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Abstract: Functional magnetic resonance imaging (fMRI) is a technique to map the brain, anatomically as well as 
physiologically, which does not require any invasive analysis. In order to obtain brain activation maps, the 
subject under study must perform a task or be exposed to an external stimulus. At the same time a large 
amount of images are acquired using ultra-fast sequences through magnetic resonance. Afterwards, these 
images are processed and analyzed with statistical algorithms. This study was made in collaboration with 
the consolidated Neuropsychology Research Group of the University of Barcelona, focusing on applications 
of fMRI for the study of brain function in images obtained with various subjects. This group performed a 
study which analyzed fMRI data, acquired with various subjects, using the General Linear Model (GLM). 
The aim of our work was to analyze the same fMRI data using Independent Component Analysis (ICA) and 
compare the results with those obtained through GLM. Results showed that ICA was able to find more 
active networks than GLM. The activations were found in frontal, parietal, occipital and temporal areas. 

1 INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) is a 
technique that provides the opportunity to study 
noninvasively which parts of the brain are activated 
by different types of stimulation or activity, such as 
sight, sound or movement. This technique measures 
the Blood Oxygenation Level Dependent (BOLD) 
contrast, which is based on the differing magnetic 
properties of oxygenated (diamagnetic) and 
deoxygenated (paramagnetic) blood.  When brain 
neurons are activated, there is a change in blood 
flow and oxygenation that causes a change in the 
Magnetic Resonance (MR) signal which is received 
by the receiver coils. A higher level of oxygenated 
blood in a located area means that there is an 
increase in neural activity in this area. On the other 
hand, a lower level means the opposite (D’Esposito 
et al., 1999). 

In order to capture the effect of BOLD contrast, 
the subject lies in the magnet under the influence of 
a powerful magnetic field and a particular form of 
stimulation is conducted (such as showing images 
with a projector). Then, a series of low resolution 
brain scans are taken over time. For some of these 
scans the stimulus is present and for some others the 
stimulus is absent. The low resolution brain images 
of the two cases can then be compared in order to 
see which parts of the brain were activated by the 
stimulus.  After the experiment has finished, the set 
of images is pre-processed and analyzed.  

One problem for fMRI data is that data includes 
contributions from many other sources including the 
heart beat, breathing and head motion artifacts, 
which can cause wrong results (S.A Huettel. et al., 
2004). ICA-based methods have shown to be useful 
for analyze data when this is noisy and when regions 
involved in a particular task are unknown.  

430
Bartés-Serrallonga M., Solé-Casals J., Adan A., Falcón C., Bargalló N. and Serra-Grabulosa J..
STATISTICAL ANALYSIS OF FUNCTIONAL MRI DATA USING INDEPENDENT COMPONENT ANALYSIS.
DOI: 10.5220/0003723504300436
In Proceedings of the International Conference on Neural Computation Theory and Applications (Special Session on Challenges in Neuroengineering-
2011), pages 430-436
ISBN: 978-989-8425-84-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

In an attempt to find the components extracted 
from data reporting on different subjects or 
paradigms and discover which were task-related and 
which were noise, we applied a method based on 
ICA. In this paper, we present all the steps we did 
for this work and we show results obtained from real 
activation fMRI experiments conducted on a group 
of forty subjects. 

2 MATERIALS AND METHODS 

The study was performed in a 3 T MRI scanner 
(Magnetom Trio Tim, Siemens Medical Systems, 
Germany) at the Diagnostic Imaging Centre at 
Hospital Clínic (CDIC) using the blood-oxygen 
level-dependent (BOLD) fMRI signal. Whereas the 
pre-processing of MR images and the regression 
model were performed using SPM8 software 
(SPM8, Wellcome Department of Cognitive 
Neurology, London), the data analysis was carried 
out using Group ICA of fMRI Toolbox (Calhoun et 
al., 2001). Both pre-processing and analysis software 
were run on a Matlab platform (R2009b version). 

2.1 Participants 

Forty right-handed healthy undergraduate students 
[50% women; age range 18–25, mean (+S.D.) 19.6 
(+1.7)] were recruited from the University of 
Barcelona. Subjects with chronic disorders, nervous 
system disorders or history of mental illness were 
excluded, as well as regular drinkers and those on 
medication. All participants were non smokers and 
low caffeine consumers (< 100mg/day), had 
intermediate circadian typology and reported an 
undisturbed sleep period of at least 6 h during the 
night prior to the fMRI scan sessions. Caffeine may 
affect the performance of the task (Serra-Grabulosa 
et al., 2010a); Adan and Serra-Grabulosa, 2010). For 
this reason the participants abstained from caffeine 
intake for a minimum of 12 h and fasted for at least 
8 h prior to the first fMRI session. The study was 
approved by the ethics committee of Hospital Clínic 
de Barcelona. Written consent was obtained from all 
participants, who were financially rewarded for 
taking part. 

2.2 Experimental Design 

The functional magnetic resonance imaging was 
obtained using gradient echo sequence single-shot 
echo-planar imaging, with the following parameters:  
TR (repetition time): 2000 ms, TE (echo time):  40 

ms, FOV (field of view): 24 x 24 cm, matrix 128 x 
128 pixels, flip angle 90, slice thickness: 2 mm, gap 
between sections: 0.6 mm, 36 axial slices per scan. 
A total of 243 volumes were purchased, with 46 
slices each. 

During the acquisition of fMRI, in order to 
obtain the BOLD contrast, the subjects performed a 
sustained attention task (CPT-IP, Continuous 
Performance Test-Identical Pairs), which is a 
modification of the Cornblatt task (Cornblatt et al., 
1989) and a control task. CPT-IP task was created 
with the software Presentation (Neurobehavioral 
System, USA). All stimuli were presented to the 
subjects through glasses specially designed for use 
in the scanner. 

The CPT-IP task was performed using a block 
design. It started with a block of 35 seconds of 
accommodation to the scanner, which had a blank 
screen that the subject had to stare at. After this first 
block, 9 blocks of CPT were alternated with 9 
blocks of control (Figure 1). Preceding each block, 
subjects received instructions for what to do in the 
next block for a duration time of 5 seconds. 

 

 
Figure 1: Design of the sustained attention task with 
alternation between blocks. 

Each of the CPT blocks had a total of 27 
numbers formed by 4 digits (1 to 9, without 
repeating the same figure), so that 23 of the figures 
were different and 4 were repeated. The presentation 
time of each number was 450 ms and the interval 
between the onsets of each of the 27 consecutive 
digits was 750 ms. Subjects’ task was to detect the 
repeated figures and respond by pressing a button as 
quickly as possible (Figure 2A). The position of the 
repeated figures was randomized over the blocks 
CPT. Concerning the control block, it always had 
the same 4 digits (1 2 3 4) and the task of the 
subjects was only to stare at it throughout the 
presentation (Figure 2B). 
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Figure 2: The following figure illustrates the design of the 
task blocks. The top (A) exemplifies the figures presented 
in the CPT blocks.  In this example, you should respond 
to the stimulus e3. The bottom (B) exemplifies the figures 
presented in the control blocks. 

2.3 Data Pre-processing 

The data that comes directly out of the scanner is 
very noisy.  The noise is defined as any variability in 
the data that is not explained by our statistical model 
(Ashby, 2011), for example when a subject moves 
his or her head. The magnitude of this variance is 
important because it can cause some errors in the 
results of the statistical analysis.  If the noise is low, 
it will increase the probability of discover true brain 
activations related with the task. 

To reduce the error variance as much as possible, 
functional and structural MRI data were pre-
processed using SPM8 software (http://www.fil.ion. 
ucl.ac.uk/spm/software/spm8/) as described in 
(http://www.fil.ion.ucl.ac.uk /spm/doc/spm8_manual 
.pdf), which aims to improve the signal noise ratio. 
This includes the following steps: 
 
1. Converting all the images from DICOM (Digital 

Imaging and Communication in Medicine) format 
to NIfTI (Neuroimaging Informatics Technology 
Initiative) format in order to treat them with SPM8 
and Group ICA of fMRI Toolbox. 

2. Realigning the images to the same position 
according to the coordinates of the anterior and 
posterior commissure. 

3. Correcting the head movements which may have 
occurred in the scanner. In this way, the head 
movements can cause artefacts or abrupt changes 
in the intensity of the signal which can badly 
corrupt fMRI data and in consequence affect the 
results of the statistical analysis. The calculations 
for the correction are made through 
interpolations, performing 3 corrections of 
rotation and 3 corrections of translation. 

4. Coregistering the functional and structural 
images. In this way a correspondence is achieved 
point to point between the structural and the 

functional images and the activations can be 
interpreted. 

5. Normalizing the images to minimize the huge 
individual differences in the sizes and shapes of 
individual brains. All brains need to be of the 
same size and orientation in order to be 
compared. The aim is to normalize the data into 
the standard Montreal Neurological Institute 
(MNI) space. This space is used worldwide, so 
results are comparable with those from all other 
institutes. 

6. Finally, apply Gaussian transformations in order 
to minimize false positives. 

2.4 Implementation of the Regression 
Model 

After pre-processing step, we proceeded to perform 
the regression model to explain brain activations. To 
do this, we created a regression line where signal 
changes observed in each voxel could be explained 
by changes in the proposed task minimizing the 
residual error (Figure 3). 

2.5 Independent Component Analysis 

After pre-processing and regression model creation 
steps, we applied ICA analysis to the images. In the 
following lines, we will explain the principles of 
ICA. Independent components analysis is a 
multivariate technique which is very popular and 
common in the analysis of fMRI data. A good way 
to understanding the basic principles of ICA is 
through the typical ICA problem namely cocktail 
party (Hyvärinen et al., 2000). 

In this situation, some people are attending a 
cocktail party speaking all at once. Assume that their 
voices are recorded from different microphones 
placed around the room. The resultant recordings 
will be unintelligible because each microphone will 
pick up some mixture of two or more people 
speaking simultaneously and some background 
noise. As a result, it will be very difficult to 
understand even a single speaker. ICA provides an 
effective method which can usually solve the 
cocktail party problem separating the conversation 
of every speaker. 

An equivalent to this problem in fMRI is to 
assume that instead of speakers, there are functional 
independent neural networks that are simultaneously 
active during some fMRI experiment. The aim of 
ICA is to separate these simultaneous neural 
networks from the global mixture as independent 
components. The problem that ICA tries to solve 
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Figure 3: Regression model proposed to explain, for each 
voxel of the functional MRI images, the variability in the 
signal along the recorded 243 volumes. Each one of the 10 
columns corresponds to one of the input variables in the 
regression. The first one corresponds to the attention task 
in which the subject has to respond to repeated stimuli. 
The second one corresponds to the task of looking at 
numbers and the third one to the task of initial rest. The 
next 6 columns are the values applied to correct the head 
movements in the pre-processing step. The last one 
represents the error. On the right side of the table the 
registered volumes are listed from 1 to 243. For each 
variable, white colour indicates that this helps to explain 
the variability while black colour indicates the opposite. 

can be expressed in matrix notation by the following 
equation: 

X = AS (1)

where A is the (unknown) mixing matrix and S is 
the (unknown) source matrix. The procedure 
consists on recovering S, using only the vector X 
with N observations. For that, the aim is to estimate 
a weight matrix W, which should be the inverse of 
A, up to scale and permutation effects, so that the 
original independent signals can be recovered as: 

U = WX = WAS ≈ S (2)

To estimate the ICA model it’s necessary to 
make certain assumptions and restrictions 
(Hyvärinen et al., 2001): 

1. The components are assumed to be statistically 
independent. 

2. The components must have non-gaussian 
distributions. 

3. For sake of simplicity, we assume that the 
unknown mixing matrix is square. 

4. We cannot determine the variances (energies) of 
the recovered independent components. 

5. We cannot determine the order of the recovered 
independent components. 

2.6 ICA Algorithm used  

To perform the ICA analysis, as we have mentioned 
before, we used the Group ICA of fMRI Toolbox. 
This program has the option to make the analysis 
using different algorithms, as Jade, Erica, Infomax, 
Simbec, Amuse and others.  

The chosen algorithm   to analyze fMRI data was 
Infomax because has been one of the most 
commonly used algorithms for fMRI data analysis 
and has proven to be quite reliable (Calhoun et al., 
2004). 

3 RESULTS 

3.1 Selection of the Independent 
Components 

After ICA analysis we selected some of the 
components in order to evaluate results. For that, we 
did a multiple regression and a statistic correlation 
with every paradigm. We excluded the components 
that had a p-value greater than 0.01, and the ones 
which were associated to noise. Therefore we 
selected 3 components for the CPT task and 3 
components for the control task. 

3.2 Obtention of the Areas of Interest  

After the selection of the independent components, 
we performed a T – test with all the subjects and all 
the components. We also performed a ‘multiple 
regression’ SPM8 analysis to establish the 
relationship between CPT-IP-related activations. 
The fMRI results were interpreted only if they 
attained both a voxelwise threshold p<0.05 
(corrected) (cluster extent (k) = 10voxels). The 
anatomical location of the activated brain areas was 
determined by the Montreal Neurological Institute 
(MNI) coordinates. Anatomical labels were given on 
the basis of anatomical parcellation developed by 
(Tzourio-Mazoyer et al., 2002). 
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3.3 fMRI Results 

Activations found in the CPT task were located (see 
Table 1 and Figure 4) bilaterally in frontal lobe (BAs 
6, 8, right 9, 10, 11, 24, 32, 44, 45, 46, 47), parietal 
(BAs 7, 23, 31, 40), temporal (BAs 21, 22, 34, right 
37) and occipital (BAs 18, 19). 

The control task showed a pattern of bilateral 
activation (see Table 2 and Figure 5) in frontal lobe 
(BAs 4, left 6, 8, 9, 10, 11, 24, 32), parietal (BAs 
right 2, left 3, right 5, 7, 23, 31, 39, 40), temporal 
(BAs 20, 21, 28, 34, 35, 37, 38) and occipital (BAs 
17, 18). 

4 DISCUSSION 

The aim of our study was to analyze fMRI data from 
a stimulation paradigm using ICA, and compare the 
obtained results with previous ones done in other 
study (Serra-Grabulosa et al., 2010b) which 
analyzed the same data using general linear 
modelling (GLM). 

In general terms, obtained results follow a 
similar pattern as previous analysis reported in 
(Serra-Grabulosa et al., 2010) but with more active 
regions. In the following paragraph we will 
comment these new activations.  

As in the GLM case, ICA analysis of the CPT 
task indicated that the used paradigm activates a 
network in frontal, parietal and occipital areas. In 
addition, the new results showed activations in the 
temporal area. The frontal activation obtained was 
bilateral and the new included areas were frontal eye 
fields (BA 8), dorsolateral prefrontal cortex (right 
BA 9), ventral anterior cingulate cortex (BA 24) and 
inferior prefrontal gyrus (BA 47). Frontal eye fields 
are believed to play an important role in the control 
of eye movements and in the management of 
uncertainty (Volz et al., 2005) which could be 
present during the CPT task. BA 9 is part of 
dorsolateral prefrontal cortex and it’s involved in 
functions such as working memory, integration of 
sensory mnemonic information and the regulation of 
intellectual function and action. These functions 
were necessary in the CPT task in order to remember 
the numbers, to compare them and to decide the 
correct answer. BA 24 is part of the anterior 
cingulate cortex and many studies attribute functions 
such as error detection, anticipation of tasks, 
attention (Weissman et al., 2005), motivation, and 
modulation of emotional responses to the ACC 
(Bush et al., 2000; Posner et al., 1998; Nieuwenhuis 
et al., 2001). Thus this area could contribute to 

maintain the attention during the task and detecting 
the equal numbers. BA 47 has been implicated in the 
processing of syntax in spoken and signed 
languages. Therefore, this zone could be related to 
the processing of the numbers during the task. 

Bilateral parietal activations were also found in 
the CPT task. These are in the posterior cingulate 
cortex, which is associated with Brodmann areas 23 
and 31. Imaging studies indicate a prominent role for 
the posterior cingulate cortex in pain and episodic 
memory retrieval (Nielsen et al., 2005). Thus, this 
part of the cortex could contribute to recover the 
digits from memory during the task. BA 40 and 
more exactly its supramarginal gyrus part, is 
involved in reading, both regarding meaning and 
phonology (Stoeckel C. et al., 2009).  In our case it 
may be related with the number recognition. 

Another cluster of activation related to the CPT 
task, and not found in the previous study, was found 
in temporal areas. BA 21 has been connected with 
processes as different as observation of motion, 
recognition of known faces and accessing word 
meaning while reading. BA 22 is an important 
region for the processing of speech so that it can be 
understood as language. BA 37 includes functions as 
face and body recognition, number recognition and 
processing of colour information. These regions 
could be related to the recognition and the numbers 
meaning when were shown. BA 34 is a part of the 
entorhinal area which is the main interface between 
the hippocampus and neocortex. The entorhinal 
cortex (EC)-hippocampus system plays an important 
role in autobiographical / declarative / episodic 
memories and in particular in spatial memories 
including memory formation, memory consolidation 
and memory optimization in sleep. Therefore this 
area could contribute to processing the numbers 
during verbal working memory.  

Comparing with GLM, ICA analysis of the control 
task also indicated activity in angular gyrus, 
posterior cingulate gyrus, frontal gyrus and inferior 
and medial temporal gyrus. In addition, ICA results 
showed activations in primary motor cortex, 
premotor cortex, primary somatosensory cortex, 
somatosensory association cortex, perirhinal cortex 
and temporopolar area. As in the previous analysis, 
the control task showed activations in different brain 
areas which were not activated in the CPT task and 
probably could reflect an inhibition of processes that 
could interfere with the correct execution of the task, 
as external and internal monitoring (Gusnard and 
Raichle, 2001). This deactivation could optimize 
performance in high attentional demanding tasks 
(McKiernan et al., 2003). 
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Figure 4: This figure shows the activations found on 
the CPT task. Each colour represents the active region of a 
different component.  

Table 1: Coordinates (x, y, and z) of the areas of 
significance, level of significance (T-Score) and 
localization of the voxel (BA) for CPT task.  

Coordinates of voxels  
T-Score BA 

x y z 

3 11 49 32.64 6 
-51 20 40 11.10 8 
42 53 4 22.94 10 
48 14 28 23.09 9 
0 29 22 29.08 24 
6 23 31 31.43 32 

-45 12 20 6.18 44 
60 14 19 11.70 45 
48 32 25 23.71 46 
36 23 -5 10.88 47 
24 -67 49 25.91 7 
0 -25 31 8.24 23 

-24 -76 28 20.94 31 
-48 -61 43 14.00 40 
63 -31 -5 16.72 21 
-48 8 -2 16.68 22 
9 5 -11 12.15 34 

57 -43 -5 10.18 37 
-30 -88 4 25.17 18 
39 -82 -5 22.88 19 

5 CONCLUSIONS  

After the analysis ICA has demonstrated to be a 
technique with a great potential. Comparing with 
GLM-based approaches ICA is able to separate 
statistical independent components and identify 
 

 
Figure 5: This figure shows the activations found on the 
control task. Each colour represents the active region of a 
different component.  

Table 2: Coordinates (x, y, and z) of the areas of 
significance, level of significance (T-Score) and 
localization of the voxel (BA) for control task. 

Coordinates of voxels 
T-Score BA 

x y z 

-33 -22 58 7.98 4 
-24 -19 64 7.70 6 
-21 38 46 10.07 8 
9 53 37 8.64 9 
3 53 -5 42.53 10 
0 41 -14 9.83 11 
0 26 19 10.92 24 
-3 44 -2 43.77 32 
33 -37 61 6.60 2 
-12 -37 67 6.45 3 
3 -40 64 7.50 5 

15 -52 49 7.44 7 
3 -58 16 28.66 23 
-6 -64 22 37.85 31 
48 -64 28 10.84 39 
60 -25 31 10.74 40 
-42 -25 13 6.67 41 
-57 -7 -20 8.68 20 
57 -13 -17 8.94 21 
-21 -16 -17 7.81 28 

more networks than GLM. The main inconvenience 
we observe with ICA is that in some cases it might 
identify a large number of components, while only a 
few are related with the task. To find those related 
components can be a challenge. Therefore it’s 
important to estimate an appropriate number of 
components in order to better separate the real 
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activations from noise. Despite these difficulties, 
ICA works well and separates noise from real 
activations allowing extracting the desired signals. 
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