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Abstract: The theory of stochastic convexity is widely recognised as a framework to analyze the stochastic behaviour
of parameterized models by different notions in both univariate and multivariate settings. These proper-
ties have been applied in areas as diverse as engineering, biotechnology, and actuarial science. Consider a
family of parameterized univariate or multivariate random variables{X(θ)|θ ∈ T} over a probability space
(Ω,ℑ,Pr), where the parameterθ usually represents some distribution moments. Regular, sample-path, and
strong stochastic convexity notions have been defined to intuitively describe how the random objectsX(θ)
grow convexly (or concavely) concerning their parameters. These notions were extended to the multivariate
case by means of directionally convex functions, yielding the concepts of stochastic directional convexity for
multivariate random vectors and multivariate parameters. We aim to explain some of the basic concepts of
stochastic convexity, to discuss how this theory has been used into the stochastic analysis, both theoretically
and in practice, and to provide some of the recent and of the historically relevant literature on the topic. Finally,
we describe some applications to computing/communication systems based on bio-inspired models.

1 INTRODUCTION

The theory of stochastic convexity is widely recog-
nised as a framework to analyze the stochastic be-
haviour of parameterized models by different notions
in both univariate and multivariate settings. These
properties have been applied in areas as diverse as
engineering, biotechnology, hydrology, actuarial sci-
ence, and medicine, and they have been useful to
analyze queueing systems, total times to complete
jobs, wireless communication networks, total claim
amount distributions of insurance portfolios, and resi-
dence times of a substance in the human body, among
others. Consider a family of parameterized univariate
or multivariate random variables{X(θ)|θ ∈ T} over a
probability space(Ω,ℑ,Pr), with T ⊂R

n with n ≥ 1,
being some sublattice, where the parameterθ usually
represents the mean or the variance, or both them for
the random variableX(θ), although it also may repre-
sent another rate influencing the probability distribu-
tion of X(θ). For practical instances,θ is sometimes
assumed to reflect some biological, physical, expo-
sure, environmental, or economical conditions, that

determine a scenario where the random objectX(θ)
is analyzed. Letg(θ) = E[φ(X(θ))] be the expected
value of the functionalφ for a univariate random vari-
ableX(θ). Let ≤ denote the componentwise order-
ing for vectors of scalars. The stochastic increasing
monotonicity ofX(θ) (or g(θ)) with respect to its pa-
rameter (in the sense thatθ1 ≤ θ2 impliesX(θ1) ≤st
X(θ2) or equivalently,Pr(X(θ1)> t)≤Pr(X(θ2)> t)
for all t) (see also Shaked and Shanthikumar, 2007)
constitutes a useful property in a wide range of ar-
eas as those aforementioned. Numerous examples of
functionals of random variables having such property
can be found in the literature, for instance, an increas-
ing net profit (or an increasing expected net profit)
is a common assumption in several financial settings.
Additionally, different second-order properties, as the
convexity, the concavity and the supermodularity of
the parameterized random variableX(θ) with respect
to its parameter, have been described by different con-
cepts in the literature. Regular, sample-path, and
strong stochastic convexity notions have been defined
to intuitively describe how the random objectsX(θ)
grow convexly (or concavely) concerning their pa-
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rameters, and they have played a prominent role into
the stochastic analysis in different fields. The purpose
of this paper is to explain some of the basic concepts
of stochastic convexity, and to discuss how this theory
has been used into the stochastic analysis, both theo-
retically and in practice. We will omit the technical
details of the results that the reader can check in the
corresponding articles. A second purpose is to pro-
vide the reader to some of the recent and historically
relevant literature on this topic. Finally, we focus on
several applications to bio-inspired models.

For a univariate random variableX(θ) with re-
spect to one real or integer-valued scalarθ, next, we
recall several stochastic convexity notions, where we
will use {X(θ)} as a shorthand of{X(θ)|θ ∈ T}.
First, {X(θ)} is stochastic increasing and convex in
the sample-path sense, denoted bySICX − sp, if for
any four parameter valuesθi, i = 1,2,3,4, that fulfil
θ1+θ4 = θ2+θ3 andθ4 ≥ max{θ2,θ3}, there exists
four random variableŝXi, i = 1,2,3,4 on a common
probability space(Ω,ℑ,Pr), such that̂Xi =st X(θi) for
anyi; and∀w ∈ Ω

X̂4(w)≥ max{X̂2(w), X̂3(w)} (1)

X̂1(w)+ X̂4(w)≥ X̂2(w)+ X̂3(w). (2)

This concept was developed in Shaked and Shan-
thikumar, 1988a, 1990a, 1990b. From (Shanthiku-
mar and Yao, 1991), we have the following stronger
notion. {X(θ)} is strong stochastic increasing and
convex, denoted bySSICX , if X(θ) =st φ(ε,θ), for
any φ being an increasing function onθ andε being
a random variable whose distribution function is in-
dependent ofθ. The regular notion, also called the
functional notion (Shaked and Shanthikumar, 1990a)
is defined as follows.{X(θ)} is stochastic increas-
ing and convex, denoted bySICX , if E[φ(X(θ))] is
increasing and convex inθ for any increasing and
convex functionφ. Another related concept intro-
duced by (Shaked and Shanthikumar, 1990b) is given
next. {X(θ)} is stochastic increasing and convex in
stochastic sense, denoted bySICX − st, if E[φ(X(θ))]
is increasing and convex inθ for any increasing func-
tion φ. Notice that the convexity ofφ is not required
for this definition. TheSICX − st property is equiva-
lent to the fact that the distribution function ofX(θ),
denoted byF(x,θ), is decreasing and concave inθ for
anyx. The following implications hold for the previ-
ous notions:

SSICX ⇒ SICX −sp ⇒ SICX andSICX −st ⇒ SICX −sp.
(3)

However,SICX − st and SSICX do not imply each
other. Many well known parametric families of distri-
butions, as the Normal, Gamma, Lognormal, Poisson,

Binomial and Geometric, fulfil some of these proper-
ties. We refer to the earlier references for the defi-
nitions of the stochastic concavity notions. Nice re-
views of these concepts, their basic properties and ap-
plications can be found in (Shaked and Shanthikumar,
1991); (Chang et al., 1994) and (Shaked and Shan-
thikumar, 2007). The earlier notions are extended to
the multivariate case by means of directionally con-
vex functions (see Marinacci and Montrucchio, 2005,
for the definition, main properties and background of
these functions, that were defined by Wright, 1954).
A useful characterization of the increasing direction-
ally convex functions was given in (Shaked and Shan-
thikumar, 1990a). A real-valued functionφ defined
on R

n is increasing and directionally convex if and
only if φ is increasing, componentwise convex, and
supermodular. Also,φ is said to be supermodular (see
Marshall and Olkin, 1979) ifφ(x ∨ y) + φ(x ∧ y) ≥
φ(x) + φ(y), for all x, y ∈ R

n with the operators+,
∨ and∧ denoting, respectively, the componentwise
sum, maximum and minimum. Stochastic directional
convexity for multivariate random vectors with re-
spect to multivariate parameters was introduced by
(Shaked and Shanthikumar, 1990a), when the param-
eters have on values over convex subsets of the real
line. These concepts were also studied by (Meester
and Shanthikumar, 1993), who used this theory to ob-
tain the regularity of some stochastic processes, in-
cluding Markov chains, and to derive applications in
queueing systems; and extended to a general space by
(Meester and Shanthikumar, 1999). Stochastic con-
vexity in the sense of the usual stochastic order, intro-
duced by (Shaked and Shanthikumar, 1990b) in the
univariate case, was extended to the multivariate case
by (Shanthikumar and Yao, 1991), where is called
strong stochastic convexity. The functional notion of
stochastic increasingness and directional convexity is
denoted bySI − DCX . Other notions of stochastic
convexity in a generalized sense are defined and stud-
ied in (Denuit et al., 1999), and notions involving par-
tial sums in (Chao and Luh, 2004).

2 DISCUSSION

In this section we discuss how the theory of the
stochastic convexity has been used into the stochas-
tic analysis, both theoretically and in practice, and
we provide some historically relevant and recent bib-
liographic references and remarks on their main de-
velopments and applications. Generally, the sample-
path notions of stochastic convexity are useful in the
mathematical proofs to state stochastic convexity of
random objects, while the functional definitions are
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good for applications, for example, whenφ is the
functional of a performance measure of a system in
engineering to be bounded or the objective function
of a mathematical model to be optimized. In addi-
tion, the functional notions allow one to apply the
compositional rules in (Meester and Shanthikumar,
1999) to stand the stochastic increasingness and di-
rectional convexity (concavity) by using some trans-
formation of the parameters. The fact that this the-
ory does not rely on closed-form distribution func-
tions allows one to analyze stochastic models which
are unwieldy analytically. Several techniques of prob-
abilistic risk assessment, statistics and operational re-
search have been connected with the stochastic con-
vexity and the stochastic directional convexity. They
lead to solve some decision-making problems in sev-
eral contexts. First, looking to a dynamical perspec-
tive, these structural properties allow one to charac-
terize the spatio and the temporal behaviour of some
stochastic processes, being relevant for the probabilis-
tic risk asessment concerning some maintenance poli-
cies in reliability (see e.g., (Shanthikumar and Yao,
1992, and Meester and Shanthikumar, 1993). Sec-
ondly, in many optimization problems, the mono-
tonicity and the convexity assumptions play an im-
portant role. In deterministic dynamic programming
problems, for example, if the reward functiong(s,x)
is strictly concave ins andx and increasing ins, the
feasible action correspondence is an increasing and
convex graph; and the transition function is contin-
uous, bounded and concave, then the value function
is continuous, bounded, increasing and concave (see
Stokey et al., 1989). In stochastic dynamic program-
ming, the problem is more difficult due to the mono-
tonicity and the convexity for a transition probabil-
ity, and some conditions for the differentiability and
the concavity of the value function are stated by using
notions similar to the stochastic convexity in stochas-
tic sense in (Atakan, 2003). The stochastic convexity
also arises to solve optimization problems involving
other operational research models, for allocation or
manufacturing as in (Gallego et al., 1993) and (Kim
and Park, 1999); and other problems involving pair-
wise interchange arguments based on the interplay of
this theory with the stochastic majorization of vec-
tors, for scheduling as in (Shanthikumar, 1987), and
(Chang and Yao, 1990) (we refer to the book Marshall
and Olkin, 1979, for majorization concepts). Thirdly,
the stochastic convexity has been a bridge property
into the analysis of the variability of mixture models
with uncertain parameters. The statistical modelling
of the uncertainty constitutes one of the major goals
in experimental studies. Theoretically, a distinction
between the random uncertainty (due to natural con-

ditions) and the epistemic uncertainty (due to the lack
of knowledge of the data) is given in the literature.
This distinction is not so easy in practice. Parame-
ter uncertainty involves both issues, since when fore-
castings are performed by a model often there is a
random component in which some of the conditions
given in the inputs are not controlled and specified
(see e.g., Ang and Tang, 2007). Mixture models with
random parameters, having arbitrary probability dis-
tributions of the marginals, and an arbitrary joint dis-
tribution function to model the dependence structure
of the random vector, provide a non-parametric set-
ting to account for the uncertainty in a broad sense.
We notice that theSI − DCX property of the mix-
ture modelX(θ) when the parameters are held fixed
implies the increasingness and directional convexity
of the expected value of any increasing and convex
function of the parameterized random variableX(θ).
This property leads to variability comparisons of the
mixture modelsX(Θ) for two random vectors of pa-
rametersΘ andΘ′ describing two scenarios, whose
mixing distributions are ordered by the increasing
directionally convex order, see (Shaked and Shan-
thikumar, 2007) for details on the directionally con-
vex orders. Recall that the variability ordering, also
known as increasing convex ordering, (see Muller and
Stoyan, 2002), denoted byX(Θ) ≤icx X(Θ′) means
thatE[φ(X(Θ))] ≤ E[φ(X(Θ′))], for every increasing
convex real-valued functionφ for which the expecta-
tions exist. In particular, if the mixture modelX(Θ)
fulfills the SI −DCX property, then the following re-
lationship holds:

Θ ≤idcx Θ′ ⇒ X(Θ)≤icx X(Θ′) (4)

whereΘ ≤idcx Θ′ denotes the increasing direction-
ally convex ordering, that allows one to compare
the marginal distributions in increasing convex sense,
jointly with the increasingness in positive dependence
of the joint distribution of the random vector (see
Muller and Scarsini, 2001). The decreasing direction-
ally convex order, denoted byΘ ≤ddcx Θ′, is used to
combine less valued with more volatility components.
They belong to the class of multivariate integral or-
ders that are defined by the corresponding property
of the expected value of a functional of the random
vector. Other properties and results on the connec-
tion of the directionally convex orders and the vari-
ability of mixture models can be found in (Ruschen-
dorf, 2005). A first consequence of the relationship
(4) is the construction of distributional bounds for the
mixtureX(Θ) by fixing some values of the parameter
Θ′ or of the random variableX(Θ′). We notice that
the distribution moments are increasing convex func-
tionals of the random variables and can be bounded
by the previous stochastic comparison. Accordingly,
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whenX ≤icx Y and the random variables have equal
means, then it is writtenX ≤cx Y and it implies that
Var(X)≤Var(Y ), whereVar denotes the variance of
the random variable. Hence, the convex ordering pro-
vides an instrument to compare and to quantitatively
evaluate the magnitude and the dispersion of a perfor-
mance measure of a system, under different mixing
distributions of the parameters. Convex risk measures
of the random variable are preserved by this order-
ing. Other convex functions, as the maximal value,
for a sequence of independent and identically dis-
tributed random variables can be bounded by using
the previous relationship (4). Bounds for the mix-
ture modelsX(Θ) from Equation (4) can be derived
also by fixing the dependence structure of the param-
eter vectorΘ. Some dependence concepts allow one
to understand the relationship between the stochastic
convexity and the stochastic dependence of random
vectors of parameters by means of directionally con-
vex orders (see (Joe, 1997) for a general treatment
of the stochastic dependence).Positive quadrant de-
pendence (denoted byPQD) andpositive supermodu-
lar dependence notions involve integral comparisons
with a given random vector with fixed marginals and
independent components. Some examples of bivari-
ate distributions fulfilling thePQD property for some
values of their parameters are given by the Kibbles bi-
variate Gamma, the Moran-Dowton exponential, the
Marshall-Olkin, the F-G-M bivariate exponential and
the Lomax distributions. Nonparametric statistical
tests to check the earlier dependence notion can be
found in (Denuit and Scaillet, 2004) and (Scaillet,
2006).

The first applications of this topic can be
found in the queueing and the stochastic pro-
cesses theories: (Shaked and Shanthikumar
1988a,1988b,1990a,1990b), (Chang et al., 1991),
(Meester and Shanthikumar, 1990,1993). Recent ap-
plications in queueing systems are given in (Chao and
Luh, 2004), (Miyoshi and Rolski, 2004), (Shioda and
Ishi, 2004), (Rolski, 2005), and (Ortega, 2011). The
last article considers routing in queueing networks,
to develop some applications in communication
networks, that we will discuss later. The issue of
stochastic convexity arises recently into the study
of stochastic processes, especially point processes.
At the best of our knowledge, recent results can be
seen in (Miyoshi, 2004), and (Fernandez-Ponce, et
al, 2008a,b). They are involved in the multivariate
stochastic comparisons of some stochastic processes
(see Kulik and Szekli, 2005). The following mono-
graphs include an exhaustive development of the
theory, and/or some detailed applications for selected
operational research problems. Chang et al., 1994

provided applications to the analysis of a random
yield model, a joint setup problem, a manufacturing
process with trial runs, a production network with
constant work-in-process, and a scheduling model
in tandem production lines and parallel assembly
systems. The convexity and the concavity in the
stochastic sense of other measures associated with
production-inventory systems are studied in (Yao and
Zheng, 2002), that includes applications of this the-
ory for quality control with warranty, process con-
trol with inspection of machines for batch production,
and inventory control with substitution, among oth-
ers. Yao (1994,1996) provided surveys with manu-
facturing and production applications. Recent devel-
opments to operational research models can be found
in (Ahn et al., 2005), (Ott and Shanthikumar, 2006),
and (Ortega and Alonso, 2011). Stochastic directional
convexity of random sums of random variables has
been dealt with by (Fernandez-Ponce, et al., 2008a),
(Escudero et al., 2010), and (Ortega and Escudero,
2010), among others. Observe that general results in
the direction of Equation (4), for random sums, can
be found in the last articles. This is a classic problem
for sums and univariate parameters, as can be check in
Makowski and Philips, 1992. Applications have been
depicted for the sums and the random sums in dif-
ferent fields, as for instance, the total claim amounts
under the Sparre-Andersen risk model in actuarial sci-
ence, and the times of systems under shock models
in reliability, etc. The stochastic convexity of some
special linear combinations defined by indicator func-
tions is applied in (Escudero and Ortega, 2008) for the
analysis of reinsurance models for large claims based
on truncation with random retention levels. Other lin-
ear combinations of random variables are studied in
(Ortega, 2010).

3 APPLICATION BASED ON
BIO-INSPIRED MODELS

Current research trends are exploiting the similar fea-
tures between biological systems and complex com-
munication systems to develop techniques in these
fields based on biological schemes. Nature has been
shown to be able to adapt rapidly to environmental
changes, and assemble simple structures into complex
operations. Next, we discuss some models that are
biologically inspired, where the stochastic convexity
properties play an important role.

Multiplicative processes arise in biology and ecol-
ogy to describe the growth of organisms and popula-
tions of species, as protein families, that evolve in a
multiplicative manner, see e.g., (Reed and Hughes,
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2002) from a probabilistic point of view. The main
idea is that the random growth of an organism is ex-
pressed as a percentage of its current actual size. As-
suming that we start with an organism of sizeX0, then
at each stepj, the organism may grow or shrink, ac-
cording to a random variableYj, such that the size of
an organism at stepj is given byX j(θ) = X j−1(θ)Yj.
In financial mathematics, the Black-Scholes option
pricing model, which is a specific application of Itos
lemma, describes the price of a security that moves
in discrete time steps according to the earlier equality,
whereYj is lognormally distributed usually (see e.g.,
Hull, 2002). Some bio-inspired models and networks
have been used to model evolution in computing and
communication systems. Some of these systems are
characterized by strongly dynamic environments and
heterogeneous nodes, among others. Huberman and
Adamic have applied the multiplicative processes to
describe the growth of sites on the web, as well as
the growth of user traffic on web sites (see Huberman
and Adamic, 1999,2000). Mitzenmacher, 2004 used a
similar model to explain the behaviour of both tails of
the distribution of the size of computer files. There is
a vast recent literature on the use of the random prod-
ucts in the study of computer systems. Other applica-
tions of multiplicative processes can be found in hy-
drology, geology, and chemistry (Crow and Shimizu,
1988 and Escudero et al., 2010).

Ortega, 2010 has provided the conditions under
which the multiplicative processes areSI−DCX . Ap-
plications are given there to the analysis of the size of
traffic on web sites. The stochastic convexity of the
size of the trafficX j(θ) with respect to its environ-
mental parameter means that the expected value of
any convex increasing function of the size increases
and behaves componentwise convex and supermod-
ular with respect to its parameter. The main sta-
tistical consequences of this property are described
above from the relationship (4), especially the con-
struction of distributional bounds. For communica-
tion systems, bounds of these measures provide valu-
able insight into the primary factors affecting the per-
formance of systems, as those influencing the sys-
tem bottleneck; and they become useful to elimi-
nate non appropriate options at an early stage of the
analysis. Similar conclusions may be reached for
other bio-inspired adaptive models. Specifically, the
tree networks constitute one of the most useful net-
work topologies, with applications in computer sci-
ence, taxonomy, location, molecular biology, evolu-
tion, and ecology. Ortega, 2011 considers rooted tree
networks and rooted butterfly networks that are mod-
elled by queueing systems, where the items enter at
the root and proceed away until they reach their desti-

nation and exit the system, the arcs of the network are
represented by FIFO servers, and the service times
have arbitrary probability distributions and they cor-
respond to the times needed for an item to cross edges.
TheSI−DCX of the exit time of the itemk from the
queuej in the network is the key property to develop
variability comparisons of departure times and delay
times of the system with a discrete probability distri-
bution for the routing policy and with correlated inter-
arrival times and service times. Bounds for the previ-
ous performance measures are derived as above.

4 CONCLUSIONS

To finish, we emphasize on different advantages of
the concepts of stochastic convexity. Many mea-
sures of the performance of a system are modelled as
mixtures defined by composition of arithmetic func-
tionals of parameterized non-negative random vari-
ables, and these functionals fulfil monotonic direc-
tional convexity properties. Nevertheless, by appro-
priate assumptions for the random components in the
model for fixed parameters; and by using Theorem 3.2
in (Meester and Shanthikumar, 1999), we can state
that the parameterized model is SI -DCX. We recall
that the stochastic directional convexity allows one to
analyze the mixtures without requiring an analytical
expression of the distribution function of the random
variable, and to obtain bounds from the relationship
(4). This makes this theory to become an attractive
alternative to evaluate or to explore the probabilistic
behaviour of the performance measure, when there is
lack of information about the marginal distribution of
the parameters and the correlations among them (pro-
vided that modelling the dependence structure from
empirical data is a rather complex task; and the same
happens for selection of prior distributions to account
for covariates). Also, the definitions of the stochas-
tic convexity properties are set for parameters taking
on values over general spaces in (Meester and Shan-
thikumar, 1999), and this allows versatile scenarios
of parameters. Some related optimization problems,
e.g., to find the maximal value of a performance mea-
sure, can be addressed directly from stochastic con-
vexity properties, by using notions of dependence as
the comonotonicity (see Escudero et al., 2010).
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