense range map from an 
intensity image and a very sparse initial range data. 
The inference on range data is solved using a 
sampling on the intensity at each point considered as 
a product of a Markovian process. Unknown range 
data is then inferred by using the statistics of the 
observed range data to determine the behaviour of 
the Markovian process. In our approach, there some 
critical aspects, for example, the knowledge 
extracted from smooth intensity variation could 
generate artefacts, or again, the right weight of a 
variation in depth.  

The starting point is the development of a set of 
augmented voxels V that contain intensity, edge 
(from the intensity range) and range information. It 
should be mentioned that the intensity can be 
considered both for gray scales or colour images, 
and that the range information includes portion of 
ranges a priori unknown). Let us introduce Ω as the 
area of unknown range that corresponds to the 
region to be filled. Following Torres-Mendez et al. 
(Torres-Mendes et al, 2007), we base our 
reconstruction method on the amount of reliable 
information surrounding the augmented voxel whose 
depth value is to be estimated, and also on the edge 
information. Thus, for each augmented voxel Vi we 
count the number of neighbour voxels with already 
assigned range and intensity. A general criterion is 
to start by reconstructing those augmented voxels 
which have more of their neighbour voxels already 
filled, leaving to the end those with an edge passing 
through them. After a depth value is estimated, we 
update each of its neighbours by adding 1 to their 
own neighbour counters. The next step is to proceed 
to the subsequent groups of augmented voxels to 
synthesise until no more augmented voxels in Ω 
exists.  

Formally, an augmented voxel is defined as 
V=(z,E,R) where z denotes the pixel intensity 
directly connected to the z-height as measured by the 
AFM, E is a binary matrix (1 if an edge exits, 0 
otherwise) and R denotes the matrix of incomplete 
pixels depth. It is possible to define a set of 
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augmented voxels that lie on each ray that intersects 
each pixel of the input image z, thus giving us a 
registered range image R and intensity image z. Let 
hm=(x,y): 1≤x,y≤m denote the m integer lattice , then 
z={zx,y}, (x,y)∈hm, denotes the gray levels of the 
input image, and r={Rx,y}, denotes the depth values. 
Than we model the V set as a Markov Random 
Field. Within the Markov Random Field picture, z 
and R must be considered random variables. Let us 
introduce a neighbourhood system, defined as 
N={Nx,y∈hm}, where Nx,y⊂hm denotes the neighbours 
of (x,y).  

A Markov Random Field over (hm, N) is a 
stochastic process indexed by hm for which, for 
every couple (x,y) any augmented voxel depends 
only on its immediate neighbours. The choice of N 
together with the conditional probability distribution 
of P(z) and P(R) provides the basic tool for 
modelling spatial continuity. Therefore, the Nx,y set 
is modelled on the acquisition data matrix that is a 
square mask of size n×n centered at the augmented 
voxel location (x,y). The calculation of the 
conditional probabilities in an explicit form is an 
infeasible task since we cannot efficiently represent 
or determine all the possible combinations between 
augmented voxels with its associated neighbours. To 
do this calculation we can invoke the Gibbs 
sampling, for example, and average a depth value 
from the augmented voxel Vx,y with neighbours Nx,y 
by selecting range value from the augmented 
resembles the region being filled voxel whose 
neighbours Nk,l most resembles the region being 
filled in  

lkyx
Alk

opt NNN ,,
),(
minarg −=
∈

 (5)

where A={Ak,l⊂N} is the set of local neighborhood, 
in which the center voxel has already assigned a 
depth value, such that 1≤[(k-x)2+(l-y)2]1/2≤d. For 
each successive augmented voxel, Nopt as given by 
Eq. (5) approximates the maximum a posteriori 
estimate. The distance || ⋅ || is defined as the 
weighted sum of squared differences over the partial 
data in two neighbourhoods. The weights are choice 
applying 2D Gaussian kernel to each 
neighbourhood, such that those voxels near the 
center are given more weight than those at the edge 
of the window.  

4 RESULTS  

In this section, we present the basic results inherent 
the 3D model as discussed in the past two sections.  

The primitive AFM images are processed in order to 
improve their quality (ranging from LR to HR) and 
then the algorithm for their 3D reconstruction using 
the MRF picture as given by Eq. (5) is applied. 
Firstly, the method is used on images of regular 
lattice for AFM calibration to sample with 
nanometers patterns. Figure 1 shows silicon grating, 
normally used for calibration of z-height in AFM 
measurements. Its accurate 3D reconstruction of the 
grains is of great importance. It should be noted that 
the image in figure 1 has not been pre-processed and 
it presents an artefact at the bottom, while the image 
in figure 3 that represents its correspondent 3D 
reconstruction corrects such artefact. 

 
Figure 1: Silicon grating used for AFM calibration of z-
height. The mounds are large 100nm and periodicity is 
200nm. 

 
Figure 2: 3D reconstruction of the image as in figure 1 
without HR processing of the 2D image. Some artefacts 
and topographic roughness present in the primitive 2D 
image are amplified and the grating is not well resolved.  

 
Figure 3: 3D reconstruction of the grating as in figure 1 
with HR processing applied on the image as recorded by 
the AFM. In this case, the artefacts are removed and the 
grating presents a spatially well-resolved structure, where 
mounds and valleys are clearly separated. 
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Now, we apply our procedure to cell images. The 
cell samples are obtained in cellular cultures from 
pluripotent stem cells and differentiated in 
osteocytes, fibroblasts, adipocytes or others (Danti et 
al. 2006).  

A typical problem acquiring images on cells 
using an AFM is the low resolution due large 
dimensions of cells and reduced instrumental 
capability to increase pixels. For example, many 
commercial AFM can perform measurement with a 
pixel density of 512×512 or 1024×1024 pixels. 
Because some animal cells present dimensions that 
needs scans on area of 100μm×100μm, this implies 
that any single pixel covers approximately an area of 
100nm×100nm for a pixel density of 1024×1024. 
For this reason, the increasing of resolution can play 
a fundamental role for the recognition of cells 
patterns or organ shapes. Figure 4 presents an image 
of a large osteocyte. The primitive image is low 
resolution, 512×512 pixels on an area 50μm×50μm, 
after LR to HR method is applied, the 3D 
reconstruction presents all the characteristics 
features as in the 2D AFM image 

 
Figure 4: AFM image of a portion of an osteocyte (real 
area surface 50μm×50μm, z-height less than 5μm, density 
pixel 512×512).  

 
Figure 5: The correspondent 3D reconstruction of the 
osteocyte as in figure 4.  

In many cases, another problem generally found 
during the imaging of cells is the identification of 
specific cells in a cluster. In fact, in a cell culture, 
the differentiation is often followed by meiosis, so 
producing a population of cells partially overlapping 
one each other. This is the case of the adipocytes 
displayed in figure 6. Two nuclei are well 
recognized, but it is not so for the cell edges. The 3D 
reconstruction can help to identify cells dimensions 
and organs in a manner that is not possible in the 2D 
image and correspondent three-dimensional visual 
rendering performed both with open source 
(Gwyddion, http://gwyddion.net) or commercially 
available programs (SPIP, http://www.imagemet.com)  

 
Figure 6: AFM image of a cluster of adipocytes (real area 
surface 50μm×50μm, z-height approximately 8μm, 
density pixel 512×512). 

 
Figure 7: 3D reconstruction of the cluster cells as in figure 
6. The cells structures are well defined, it is possible to 
recognize the nuclei. 

5 CONCLUSIONS 

Atomic Force Microscopy (AFM) is a fundamental  
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tool for the investigation of a wide range of 
mechanical properties on nanoscale due to the 
contact interaction between the AFM tip and the 
sample surface. The information recorded with AFM 
is stored and synthesized by imaging the sample 
properties to be studied. The AFM topographic 
images are matrices z=f(x,y), that links a z-value to 
the correspondent x,y surface point. The focus of this 
paper is on an algorithm for the reconstruction of 3D 
structures extracted by typical 2D surface AFM 
images. The AFM images resolution is limited by 
the tip-sample convolution due to the combined 
geometry of the probe tip, density pixels and specific 
the pattern configuration of the sample. This limited 
resolution reflects on the accuracy of the 
correspondent 3D image. We have adopted an 
inferential procedure that provides a high-resolution 
algorithm for the single-image AFM raw data and 
then the construction of a 3D routine for the 
improved resolution images. When applied to cell 
populations, the 3D reconstruction are an useful tool 
for the recognition of cell pattern and organs and it 
could be used for a fast in situ analysis for biologists 
and biomedical scientists. 
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