
PlayBug: Discovery by Software-knowledge Rules 

Iaakov Exman and Shuri Hazani 

Software Engineering Department, Jerusalem College of Engineering 
POB 3566, 91035, Jerusalem, Israel 

Abstract. Regression testing of software packages is useful to eliminate stub-
born remaining bugs. But one often obtains relatively long sequences of com-
mands needed to reproduce software failures and pinpoint bugs. A systematic 
approach to reduce these command sequences is essential for efficient bug dis-
covery. This work proposes the use of rules expressing specific knowledge 
about the given software application. Rules are grouped in rule classes, which 
enable their application by a generic engine. The approach was validated by de-
sign and actual implementation of a PlayBug engine and its extensive testing on 
application families of software dealing with interactive GUI commands. 

1 Introduction 

Regression testing is commonly used to discover new or recurring bugs when a soft-
ware package is revised during development, leading to a new package version. 

Usually when a bug is spotted, analyzed and fixed, a sequence of test commands 
that exposes the bug is recorded and retested after subsequent program changes.  

An important problem is that the command sequences may be quite long, in fact 
longer than needed to expose a certain bug. Thus regression may be very inefficient. 

This paper proposes reduction of long command sequences by using a priori 
knowledge about the software application. This knowledge is expressed as applica-
tion specific rules which are input to a generic sequence reduction engine. In this 
work we refer to testing of interactive applications, such as usage of a text editing 
program. Often these applications are used by non-deterministic sequences of com-
mands, thus different testing sequences of varying lengths may lead to the same bugs. 

In this introduction we shortly review regression testing concepts and related 
work dealing with the command sequence reduction problem. 

In the remaining of the paper we introduce command sequence reduction tech-
niques (section 2), present the software architecture of a command sequence reduc-
tion module in the PlayBug engine (section 3), deal in detail with the software know-
ledge embedded in command sequence reduction rules (section 4), describe the vali-
dation experiments for our approach with PlayBug (section 5) and conclude with a 
discussion (section 6). 

Exman I. and Hazani S..
PlayBug: Discovery by Software-knowledge Rules.
DOI: 10.5220/0003699500480056
In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 48-56
ISBN: 978-989-8425-82-9
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



1.1 Software Regression Testing 

Software regression testing is a modality of testing used again and again along the 
development process of a software package. 

Whenever one adds code to software under development, or a bug is spotted and a 
patch added to fix the bug, the package must be regression tested to check whether 
the bug was indeed fixed and new bugs were not introduced. This is typically done 
automatically, for several bugs in the same run. Commonly the regression testing 
suite is run every night or once a week.   

Some general references on regression testing are [1], [9] and [10]. 

1.2 Related Work on Command Sequence Reductions 

In the technical literature the problem of the efficiency of regression testing has been 
attacked from several points of view. 

An example is the granularity of regression testing suites, which can be reduced 
by various techniques (see e.g. Rothermel et al. [8]). Granularity in this sense usually 
does not refer to isolated commands, as in the present work. 

A more closely related topic is the choice of path in programs – either to isolate 
bugs or to maximize bug occurrence – as in Lal et al. [2]. 

There are a variety of works on testing of GUI (Graphical User Interface) applica-
tions. Marchetto et al. [3] deal with state-based testing of AJAX Web applications. 
They refer to the semantic implications of command sequences. Among others, the 
issue of whether semantically interacting commands can be commutative. 

Memon and collaborators published papers on regression testing of GUIs. Ref. [4] 
deals with test sequences as tasks in an Artificial Intelligence planning context.  In 
Ref. [5] a DART environment for automated regression testing is described. 

Orso et al. [6] deal with regression testing of components, using their metacon-
tent. 

2 Command Sequence Reduction 

In this section we deal in detail with the command sequence reduction problem and 
some possible solutions. 

2.1 The Command Sequence Reduction Problem 

Whenever a change is made in a package with the intent to fix a bug that was pre-
viously located, various testing outcomes may occur: 
a) either the bug is fixed or not; 
b) either new bugs are introduced or not, with/without eliminating the old bug. 

These possibilities may occur in distinct software paths taken by different runs. These 
may fail at the same bug, but in command sequences of various lengths. 

49



Thus one can define the command sequence reduction problem as follows:  
 

 Given command sequences of various lengths, find a command sequence of mi-
nimal length that exposes a given bug. 

2.2 Command Sequence Reduction Techniques 

One can broadly classify command sequence reduction techniques as follows: 
a- probabilistic – one selects by probabilistic criteria a certain fraction of sequences 
of given lengths – among all the command sequences that fail in the chosen bug – for 
further reduction; 
b- knowledge-based – reduction is done according to knowledge-based rules. 

In our work we have used techniques belonging to both classes. In this paper we 
focus on the knowledge-based rules. 

3 Command Sequence Reduction within PlayBug 

A software regression engine containing a command sequence reduction sub-system 
– PlayBug – was designed and implemented to enable validation and actual utilization 
of our approach. A software regression engine has various functions, viz. running 
tests, analyzing run outcomes and recording command sequences. Again we focus on 
the command sequence reduction capabilities. 

Here we describe the command sequence reduction sub-system within PlayBug. 

3.1 Reduction Sub-system Architecture 

A schematic diagram of the PlayBug reduction sub-system software architecture is 
seen in figure 1. 

 

Fig. 1. PlayBug Architecture with Reduction Engine – schematic module diagram showing the 
command sequence reduction sub-system. Generic Rule classes are embedded in the system. 
The KB (Knowledge Base) containing Specific Rules is read as input for each kind of SUT 
(Software Under Test). 

The PlayBug command sequence reduction sub-system contains two modules: 
a) Reduction Engine – the engine actually performs reduction on the input com

50



mand sequences; 
b) Rule Classes – this is an interface containing generic classes of rules embedded in 
the sub-system; 

The reduction sub-system also receives as input a knowledge base (KB) containing 
specific rules that are only relevant to a given kind of SUT (Software Under Test). 

3.2 Reduction Sub-system Implementation 

The PlayBug reduction sub-system was actually implemented in the Java Language. 
The Rule Classes is a Java interface implemented by Java classes, each one stand-

ing for a generic rule class. Classes have double meaning: a Java class for a rule class. 
The KB (Knowledge Base) is a CSV file – comma separated value – file format, 

containing one textual specific rule in each row. The number of rows in the file is the 
number of specific rules for a kind of SUT. It is read as input into the "Parsing & 
Instantiation" sub-module of the Reduction Engine. 

The overall functionality of the Reduction Engine is as follows: 
1- The "Parsing & Instantiation" sub-module parses each specific rule of the KB and 
instantiates a corresponding object of the Rule Classes. This object will perform the 
necessary reduction actions for the given rule. The number of objects equals the 
number of rules in the KB. 
2- The "Loop: Rules' Application" sub-module sorts rules by priority and actually 
applies the specific rules to the test command sequence. Its logic is quite sophisti-
cated: for instance, it does not immediately delete superfluous commands; it rather 
marks them for additional passes of the Loop. This will be described in detail else-
where. 

4 Command Sequence Reduction Rules 

We have grouped command sequence reduction rules into generic classes, to enable 
easy reuse of these generic classes. 

We first describe the generic classes and then give examples of specific rules for 
each class. 

4.1 Generic Rule Classes 

We currently use four generic rule classes: 
1) Anchor – this class indicates that all commands preceding the “anchor” command 
can be deleted; 
2) PreSequence – this class indicates a sequence of repeated commands, without 
other intermingled commands; all the commands in the sequence, except the last one, 
may be removed. 

51



3) Itself – this class indicates that a given command itself may be removed, because 
it has no semantic consequences; 
4) Ignored Preparation – this class indicates a command type that may have seman-
tic consequences, but in the given sequence it was ignored, i.e. remained without 
semantic consequences; 

4.2 Specific Rules 

We give specific rules in the context of an interactive GUI (Graphical User Interface) 
application. 

Sample rules are given for each class: 
1) Anchor – a “reset” operation is an anchor: all the commands preceding it may be 
deleted; other anchor examples are: “load”, “reload”, “unload”; 
2) PreSequence – a series of consecutive “clicking on a table row” operations is an 
example of a sequence; one may delete all clicks except the last one, since the pre-
vious unused clicks do not make any difference. 
3) Itself – an “increase window size” operation may be removed; it has no semantic 
consequences on the window contents; other itself examples are: “help”, “change 
layout”; 
4) Ignored Preparation – a “sorting” operation on a table, without using the resulting 
table is an ignored preparation; similarly “filtering”, “grouping” and “search” are 
types of preparations. 

It is important to stress that “semantic consequences” are application dependent. The 
same operation can have semantic consequences for a given application and no con-
sequences for a different application. 

5 Validation 

In this section we describe the validation technique and experimental results. 

5.1 Experimental Technique 

The experimental technique to validate our approach is to generate a large variety of 
command sequences for the same set of bugs – the source sequences – and apply the 
command sequence reduction to obtain shorter ones – the target sequences. These 
were actually performed with PlayBug. 

Given the sets of source and target sequences, we plot them to check the efficien-
cy of the knowledge-based approach. 

5.2 Experimental Results 

A typical graph of command sequences of a variety of sizes for a given exposed bug 

52



is seen in Figure 2. 
 

 

Fig. 2. Experimental Relative Reduction Graph – reductions of command sequences for a 
variety of sequence sizes. The vertical axis shows the sequence sizes in numbers of operations 
(commands). The horizontal axis is sorted by source sizes. 

In the next figure one can see the relative percentage change of the reduction for 
source sizes. 

 

 

Fig. 3. Relative Percentage Reduction Graph – relative reductions of command sequences for 
various sequence sizes. The vertical axis shows the percentage changes.  

5.3 Comparison with Expectations 

For each set of command sequences that expose a certain bug, one expects the exis-
tence of a minimal finite sequence that can be theoretically achieved. Thus, for any 
command sequence length, there is a bound to reduction, i.e. reductions of command 
sequences are bounded below 100% reduction. 

The next Fig. 4 displays the theoretical expected graph based on the previous ar-
gument, depicting the percentage change as a function of the source command se-
quence. 

53



The explanation of this graph is simple to understand. For short source command 
sequences, the target after reduction cannot be much shorter than the source itself 
since it is very close to the minimal sequence size. With the growth of the source 
command sequences, reduction grows approximately linearly with the source size. 
When the source command sequences are very large the reduction is at most of the 
size of the source, viz. it is bounded below a 100% reduction. 

In the same figure one sees that the experimental functional behavior closely fol-
lows the theoretical expectations. Moreover, the experimental results are bounded by 
70% – only 30% below the theoretical bound – showing that PlayBug’s efficiency is 
very high. 

 

 

Fig. 4. Theoretical vs. Experimental Percentage Reduction Graph – relative reductions of 
command sequences for varying sourcesequence sizes. The vertical axis shows the percentage 
changes. The theoretical (blue) graph is bounded by 100%. The experimental (red) graph is 
bounded by 70%. 

6 Discussion 

A knowledge-based rules approach to command sequence reduction within regression 
testing has been described. Experimental results show that this is a promising ap-
proach – due to its relatively high efficiency – for interactive GUI applications. 

Figure 5 maps in tabular form the generic rule classes already in use, with the in-
tention to suggest degrees of freedom for possible additional generic classes. They are 
mapped against two class features of importance: scope and semantic interactions. 
Scope refers to the range of commands relevant to the class: preceding commands, 
the command itself and succeeding commands. Generic semantic interactions can be 
none, cancellation, preparation, and possibly others. 

An example of a new class not used yet is “Sequence”. It was suggested by such 
mapping, considering the symmetry relative to PreSequence. 

One can conceivably have more complex rule classes. An example of such a rule 
class is “Complementary” (row 6 in Fig. 5) which refers to pairs of mutually cance-
ling commands – e.g. expand and collapse. 

54



 

Fig. 5. Generic Rule Classes mapped in Tabular Form – The class scope is marked by a bold-
italic V on a dark (orange) background. Classes are ordered from preceding towards succeeding 
scope, except for the “Complementary” class in the lower row. 

6.1 Future Work 

An open theoretical question is whether the minimal command sequence is unique. 
Another theoretical issue is the number of generic rule classes. All the rule classes 

used in this work referred to commands independently of their arguments. Rule 
classes that are argument dependent are more computationally expensive. Thus, to 
reduce the 30% gap shown in Fig. 4 may not be cost effective. 

A deeper question is the explanatory or discovery power of command sequences 
exposing a given bug. Are different sequences equivalent in this sense? Even if they 
have the same length? 

Practical issues include the approach usability to other families of software appli-
cations, besides those inherently interactive. Extensive application of PlayBug should 
also contribute to a deeper understanding of the reduction upper bounds. 

6.2 Main Contribution 

This work uses knowledge-based rules for command sequence reduction within re-
gression testing. Its main contribution is the grouping of rules into generic classes – a 
higher abstraction level in this context – similar to software design patterns for reuse. 

Acknowledgements 

Shuri Hazani wishes to express her gratitude to Noam Garber and Tal Tabakman 
from Cadence, Israel, for their help and participation in this project. 

References 

1. Chen, Y. Probert, R. L. and Sims, D. P.: Specification-based Regression Test Selection 
with Risk Analysis, in CASCON '02 Proc. Conference of the Centre for Advanced Studies 
on Collaborative research, IBM Press (2002). 

2. Lal, A., Lim, J., Polishchuk, M. and Liblit, B.: Path Optimization in Programs and it’s 

55



Application to Debugging, LNCS Volume 3924/2006, pp. 246-263, Springer (2006). 
3. Marchetto, A., Tonella, P. and Ricca, F.: State-Based Testing of Ajax Web Applications, in 

1st Int. Conf. Software Testing, Verification and Validation, pp. 121-130 April (2008). 
4. Memon, A. M.: Using Tasks to Automate Regression Testing of GUIs, in IASTED Int. 

Conf. on Artificial Intelligence and Applications – AIA, ACTA Press, 477-482 (2004). 
5. Memon, A. M., Banerjee, I., Nada Hashmi, N. and Nagarajan, A.: DART: A Framework 

for Regression Testing “Nightly/daily Builds” of GUI Applications, in Proc. Int. Conf. on 
Software Maintenance, pp. 410-419 (2003). 

6. Orso, A., Harrold, M. J., Rosenblum, D., Rothermel, G., Soffa, M. L. and Do, H.: Using 
Component Metacontents to Support the Regression Testing of Component-Based Soft-
ware, in Proc. IEEE Int. Conf. on Software Maintenance, pp. 716-725 (2001). 

7. Pan, K.: Bug Classification Using Program Slicing Metrics, Proc. Source Code Analysis 
and Manipulation Conference, SCAM '06, pages 31-42, (2006). 

8. Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P. and Davia, B.: The Impact of 
Test Suite Granularity on the Cost Effectiveness of Regression Testing, in ICSE’02, 24th 
International Conference on Software Engineering pp.130, (2002). 

9. Rothermel, G. and Harrold, M. J.: A Safe, Efficient Algorithm for Regression Test Selec-
tion, ACM Transactions on Software Engineering and Methodology (TOSEM) Volume 6 
Issue 2, (1997). 

10. Sen, A. and Srivastava, M.: Regression analysis - theory, methods and applications, Sprin-
ger, New York , 1990. 

11. Takao, S.: Bug Localization Based on Error-cause Chasing Methods, J. Information 
Processing 15(Extra), pp. 53-64, Japan, (1993). 

12. Wahbe, R., Lucco, S., Anderson, T. and Graham, S.: Efficient Software-based Fault Isola-
tion, ACM SIGOPS Operating Systems Review, ACM, New York (1993). 

56


