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Abstract: We present a method for three-dimensional surface registration which utilizes a Genetic Algorithm (GA) to 
perform a coarse alignment of two scattered point clouds followed by a slight variation of the Iterative 
Closest Point (ICP) algorithm for a final fine-tuning. In this work, in order to improve the time of 
convergence, a sampling method consisting of three steps is used: 1) sample over the geometry of the clouds 
based on a gradient function to remove easily interpolating singularities; 2) a random sampling of the clouds 
and 3) a final sampling based on the overlapping areas between the clouds. The presented method requires 
no more than 25% of overlapping surface between the two scattered point clouds and no rotational or 
translational information is needed. The proposed algorithm has shown a good convergence ratio with few 
generations and usability through automated applications such as object digitalization and reverse 
engineering. 

1 INTRODUCTION 

The problem of geometrically aligning a point cloud 
to a surface is known as surface registration or point 
cloud registration. Many techniques have been 
developed in order to solve such problem. One of 
the most used is the ICP which is an iterative 
algorithm that applies a transformation to the current 
position of the point cloud (Besl and McKay, 1992) 
in order to achieve a minimum squared distance 
between the two point-clouds. The main issue of the 
ICP is that it frequently converges to a local 
minimum (Pottmann et al., 2004) and needs a rather 
good manual pre-alignment in order to provide a 
satisfactory solution. 

In order to overcome this problem many authors 
have recurred to many Evolutionary Computing 
methods such as Parallel Evolutionary Algorithms 
(Robertson and Fisher, 2002), and Genetic 
Algorithms (Brunnström and Stoddart, 1996; Chow 
et al., 2004). Even though these approaches provide 
acceptable solutions when registering surfaces with 
a high rate of overlapping points, they fail when 
outlier points are dominating and thus, are not useful 
to fully reconstruct objects whose acquisition  
   

process requires of more than one scan. 
In this paper, a novel method is proposed to take 

on the registration problem given two or more 
different surfaces belonging to the same object from 
different viewing locations with an overlapping 
surface as low as 25% of each cloud total points. 
The aim of the GA is to find the transformation 
parameters between two point-clouds in order to 
minimize a custom fitness function. Once the GA 
has achieved a critical point, an ICP begins to 
minimize the least median of squares (LMS), known 
to be a more robust estimator than the standard least 
squares (LS) of the common ICP (Masuda et al., 
1996). 

The rest of the paper is organized as follows. 
Section 2 briefly explains the application of ICP 
algorithm and Section 3 explains how we formulated 
the first alignment as a GA. Real and simulated 
experiments are described in Section 4 to 
demonstrate the effectiveness of the proposed 
method. A conclusion on the performance and 
possible applications as well as some current issues 
of the proposed algorithm is given in section 5. 
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2 THE ICP ALGORITHM 

Let there be two set of points, an input image { ܲ} 
and a target image {ܳ}. The objective of the ICP is 
to determine the Euclidean transformation ܶ 
between these two sets to minimize ܧ such that ݉݅݊	ܧ(ܶ) = ݉݅݊[|ܶ( ܲ) − ܳ|]	for all ݅ (1)

Since the correspondences of ܶ( ܲ) are 
unknown, a temporary correspondence must be 
computed, which is defined as the point with 
minimum distance among all points in the set	ܳ. If 
the set of points ܲ 	has size ଵܰ and the set ܳ	has ଶܰ	 
elements, then the registration function 
transformation, ܨ is defined as ܨ(ܶ) = (ܧ)݊ܽ݅݀݁ܯ 	for 1 ≤ ݅ ≤ ଵܰ (2a)ܧ(ܶ) = ݉݅ ݊หܶ( ܲ) − ܳห				for 1 ≤ ݆ ≤ ଶܰ (2b)

The iterative process of the algorithm can be 
summarized as follows: 

1) Find a correspondence between the point 
clouds. The closest points are paired. 

2) Compute the rigid transformation ܶ	given the 
pairing. 

3) Apply ܶ	to the data ܲ and compute the LMS 
as in equations 2a and 2b. 

4) If the change in ܨ is not less than a threshold 
or the maximum number of iterations has 
been reached, stop the algorithm. 

It is highly recommended to use a Singular Value 
Decomposition (SVD) to improve the execution 
time of the algorithm, to find the rigid 
transformation ܶ (Arun et al., 1987) and to classify 
the points in a kd-tree in order to surf trough the set 
of points faster (Friedman et al., 1977). 

3 GA FOR POINT-CLOUD 
REGISTRATION 

In order to achieve a good pre-alignment of the 
point-clouds, a SGA is used as a pseudo-ICP 
method, which is defined in section 3.2. 
Additionally, to ensure a good convergence and 
running time, it is necessary to choose a good 
sampling method (explained in section 3.4).   

The common parts of the GA (chromosomes 
definition, selection, mutation and crossover) are 
explained in sections 3.1 and 3.3. 

 

3.1 Formulation of Chromosomes 

Let us define two surfaces or sets of points namely a 
floating cloud and a fixed cloud given by ܲ =  {റ}
and ܳ =  is a	റݍ or	റ respectively. Each point ,{റݍ}
vector containing its xyz coordinates. 

As explained earlier, the objective of the GA is 
to find the rigid transformation applied to the 
floating cloud ܲ to minimize a fitness function 
paired with the cloud ܳ. Each chromosome will be 
given by six parameters or genes, being three for 
displacement and three for rotation. In such case, for 
a population of ܰ size, each chromosome will be 
defined as ߯ = ,ߙൣ ,ߚ ,ߛ ௫ܶ, ௬ܶ, ௭ܶ൧	for ݅ = 1… ܰ (3)

where ߚ ,ߙ	and ߛ	represent the rotations about the x, 
y and z axis, respectively, while ·ܶ	is a translation of 
the given axis. 

Given the high sensitivity of the rotational 
parameters to small changes in binary coding, it was 
chosen to use continuous coding with double 
precision for the whole chromosome.  

The transformation to the set ܲ is applied as 
follows ܶ(ܲ) = ࡾ · [ܲ + (4a) [ࢀ

where ࡾ =	ܴ௫ܴ௬ܴ௭ and 

ܴ௫ = 1 0 00 cos (ߙ) −sin	(ߙ)0 sin (ߙ) cos	(ߙ) ൩ (4b)

ܴ௬ =  cos (ߚ) 0 sin(ߚ)0 1 0−sin (ߚ) 0 cos	(ߚ)൩ (4c)

ܴ௭ = cos (ߛ) −sin	(ߛ) 0sin (ߛ) cos	(ߛ) 00 0 1൩ (4d)

ࢀ =  ௫ܶܶ௬ܶ௭ (4e)

The sign convention used to transform any point 
in the set is shown in Figure 1. 

Each chromosome in the population is initialized 
randomly within a given interval and then processed 
to obtain its fitness as explained in the next section. 

3.2 Fitness Function 

In order to determine the performance of each 
chromosome, a GA uses a fitness function. In this 
case, the fitness function has to measure the quality  
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Figure 1: Sign convention for a transformation of a point റ 
with positive parameters. 

of the registration in function of the quantity of 
points paired, the total error of the pairing and the 
overlapping region obtained. 

The sub-spaces necessary to evaluate the fitness 
function are described in Table 1 and shown in 
Figure 2. 

Table 1: Sub-spaces defined to evaluate the fitness 
function. ܵை  Overlapping points in floating cloud. ܵை  Points of floating cloud within the outlying area.ܵைொ  Overlapping points in fixed cloud. ܵைொ  Points of fixed cloud within the outlying area.

It can be seen from Figure 2 that overlapping 
areas do not frame exactly the overlaid regions of 
the two circles. This error is allowed due to a 
threshold distance necessary for the correct 
performance of the algorithm. 

 
Figure 2: Sub-spaces for outlier and overlapping points for 
two unit circles. 

The fitness ݂ for each chromosome ߯ is defined 
as 				݂(߯) = |݀ை − Υ݀ை − ଶ (5)|ߝ

where ݀ை represents the minimum average distance 
between outlier points, ݀ை is the minimum average 
distance between the overlapping regions, Υ is an 
adjustment factor due to the ratio of successful 
pairing and ߝ	is an error term due to the sampling 
process. 

To compute parameter	݀ை	it is necessary to 
calculate the individual Euclidean distances from 
any point in the ܵை 	space to every point in the ܵைொ  
set and save the minimum distance. A pairing or 
matching takes place if the minimum distance 
obtained is less than a threshold ݐℎ previously 
established. Once a closest neighbor has been found, 
points from both sets are deleted. Repeating this 
process for every point in the set ܵை 	 yields 

݀ை = 1ܰை ݉݅݊ேೀಽು
ୀଵ ைݏ൫ܦൣ , ܵைொ ൯൧ (6)

where ܦ(ܽ,  represents a vector containing the		(ܤ
Euclidean distances between point ܽ and set ܤ and ைܰ 	is the number of elements in ܵை . The same 
procedure is followed to compute	݀ை. 

Each time a point matching occurs, a counter ߣ	(initially set to zero) will be increased by two. 
Parameter Υ	will then be given by Υ = λைܰ + ைܰொ  (7)

This last term represents exactly the ratio of 
points successfully matched in the overlapping 
surfaces and is used to reduce the weight of the ݀ை	in order to reward a good ratio even if distances 
between the overlapping points are big.  

3.3 Genetic Operators 

Another important factor to ensure the convergence 
of the GA is the election of the right operators to act 
upon the population. Such operators are selection, 
crossover and mutation. This is a particular difficult 
choice, given the fact that a certain combination 
might work perfectly in a problem and completely 
fail in another, depending on their nature.  

In this section, the parameters chosen are briefly 
explained. Many other variations of these operators 
can be found on (Chambers, 1995) and (Goldberg, 
1977).  

3.3.1 Selection 

In the case of a registration problem, it is 
recommended to choose a selection method that 
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applies little pressure on the population since even 
the less fitted individuals could provide important 
data for the optimization. A complete analysis on the 
selection operator can be found on (Baker, 1989). 

It was chosen to use a selection by lineal ranking 
because it allows offspring from most part of the 
population depending on a parameter	ߟ. The first 
step is to order the ݊ individuals according to their 
fitness’s and calculate a new fitness based on the 
function 							݂′() = ߟ − ଶ(ఎିଵ)ேିଵ		for  ݇ = 0… ܰ − 1 (8)

This assigns a value of ߟ	to the less fitted 
individual and a value close to ܰ		for the best 
one. 

Once ݂ᇱ has been computed, a roulette selection 
is used to decide on the parents that will give rise to 
the new offspring. Additionally, the selection can be 
set to be elitist, that is, to preserve some of the best 
fitted individuals in order to maintain the minimum 
fitness stable. 

3.3.2 Crossover 

Crossover refers to the operation of exchanging 
information with a certain probability between two 
individuals, namely parents. Many crossover 
methods are described in (Chambers, 1995). Given 
the short length of the chromosome used in this 
work, a single point crossover has been chosen, with 
the crossing point chosen randomly. However, to 
introduce new information, the crossover model 
introduced by (Radcliff, 1991) has been applied as 
well. This model considers adding a random variable 
to each gene based on the data from their parents, 
this is ଵ = ߦ + (1 − ଶ (9a)(ߦ = (1 − (ߦ +  (9b)ߦ

where ଵ and ଶ	represent the values for the new 
genes, ߦ	is the random variable within the range 
[0,1] and 	and are the current values of the 
genes from the first and second parents, respectively. 

3.3.3 Mutation 

Like crossover, mutation is a critical operator for the 
correct execution of a GA. Mutation introduces new 
information and can be determining to converge to 
the global optimum. Under mutation, each gene has 
a probability of changing its value. 

In binary coding, mutation consists on changing 
1’s to 0’s and vice versa. A continuous coding 
requires adding or subtracting a random value from 

the current value of the gene within a given range. 
This work considers a dynamic range of mutation, 
based on the maximum fitness value and the overall, 
the new value for the gene ݉௪	will be given by ݉௪ = ߦ · ቈ2 − ݇ܰ − ቆ1 − ݂௩ିଵ݂௫ିଵቇ (10)

where ߦ	is again a random variable whose range 
depends on the nature of the gene (rotation or 
translation), ݇	is the current generation, ݂௩ିଵ	is the 
average fitness of the previous generation, and ݂௫ିଵ 
is the maximum fitness of the previous generation. 
The constant 2	is selected so that the new value is 
constraint within the interval [0, 2], being the first 
expected in the later generations. 

An analysis on the advantages of choosing a 
dynamic mutation model is better explained in 
(Chow, 2004). 

4 EXPERIMENTAL RESULTS 

The proposed method was tested on three different 
sets: a) a simulated surface generated and sectioned 
in MATLAB, b) a model acquired by projecting 
fringes over a surface and sectioned in MATLAB 
and c) a model acquired by the same means as b) 
and fully reconstructed to compare with the 
reconstruction obtained with a commercial 3D 
scanner. 

4.1 Computer Simulated Surface 

First, a graphic was generated using the function 
PEAKS with a size of 200 × 200 which then was 
sectioned in a floating and a fixing cloud, each one 
formed by 125 pixels. Both surfaces were 
standardized to a range [-0.5, 0.5] in their x and y 
axis and to [-1, 1] in their z axis. 

After standardizing, the floating cloud was 
transformed with random parameters as mentioned 
in Eq. (4a). The rotations were within the range 
[-120, 120] and the displacements in [-1, 1].  

The experiment was repeated ten times, of which 
three are shown in Table 2. The error is measured as 
the total average distance between the overlapping 
points. A result of one of the experiments is shown 
in Figure 3. 

4.2 Real Surface Synthetically 
Sectioned 

A frontal view of a real surface was digitalized using 
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Table 2: Results obtained from registering a computer simulated surface under random transformations. 

Original Obtained Error  
Time(s) (ߙ, ,ߚ ) (ߛ ௫ܶ, ௫ܶ , ௫ܶ) (ߙ, ,ߚ ) (ߛ ௫ܶ, ௫ܶ , ௫ܶ) initial 

(final) 

(33.50, 90.81, -44.41) (0.09, -0.71, 0.70) (35.48, 88.31, 45.49) (0.12, -0.73, 0.68) 0.4927 
(0.00373) 237.57 

(59.53, -50.61, -
117.94) (-0.52, -0.75, -0.63) (58.72, -49.87, 

116.29) (-0.49, -0.76, -0.63) 0.5397 
(0.00197) 217.64 

(-5.83, 3.63, 82.47) (0.46, 0.25, 0.84) (-6.19, -3.28, -83.14) (0.428, 0.23, 0.82) 0.4756 
(0.00104) 219.83 

Table 3: Results obtained from registering a real surface under random transformations. 

Original Obtained Error  
Time(s) (ߙ, ,ߚ ) (ߛ ௫ܶ, ௫ܶ , ௫ܶ) (ߙ, ,ߚ ) (ߛ ௫ܶ, ௫ܶ , ௫ܶ) initial 

(final) 
(39.11, 2.89, 111.02) (-69.74, -29.34, 

15.97) 
(37.38, 1.68, 107.73) (-66.28, -30.73, 

17.06) 
35.2532 

(0.04661) 385.73 

(37.76, 48.69, 99.78) (-56.34, -31.01, 
6.56) 

(38.76, 48.91, 96.38) (-58.08, -31.92, 
5.68) 

39.6762 
(0.03982) 374.29 

(101.06, 49.83, 
35.06) 

(-65.01, 48.87, 
60.75) 

(99.34, 47.92, 34.73) (-63.83, 49.23, 
62.38) 

47.2784 
(0.04251) 382.95 

 

 
Figure 3: Result obtained form first experiment. 

 
Figure 4: Range image obtained from a real surface. 

a fringe projection system. The range image 
obtained is shown in Figure 4. The same procedure 
of sectioning and transforming was followed to 
produce the differently modified clouds with a range 
of displacements of [-70, 70]. 

The experiment was again repeated ten times and 
three of the results obtained are detailed in Table 3 
and one of them shown in Figure 5.  

 
Figure 5: One of the result after applying the proposed 
method. 

The error is measured once again as the total 
average distance between the overlapping surfaces. 

4.3 Real Surface Reconstructed 

For the last experiment, an object was digitalized 
and fully reconstructed from four different 
acquisitions. The reconstructed object was then 
compared against the result of the same object 
obtained with a commercial 3D scanner, being these 
the floating and fixed clouds, respectively. The 
acquisition was done using structured light 
projection and reconstructed with the proposed 
method. The final result of this experiment is shown 
in Figure 6. 

Both clouds were paired with an average error of 
0.000116 mm/point. The reconstruction process took
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Figure 6: Surface reconstructed (light) and surface 
acquired with a commercial scanner (dark). 

738.47 seconds and the final pairing ended in 283.38 
seconds. 

5 CONCLUSIONS 

The proposed method works well for dense clouds 
(of about 300,000 points) and has proven its 
efficiency in reconstructing tasks particularly for big 
objects where many acquisition steps are needed. 
With little refinement, it can also be used to compare 
CAD modeled pieces with pieces machined in the 
real world to give a better quality control where high 
precision is needed. 
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