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Abstract: In order to better understand the structure of students’ knowledge in computer science, we are trying to 
identify patterns – in form of frequently occurring subgraphs – in concept maps. Concept maps are an exter-
nalization of a person’s declarative knowledge represented as a graph. We propose an algorithm that can be 
employed to identify frequently occurring subgraphs, based on existing algorithms in that field. We are cur-
rently working on a project that will gather concept maps form a large group of freshman in the coming 
semesters, providing us with extensive material for information mining about the structures of knowledge in 
CS. We hope to get a better understanding of the relationship between knowledge and competence. 

1 INTRODUCTION 

During the last decades, the focus of educational 
research activities has shifted from knowledge to 
competencies. This makes sense, because at the end 
of the learning process the students should be able to 
do something instead of just to talk about it. Never-
theless, it might still be helpful to have an idea of the 
knowledge that is needed to gain a certain compe-
tency. Nearly every teacher has already heard a 
student sigh: “If I had known this before!” after 
having solved a problem finally. Particularly, if 
learning environments are designed following mod-
ern constructivist approaches, the students should be 
active and should try to find solutions on their own. 
If the teacher has a very detailed idea of what the 
students need to know, he or she is able to support 
the learning process with short, precise information 
input.  

Therefore, our long-term goal is to identify the 
prerequisite knowledge for certain competencies. As 
subject domain we chose the field of object-oriented 
modeling and programming, because it is central to 
Informatics in schools as well as in universities.  

The first step was to find and evaluate suitable 
methods for the investigation of student knowledge. 
To this purpose we have investigated the structure of 
the knowledge that was presented during a typical 
non-major CS1 course (for students of engineering) 
by extracting the relevant information out of the 

teaching material (textbook and slides) and by ask-
ing the students to draw concept maps at different 
points in time during the course. That way, we tried 
to find out how the presented knowledge was taken 
up and later externalized by the students. Additional-
ly, we are collecting concept maps about object 
oriented programming from high school teachers 
and students as well as from bachelor and teacher 
students of Informatics at our university.  

Our next goal is to identify typical knowledge 
patterns (which we call knowpats) in the student 
maps that might have been similarly presented in the 
lectures. As our next step we want to find out how 
the knowpats as expressed by the students correlate 
with the type and duration of Informatics courses 
they had attended at school. Finally, we aim to cor-
relate these patterns with certain competencies.  

2 BACKGROUND 

First of all we have to limit the range of knowledge 
that might be relevant to our research. For this pur-
pose we rely on the categorization of (Anderson 
2009), because it was designed for a similar purpose, 
namely the assessment of learning objectives. They 
distinguish between: 
1. Factual Knowledge: “basic elements that stu-

dents must know to be acquainted with a discip-
line or solve a problem in it”,   
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2. Conceptual Knowledge: “the interrelationships 
among the basic elements within a larger struc-
ture that enable them to function together,”   

3. Procedural Knowledge: “how to do something: 
methods of inquiry, and criteria for using skills, 
algorithms, techniques and methods,”  

4. Metacognitive Knowledge: “knowledge of cog-
nition in general as well as awareness of one’s 
own cognition.” 

A comparison of the definitions (see e.g. Ander-
son 2009; Anderson, 2005) shows that factual know-
ledge can be represented by propositions, Concep-
tual knowledge by propositional networks, semantic 
networks or schemata. Procedural knowledge might 
be described by scripts following (Schank and Abel-
son, 1977), while Metacognitive knowledge might 
be hard to describe anyway.  

The first two categories describe both declarative 
knowledge, but we are interested mainly in the 
second category, which comprises “’mental models’, 
‘schemas’ or ‘theories’ that individuals may use to 
help them organize a body of information in an in-
terconnected, non-arbitrary and systematic manner” 
(Anderson, 2009).  

There are many research activities that use con-
cept mapping techniques in order to investigate 
cognitive structures, for example (Vanides et al., 
2005). The students are asked to draw a graph with 
nodes representing concepts and with edges symbo-
lizing associations between these concepts, e.g. “is 
a”. There are many measures for the assessment of 
concept maps and many validations for these meas-
ures, e.g. (Shavelson and Ruiz-Primo, 1999), (Albert 
and Steiner, 2005). (Sanders et al., 2008) compared 
the knowledge of students in several nations using 
concept mapping techniques. (Goldsmith and Da-
venport, 1990) developed a graph-theoretical meas-
ure for the similarity of graphs based on neighbor-
hood structures. (McClure et al., 1999) validated this 
measure by correlating it with several scoring tech-
niques. Hereby, they also detected that the scoring of 
locally correct edges using a master map is the most 
convincing scoring technique for concept maps. 

Nevertheless, we have to remember that a con-
cept map does not represent the knowledge of its 
author directly, but has to be regarded merely as an 
externalization of this knowledge that might be in-
fluenced by motivation, by the focus of attention or 
by many other external influences (Norman, 1983).  

Concerning the representation of the specific 
subject domain knowledge of object-oriented pro-
gramming, (Pedroni and Meyer, 2010) proposed to 
organize it in Trucs, (testable, re-usable units of 
cognition) which are collections “of concepts, opera- 

tional skills and assessment criteria”.  
Usually the students start drawing concept maps 

with a list of given concepts that they have to pick 
nodes from and connect them by associations (Sand-
ers et al. 2008). Suitable concepts that could be in-
cluded in such a list might be taken from the “the 
quarks of object-oriented development” that were 
identified by (Armstrong, 2006), comparing several 
definitions of “object-orientation”.  

(Mons et al. 2008) introduced knowlets as small 
knowledge elements, which are restricted to the 
connection of two concepts. In regard of constructiv-
ist learning approaches we need larger graph struc-
tures, as (Kinchin et al., 2000) argues.  

For the mining of frequent patterns in large 
graphs (Inokuchi et al., 2000) proposed the Apriori-
based Algorithm AcGM. It uses the monotony of the 
support of induced subgraphs. ܩ௦  =  ( ௦ܸ,  ௦) is anܧ
induced subgraph of ܩ =  (ܸ, if and only if ௦ܸ (ܧ ⊂ ܸ and ∀ ݒଵ, ଶݒ ∈ ௦ܸ: (ݒଵ, (ଶݒ ∈ ,ଵݒ) ⇔ ܧ  (ଶݒ ∈ (௦ܩ)ݑݏ ௦ isܩ ௦. The definition of the support ofܧ  =  ேೞே , (1) 

with ௦ܰ being the number of graph transactions ܩ 
where ܩ௦ ⊂  and ܰ being the total number of graph ܩ
transactions of ܩ. A transaction in our context is just 
a graph. If ܩଵ is an induced subgraph of ܩଶ, the 
monotony can be expressed as  ݑݏ(ܩଶ) ≤  (2) (ଵܩ)ݑݏ

This allows to derive candidates for frequent sub-
graphs of size ݇ from already found frequent sub-
graphs of size ݇ − 1.  

(Dominguez, 2010) applied a clustering ap-
proach to Mining for hints in eLearning. They used 
the K-Means clustering algorithm to group the stu-
dents according their abilities according to their 
answers on 25 questions. Following this, association 
rules and numerical analysis were applied to find 
common patterns affecting the learners’ performance 
that could be used use to provide hints to the stu-
dents of the following years. 

(Madhyastha and Hunt, 2009) presented a me-
thod for mining multiple-choice assessment data for 
similarity of the concepts that were represented by 
the multiple choice responses. They used the result-
ing similarity matrix to visualize the distance and 
hereby the relative difficulty of concepts among the 
students in the class.  

(Romero et al., 2010) explored the extraction of 
rare association rules, gathering student usage data 
from a Moodle system. They defined rare associa-
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tion rules are those that only appear infrequently 
there even though they might be highly associated 
with very specific data. Thus, these rules are sup-
posed to be appropriate for using with educational 
datasets since they are usually imbalanced. To this 
purpose they compared several frequent and rare 
association rule mining algorithms, e.g. the A priori-
Frequent algorithm.  

3 DECLARATIVE KNOWLEDGE  

For our investigation we chose one of our currently 
running courses, introducing freshmen of engineer-
ing into the fundamentals of object-oriented pro-
gramming (CS1 for non-majors). The course was 
attended by about 40 students and taught in German 
language, thus all the text material, the concepts and 
the concept maps had to be translated from German 
to English for this paper.  

In order to compare the knowledge that was ex-
ternalized by the students with the knowledge they 
should acquire by studying the course material, we 
tried to find representations of the relevant informa-
tion that are as formal as possible. For that purpose 
we have summarized all learning elements that we 
expect the students to know by reducing the slides 
and the textbook for the course (Hubwieser et al., 
2008) to a list of “naked” statements without any 
examples or explanations (called knowledge ele-
ments), for example:  

The state of an object is determined by the 
values of its attributes.  

(*) 

In order to derive a list of concepts that should 
form the possible nodes of the concept maps, we 
reduced these statements in the following steps:   

At first we listed all words that were contained in 
the texts, sorted this list alphabetically (case-
sensitive) and removed all words starting with a 
lower case letter. In German, this condition assures 
that the deleted words are all non-nouns. We re-
moved all remaining non-nouns, transformed all 
words to singular nominative and removed all varia-
tions or abbreviations of the same noun. Finally, all 
proper nouns and all purely didactical, organization-
al and pedagogical keywords were omitted. After-
wards, we coded and categorized the resulting set of 
words following the rules of qualitative research 
(Mayring, 2000), finally obtaining a list of 40 con-
cepts (CL), e.g. aggregation, algorithm, association, 
attribute, class, condition, conditional statemen.   

We asked the students to draw their maps in the 
following way: We presented the concepts of CL in 

the form of a checklist. At first the students should 
check all the concepts that they believed to know 
something about. Following this, they should draw a 
graph, using the checked concepts as nodes and 
connecting these by associations, which all should 
be denoted by suitable labels. For the evaluation of 
the maps we have removed all associations that were 
not labeled, assuming that these did not reflect any 
precise knowledge.  

To get an “expert map” that is as objective as 
possible, we derived it from the same material that 
we have used for the derivation of our CL. We 
coded all sentences from the list of the knowledge 
elements (see above) by the occurrence of one or 
more of the 40 concepts of CL. Afterwards we pro-
duced a list of all sentences that were marked with 
two or more concepts of CL, assuming that these 
sentences might suggest associations between those 
concepts. For the structure of our knowpats, we were 
interested in the assumed arity of the associations 
(see table 1) that were suggested by the 161 sen-
tences that contained more than one concept.  

Table 1: Assumed arity of suggested associations. 

Number  
of concepts 

Number  
of sentences 

Percentage 

2 101 62,7% 
3 40 24,8% 
4 17 10,6% 
5 3 1,9% 

Following this, we translated the information 
that was contained in these sentences to associations 
by qualitative means, which ended up with a set of 
98 associations that formed our objective expert map 
and that was used e.g. to score the students’ maps by 
comparing the names they gave to their associations 
with the respective names in the expert map. 

4 DATA GATHERING 

Over the academic year 2010/11 we have gathered a 
variety of concept maps from students of different 
groups.  

As described in Detail in (Hubwieser and 
Mühling, 2011) we have collected four generations 
of concept maps from the students of the CS1 course 
at four distinct points in time. As the drawing was 
done partly in the main lecture and partly in the 
tutorials, we had varying numbers of participants. 
The pre-test was done by 39 students before the 
course started. The first mid-test was done by 38 
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students after 4 weeks. Three weeks later, the stu-
dents had to pass a small midterm exam.  

 
Figure 1: Exemplary concept map from a student. 

One week later, another collection of concept 
maps yielded 19 student maps. Finally, immediately 
after the end of the lecture and some weeks before 
the final exam, there was a last test (post-test) that 
was attended by 17 students. In the final exam, 13 
students gave us their code number and hereby al-
lowed us to correlate their maps with their scoring in 
the exam. 

After the Bavarian government has shortened the 
number of grades of the Gymnasium from 9 to 8 
(from the type G9 to type G8) and introduced a new 
compulsory subject of Informatics simultaneously in 
2003, we will welcome two different age groups of 
freshmen at the universities this year. The first group 
has entered Gymnasium in 2003 (graduated from 
G8), the second has started G9 at 2002. More inte-
restingly, there are 5 groups of freshmen regarding 
their education in Informatics (shortly called EI-
groups): graduates from G9 didn’t have any regular 
education in Informatics, graduates from G8 have 
had, depending from their direction of study, 2 or 4 
years of compulsory education and, eventually de-
pending from their choice of courses, 1 or 2 years of 
elective courses.  

Due to a specific program of our university, the 
graduates from G9 were allowed to start their studies 
already in summer 2011, while nevertheless, most of 
them will enroll regularly at autumn 2011. Therefore 
we have the singular opportunity to compare the 
knowledge about Informatics of freshmen that be-
long to several different EI-groups. We are collect-
ing concept maps together with interviews dealing 
with the ideas about typical topics and characteristic 
working methods of Informatics and about the rea-
sons for their choice of Informatics as major. Our 
goal is to find correlations between the declarative 
knowledge (knowlets), the ideas about and the atti-
tudes towards Informatics and the EI-groups of the 
students. In October 2010 we have already collected 

concept maps and interviews from about 100 fresh-
men (G9). Some weeks ago, we have collected 
another 250 sets, which we are scanning and digita-
lizing currently. After having completed their first 
semester, we hope to collect a second generation of 
concept maps from these 250 students in October, 
and another 250 sets of maps and interviews from 
the freshmen that will enroll at this time.  

Additionally we are collecting concept maps in a 
longitudinal study at a several classes (of grade 10 
and 11) at a local Gymnasium (called GYS). The 
goal is to detect if there are relevant differences in 
the concept maps compared to the students at uni-
versity. Finally, we will collect concept maps from 
the teachers using a specific internet based tool 
(CoMapEd) that is under construction at the mo-
ment.  Based upon the results of our teacher survey 
from 2009 (see Mühling, Hubwieser & Brinda 
2010), we expect about 300-400 teachers to draw a 
concept map, using the same concept list CL as 
described above.  

5 DATA ANALYSIS  

Before analyzing the CS1 maps, we normalized the 
labels of the edges (which were freely chosen by the 
students) in the following way: all verbs were trans-
formed to a standard form (first person singular 
indicative), all isolated prepositions and articles 
were deleted, all auxiliary verbs were removed, 
isolated nouns or adjectives were deleted and all 
multiplicity specifications (“some”, “many” etc.) 
were removed. In the next step we categorized the 
resulting labels from all surveys, following the rules 
of qualitative text analysis (Mayring, 2000). 

Based on this categorization, all associations 
were scored by the lecturer of the course with points 
(0 points for “totally incorrect”, 0.5 points for “part-
ly correct” and 1 point for “totally correct”). This 
was performed by comparing the categories locally 
to the objective expert map (see section 3), following 
the technique “relational with master map” sug-
gested by (McClure et al., 1999).  

5.1 Analysis of the Maps as a Whole  

The results of the formal analysis of the CS1 maps 
are described in detail in (Hubwieser and Mühling, 
2011). First of all we detected that the students did 
not use many different labels, although they were 
totally free in choosing them. There were only 16 
categories of association labels that were used in 
more than 2% of all edges of at least one survey, and 
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additionally their relative frequency was very similar 
over the four surveys. If we set the threshold at 5%, 
there remained only 5 different labels. 35% of all 
associations over all surveys were labeled with a 
word that was synonymous to contains or to has. 
This result suggests that it is possible to restrict the 
labeling to multiple choice without losing too much 
information, which would ease automatic scoring 
dramatically.  

Concerning the graph theoretical measures we 
found that the average number of correct edges in-
creased from 3.0 in the pretest to 11.0 in midtest2, 
which showed that the students were learning in-
deed. We also found a significant high correlation 
(0.68 with a p-value of 0.002) between the number 
of correct edges in the first mid-test with the 
achieved score in the midterm exam. 

 
Figure 2: High-scored associations for Midtest 2. 

 
Figure 3: Low-scored associations for Midtest 2 

By selecting only the edges that were labeled 
mostly correct (restricted to 9 the most important 
concepts for object-orientation), we could identify 
the concepts where the learning process was most 
efficient (see Figure 2). 

In contrary, the edges that were labeled mostly 
incorrect show the problematic concepts (see Figure 
3). More details are presented in (Hubwieser and 
Mühling, 2011).  

5.2 The Internal Structure of the Maps 

As already explained in the introduction of this pa-
per, we are looking for patterns in the concept maps 
that are frequently used by the students. We called 
this patterns knowpats, which we define as induced 
subgraphs of concept maps. We will look for fre-
quent knowpats in the student maps at four different 
levels, which allows the reduction of the regarded 
graphs to undirected ones:  
1. General Level: The labels that have been given 

by the students to the associations are ignored 
(as long as there is any label). The existence of 
any labeled association means that the student at 
least knows that there is some connection be-
tween the two concepts (Kinchin et al., 2000).  

2. Scoring: only edges that have a score > 0 are 
taken into account, thus taking into considera-
tion all totally correct as well as all partly cor-
rect edges. 

3. Total Correctness: Only the totally correct 
edges are considered.  

As we suggest that the students get their know-
ledge mainly from the material that was presented in 
the course, the assumed arities of associations that 
were suggested by these texts (see table 1) restrict 
the range of the size of the expected knowpats from 
2 to 5.  

 
Figure 4: Knowpat suggested by knowledge element (*). 

For the search we will apply the AcGM Algo-
rithm of (Inokuchi et al., 2000), which can be 
adapted to our purposes and environment. It extracts 
frequently occurring subgraphs (in our case know-
pats) from a large database of graphs (in our case 
concept maps) and is especially suited for finding 
large subgraphs, as it successively builds larger and 
larger candidate subgraphs and checks how often 
they occur in the database. 

We could simply use the AcGM algorithm for 
the task. However, as we’re dealing with a problem 
that contains the NP-complete subgraph-iso-
morphism problem, it might be worthwhile to adapt 
the algorithm for our specific needs, in order to 
achieve somewhat better running times in real-life 
scenarios. 

Firstly, concept maps are typically directed, 
small and sparse graphs. The list of concepts puts a 
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bound on the number of vertices, so those will never 
exceed 50 at most. Additionally, even if the graphs 
are not always strictly DAGs, they tend to resemble 
directed trees (or forests) and can be considered 
sparse graphs in which the number of edges grows at 
most linear with the number of nodes. 

Secondly, as outlined above, we’re only con-
cerned with subgraphs of size 2 to 5 nodes. As there 
are only three knowledge elements with an arity of 
5, we might exclude these from the analysis, leaving 
us with subgraphs with at most 4 nodes. The nice 
thing about this is that there are well established 
algorithms for finding subgraph-isomorphisms with 
3 and 4 nodes (e.g. the VF2 algorithm by Cordella et 
al., 2004). For 2 nodes the isomorphic class of a 
subgraph is trivially decided by using the edge count 
of the induced subgraph. That means, we can avoid 
the coding and normalizing of the adjacency matric-
es that’s a big part of AcGM and instead use existing 
algorithms for those sub-tasks. 

Thirdly, we’re interested in connected subgraphs 
only. A missing connection can never serve as evi-
dence in favor of a knowpat since we cannot infer 
anything from it, by itself. 

For the analysis, we treat the concept maps as 
undirected graphs, as the direction is only dependent 
on the chosen edge label and not on the concepts 
involved. Multiple edges between concepts will then 
be collapsed into one. The graphs may still contain 
self-loops however. Typically, isomorphism check-
ing relies on simple graphs (as does the AcGM algo-
rithm), so we’ll either have to ignore self-loops or 
transform the concept maps into a simple graph first. 
As they may very well contain valid statements (e.g. 
object - communicates with - object) they should not 
be ignored. Transformation is easily done by adding, 
for each self-loop ሼv, vሽ ∈ E, a new node with the 
same label as v and replacing the loop with an edge 
to the new node (keeping the label of the edge). 

In the worst case, this doubles the size of our 
graphs, but in real life, the data typically only exhibit 
a very small number of self-loops.  

After this step, we have a database of simple, 
undirected graphs. The main algorithm based on the 
ideas of AcGM works as follows: 

Starting with the only connected isomorphism 
class of size 2 (two nodes connected by an edge), we 
count the frequency for each pair of nodes in the 
database. This can easily be done by simple counting 
and comparing the entries in the adjacency matrices. 
For example, the following associations were the 
most frequently used at the CS1 course among 1.665 
associations in 115 maps: (class, object) with 58 

occurrences, (data, data type) and (object, attribute) 
with 44 occurrences each.  

Starting from this, we get a list of candidates that 
have a support higher than a chosen threshold. For 
sparse graphs, this list will contain O(|V|) entries.  

From these frequently occurring size 2 sub-
graphs, we can create the list of candidate size 3 
subgraphs that need to be checked. According to the 
observation in AcGM, those must be formed by 
combining two subgraphs of size 2 that have a high 
enough support and that share exactly one node. We 
can simply do a pairwise join of the size 2 candi-
dates and extract all those with 3 nodes. All those 
candidates exist in exactly two forms: Either with 2 
edges, or with 3. 

We count the frequency of those candidates in 
our database using the VF2 algorithm. Finally, the 
list of frequently occurring size 3 subgraphs leads to 
a list of candidate size 4 subgraphs, again by recom-
bination of two size 3 graphs that share exactly 2 
nodes. Those too, exist in two forms, one in which 
the two non-shared nodes are neighbors and one in 
which they’re not. 

This leaves us with a final list of at most O(|V|ସ) 
entries. However in real life we expect the lists to be 
much shorter. The frequency of those candidates 
will then be found again using the VF2 algorithm. 

While there really is no way around the combina-
torial complexity when searching the subgraphs in 
the database, this approach at least only creates a 
small subset of all possible size 3 or 4 subgraphs 
according to what actually can be present in the 
database. As the algorithm is in a certain way more 
sensitive to the size of the graphs than to the number 
of graphs, we should be able to handle the large 
amounts of data that arise in the current and subse-
quent studies. 

6 CONCLUSIONS 

We presented a method that allows searching for 
small, frequently recurring subgraphs in a database 
of concept maps. We take those subgraphs as indica-
tors for recurring structures in declarative know-
ledge in computer science (called knowpats). Find-
ing knowpats will allow us a deeper understanding 
of the prerequisite knowledge that a competent CS 
student needs to possess. As we have collected many 
comparable maps from freshmen of CS, we hope to 
find such patterns there. Once candidate patterns are 
identified, the next step will be to validate them (for 
example by using a broader, more diverse group of 
students as the basis) and to investigate how those 
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candidates correspond to the actual abilities and the 
biography of the students. Clearly, knowing about 
the internal structures of CS knowledge is also an 
effective way of evaluating and designing CS 
courses. 
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