
ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED

Ella Roubtsova
Open University of the Netherlands, the Netherlands

Munich University of Applied Science, Germany
ella.roubtsova@ou.nl

ella.roubtsova@hm.edu

Keywords: Separation of concerns, Behaviour models, Semantics, Composition techniques.

Abstract: Model-driven software engineering community faces the problems related to the growing complexity of system
models and their rapid evolution. These problems are similar to the problems of programming. Driven by the
ideas of Aspect-Oriented Programming many modelling techniques were revised in attempts to find their ways
to deal with model complexity and evolution. This paper presents an analysis of existing semantic groups of
modelling approaches, their goals, pros and cons, advantages and restrictions. It is aimed to show the deep
reason of the fact that particular composition semantics combined with the elegant idea of aspect weaving
leads to heavy verification procedures after any change in the AOM model. This analysis reveals the elements
of modelling semantics that simplify the verification procedures in AOM.

1 INTRODUCTION

Model-driven software engineering community faces
the problems related to the growing complexity of
system models and their rapid evolution. The an-
alysts (Chwif et al., 2000) name many reasons for
model complexity starting from the “show off” fac-
tor, the “possibility” to execute complex model on
powerful computers and ending with the “lack of un-
derstanding of the real system” and “unclear mod-
elling objectives”. Although it is universally acknowl-
edged that the simplest model is the most beautiful
one (Robinson, 1994), there are inescapable reasons
for model complexity. The modelled system cov-
ers several interfering and non-localizable problem
frames (Jackson, 2005) and the validity and complete-
ness of the model may depend on the coverage of rel-
evant problem frames.

The non-localizable problem frames in models
are often called aspects following the terminology
of Aspect-Oriented Programming (AOP). The mod-
elling approaches that have the goal to separate as-
pects in models and then compose them into the com-
plete model or produce the behaviour of the complete
model, form the research area called Aspect-Oriented
Modelling (AOM).

This paper presents a survey of existing semantic
groups of aspect-oriented approaches to identify and

explain their goals, abilities and restrictions. There
are many AOM surveys, for example (Reina et al.,
2004), (Chitchyan et al., 2005), (Op de beeck et al.,
2006), (Reddy et al., 2006) and (Schauerhuber et al.,
2007). These surveys mostly analyze the UML-based
approaches. The deviations of semantics is not the
point of attention. The criteria of comparison are of-
ten of practical nature such as the position of the ap-
proach within the full life cycle, evaluation of gran-
ularity and scalability. The aim of this paper is dif-
ferent. It is aimed to show the deep reason of the
fact that particular composition semantics combined
with the elegant idea of aspect weaving leads to heavy
verification procedures after any change in the AOM
model. This analysis reveals the elements of mod-
elling semantics that simplify the verification proce-
dures in AOM.

The reminder of the paper is the following. Sec-
tion 2 briefly presents the achievements of AOP.
Section 3 observes the semantic groups of Aspect-
Oriented Modelling approaches on the basis of the
used composition techniques and explains the appli-
cability and restrictions, PROS and CONS of those
groups of AOM approaches. Section 4 draws conclu-
sions and identifies the semantic elements that pro-
vide the necessary flexibility and may result in a
breakthrough in the line of heavy design approaches.

13
Roubtsova E.
ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED.
DOI: 10.5220/0004458100130024
In Proceedings of the First International Symposium on Business Modeling and Software Design (BMSD 2011), pages 13-24
ISBN: 978-989-8425-68-3
Copyright c© 2011 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 ACHIEVEMENTS OF AOP

It was recognized by (Cardone and Lin, 2004) that
the difficulties with separation of concerns in AOP
were caused by the composition support of the main-
stream object-oriented programming languages that
“restricted to single inheritance and subtype polymor-
phism”. For example, there are three possible ways
to organize two features A and B. into classes: (1)
put them in the same class, (2) make A a subclass of
B, (3) make B a subclass of A. The first two choices
force B to be included whenever A is included. By
forcing to choose a single fixed hierarchy orthogonal
composition of features is restricted. “As the number
of features grows, this problem becomes more severe,
because the number of possible feature combinations
grows rapidly, but the number of feature combinations
that can be practically supported does not”.

In order to solve this problem, Aspect-Oriented
Programming (AOP) invented a modular unit called
aspect to implement a crosscutting concern. This unit
contains an advice in form of a code presenting a
concern and pointcut designators being the instruc-
tions on where, when and how to invoke the advice.
The well defined places in the structure of a program
where an advice should be attached were named join
points. The join point model, using method calls as
join points, were generally accepted (Filman et al.,
2004) and implemented as extensions of program-
ming languages. Such extensions gave a new task for
compilers to produce the code with hard woven as-
pects. Another branch of AOP developed middleware
able to fulfil run-time aspect composition without pro-
ducing the code of the complete program.

The base programs used for weaving aspects
are designed to be oblivious (Filman and Friedman,
2004) to aspects. The advantage of this feature is
that ”Concerns are separated not only in the struc-
ture of the program but also in heads of their cre-
ators”. The disadvantage is that the systems ”melded
from separate minds” can only function if the proper-
ties of aspects are preserved in the composed system.
This preservation has not been achieved in AOP, al-
though this is an active research area (Kiczales and
Mezini, 2005). Current AOP techniques allow pro-
ducing spectative, regulative and invasive categories
of aspect (Katz, 2006). Spectative aspect can change
the values of variables local to the aspect, but can’t
change the value of any variable of other aspects and
the flow of method calls. Regulative aspects affect
the flow of control by restricting operations, delay-
ing, or preventing the continuation of a computation.
Invasive aspects change the values of variables in the
underlying program. In case of invasive aspects no

guaranty can be given about preserving of dynamic
properties of the underlying program.

3 AOM AND MODELLING
SEMANTICS

The complexity problems caused by the non-
localizable overlapping concerns was identified in
AOP and AOM was trying to map the findings of AOP
on models and understand the borders of application
of the AOP solutions. The AOM started with mod-
elling and analysis of AOP programs. The next step
was to evaluate the ability of existing modelling tech-
niques to capture aspects and compose them. This re-
search activity resulted in two streams of approaches.
The dominant stream localizes concerns at the mod-
elling level but do not simplify model analysis. There
are approaches that also localize reasoning on concern
models about the behaviour of the whole model.

3.1 Revision of Sequence Diagrams

The sequence diagrams were the first group of mod-
elling notations revised for the AOM purposes.

A set of sequence diagrams with conventional se-
mantics is aimed to present only a part of possible se-
quences of system behaviour. Sequence diagrams are
mostly used to illustrate behaviour of programs and
therefore use operation calls and returns as elements
of behaviour. The composition techniques used in se-
quence diagrams are restricted to sequential composi-
tion, alternatives, cycles and insertion of sequences.

For the AOM needs the conventional sequence
diagrams were extended with Join Point Designa-
tion Diagrams (JPDD) (Stein et al., 2005). An
advice behaviour and the join points of this ad-
vice are specified with different sequence diagrams.
JPDDs are modelling means to graphically repre-
sent join point queries on sequence diagrams. Fig-
ure 1 borrowed from (Stein and Hanenberg, 2006)
shows the sequence diagrams presenting a join point
and an advice-sequence of an aspect “Access con-
trol policy” that prescribes that the owner manage-
ment data are used to ensure that particular units
(i.e. tasks, contacts, or appointments) are modi-
fied or viewed by their proper owner. The advice
presented with the diagram a f terAdvice DenyAccess
is executed when one of the join points speci-
fied with wildcards move|setProgress|setPriority is
called. The information about the current user is ob-
tained getCurrentUser() and compared with the in-
formation about the owner of the item. If the current

BMSD 2011 - First International Symposium on Business Modeling and Software Design

14

aspect Authorization(){
pointcut restrictAccess(PIMUnit pimUnit):

(call(* Appointment.move(..)) ||
call(* Task.setProgress(..)) ||
call(* Task.setPriority(..))) && target(pimUnit) &&
if(!pimUnit.getOwner().equals(PIMSystem.getCurrentUser())

|| (PIMSystem.getCurrentUser()== null));

void around(PIMUnit pimUnit) : restrictAccess(pimUnit) {
System.out.println("Access Denied!") ;

}

Figure 1: JPDD model.

user is not the owner currentUser!−<?owner > then
the access is denied.

The sequence diagrams with JPDDs imitate
aspect-oriented programs. The composition of
sequences presenting the base behaviour, advice
and join points is implemented as a compiler task.
As the sequence diagrams are close to the notation
of aspect-oriented languages, the code is generated
from them. As sequence diagrams present partial
behaviour of the system, then result of their composi-
tion is a partial code.

- PROS: The AOM version of sequence diagrams with
JPDDs supports more compact presentation of as-
pects than the conventional sequence diagrams. Mod-
els of join points become reusable artefacts. Ability

to present aspects with sequence diagrams eases evo-
lution of sequence diagrams.
- CONS: Understanding of models and reasoning on
models presented with AOM sequence diagrams with
JPDDs become more difficult than understanding and
reasoning with plain sequences diagrams. It is mostly
because the weaving of aspects should be done in hu-
man heads. However, with tool support, the aspects
are woven into base sequences and presented to the
designers for understanding and linear reasoning.

Although sequence diagrams are found to be very
intuitive means for behaviour modelling, their main
issues still remain. Namely, even in combination
with class diagrams sequence diagrams are not able to
present complete behaviour of complex business sys-
tems having infinite set of traces. Moreover, sequence

ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED

15

diagrams with JPDDs use the same composition tech-
niques as the AOP programs and cannot prevent spec-
ification of invasive aspects, i.e. they cannot prevent
changes of attribute values of one object or aspect by
another aspect.

3.2 Reuse and Revision of Workflows

Activity and workflow based approaches are aimed to
specify complete system behaviour that can be ana-
lyzed and verified against required properties. The
workflows are often used in AOM approaches as inte-
gration means to combine specified aspects. There are
also AOM approaches that define fragments of work-
flows and compose workflow fragments into the com-
plete workflow.

Workflows for Integration. The Theme (Clarke
and Baniassad, 2005) approach is a good example of
the first type of workflow use. At the level of require-
ments a designer identifies actions as verbs in tex-
tual requirements. Each action potentially becomes
a theme depicted as a rhomb (Figure 2). The ac-
tions have relations via concepts depicted as paral-
lelograms with rounded corners. Actions found in
different themes become potential aspects. An ac-
tion view of each theme is a graph that contains ac-
tions and entities. The size of this view grows with
the number of entities and actions in the model. The
scalability is achieved by the separation of major and
minor actions. “Major actions become themes, while
minor actions are slotted to become methods within
a theme” (Baniassad and Clarke, 2004). This means
that the major actions in the Theme approach are not
elementary, they are activities. The elements of be-
haviour are method calls and returns.

The action view is analyzed to produce the
Theme/UML specification of actions-aspects as com-
bination of class and sequence diagrams. The De-
sign level Theme/UML supports modelling of as-
pects in UML. Theme/Doc views are mapped onto
the Theme/UML model allowing traceability of re-
quirements. If a Theme/action is reused in the model,
the join points are specified in the Theme/UML view.
Figure 2 shows that Themes register and logged iden-
tified in the workflow are specified as combinations of
class and sequence diagrams called <theme>Register
and <theme>Logger. In this case the methods of
themes register, unregister and give should be spec-
ified as join points of the <theme>Logger.

The action view “drives composition semantics
for design in Theme/UML”. The composition tech-
niques are concatenation and hierarchy of Major
and Minor actions. From the Theme/UML and

Theme/Doc specifications the corresponding compu-
tation tree can be generated and may be compared
with the workflow built at the level of requirements.
For example, such approach as GrACE (Graph-based
Adaptation, Configuration and Evolution) (Ciraci
et al., 2009) uses different graph transformation
techniques in order to compose behaviours presented
by class, sequence diagrams and the action view in
the corresponding computation tree of the designed
system and apply model checking and verification
algorithms to analyse the properties of the system.

- PROS: In addition to conventional activity diagrams
Workflow diagrams in Theme/UML separate aspects
and minor actions to increase the abstraction level and
decrease the size of workflows.
- CONS: The used composition techniques, namely
concatenation and hierarchy of activities, make it im-
possible to add new aspect models at the requirements
level without verification of the complete model. The
evolution of the model is handled by re-generating the
views for any new set of requirements. Reasoning on
models does not become easier as the minor actions
are specified by sequence diagrams, but the composi-
tion of them as a workflow. Reasoning demands rel-
atively heavy procedures of building the computation
tree, reachability analysis and verification of dynamic
properties.

Composed workflows. Another direction in the use
of workflow semantics for aspect-oriented modelling
is specifying fragments of a workflow and then com-
posing them into the complete workflow. The com-
position techniques used in workflows are restricted
to concatenation and hierarchical inclusion of frag-
ments.

The ADORE approach (Mosser et al., 2010) (Ac-
tivity moDel supOrting oRchestration Evolution) re-
examines the Business Process Execution Language
(BPEL) to enable separation of concerns.

An orchestration of services is defined in ADORE
as a partially ordered set of activities. The types of
activities that can be defined in ADORE include ser-
vice invocation (denoted by invoke-inv), variable as-
signment (assign-a), fault reporting (throw-t), mes-
sage receiving (receive- rcv), response sending (reply-
rp), and the null activity(nop), which is used for syn-
chronization purpose (Figure 3).

Each process (fragment) corresponds to a specific
concern and uses a partial point of view on its target.
A fragment contains special activities, called prede-
cessors P, successors S and a hook (assimilated as a
proceed in AspectJ) that represents a part of a trace
where the fragment is connected into an existing or-

BMSD 2011 - First International Symposium on Business Modeling and Software Design

16

Theme/Doc

Theme/ UML

Theme/ UML

Figure 2: Theme model.

P

t (c) := survSys:canCover(infor.loc)

a12 (feedID := survSys:activatevidea(infor, loc)

Sh hook(info)

c

a3 ui ::= displayVideoFeed(user, feedId)

Figure 3: ADORE model. Fragment requestVideo<user>.

chestration. The hook predecessors (P) are the im-
mediate predecessors of the first activity in the target
block, and the hook successors (S) are the immediate

successors of the last activity in the block.

Fig. 3 describes the following behaviour. After
the execution of the hook predecessors (P), perform
the activity block referred to by (h) and then continue
with the hook successors (S). The vertical branch of
the fragment represents the additional behaviour. In
parallel to the behaviour described by the hook (h) the
system first determines if the surveillance system can
cover the crisis area (t). If this functionality is avail-
able for this location, the process requests a video
feed (single ADORE activity a12) and then broadcasts
it to the Coordinator interface (a3).

The binding instructions are specified in a separate
file. For example, the fragment from Fig. 3 can be
bound on the block of activities

a3 : cms : buildchecklist(i)

ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED

17

Whilst
On

GoTo<<aspect>>
WhilstOnDoTo

<<Whilst>>
[trigger=On]

Whilst

<<pointcut>>

<<advice>>

goto GoTo

Whilst
On
Do

GoTo

<<aspect>>
WhilstOnDoTo

<<Whilst>>
[trigger=On]

Whilst

<<pointcut>>

<<advice>>

goto GoTo
/Do

Before
if

Do
GoTo

<<aspect>>
WhilstOnDoTo

<<Before>>

Before

<<pointcut>>

<<advice>>

goto GoTo

[If]

/Do

When state Whilst is active,
if On is the current event,

go to state GoTo

Before activating state Before,
if condition If is true,

Execute action Do and go to state GoTo

When state Whilst is active,
if On is the current event,

execute action Do and go to state GoTo

Figure 4: HiLA patterns.

and

a4 : (ci)ui := promptchecklist(coord, id,cc1)

of the base orchestration. The predecessor of a3 is
assigned to P, the successor of a4 is assigned to S
and the hook is assigned to {a3,a4}. The complete
orchestration is generated from fragments according
to the binding instructions.

As with such an approach there is no guarantee
that any particular local properties of aspects are
propagated to the complete orchestration, the side
effects of separating of concerns and composition
in ADORE are formulated as rules. The violating
of rules not always signals about a mistake, this
may indicate a ”bad-smell”, like, for example, the
non-determinism caused by two conditions evaluated
to false at the same time. The ”bad-smells” are
analyzed by the designer of the orchestration.

- PROS: ADORE extends BPEL with means for mod-
elling of aspects. Models become closer to require-
ments.
- CONS: The composition techniques in workflows
cause the need of re-generating and ”bad-smells”
re-analyzing of the complete orchestration after any
change or adding any new fragment. Reasoning on
models is not localized and demands reachability
analysis and theorem proving.

3.3 Revision of State Machines

A UML Behaviour State Machine (BSM) (OMG,
2003) usually presents behaviour of one classifier.

Before
if

Do
GoTo

<<aspect>>
CoordinatorLogin

<<Before>>

Idle

<<pointcut>>

<<advice>>

[coordinator==null]

Login

Op ->validateCoordinator()

Figure 5: HiLA model of the Login Concern.

The execution semantics of BSM (McNeile and
Roubtsova, 2009) is complex, involves a queue or a
stack of active events and rules of their handling or
keeping in the queue until the state is appropriate for
their handling.

There are several approaches revising Behaviour
State Machines (BSM) trying to extend behaviour
specified by BSM for one classifier. The approach by
(Mahoney et al., 2004) exploits the AND-composition
of several independent (orthogonal) statecharts de-
fined by D.Harel (Harel and Gery, 1997). ”The key
feature of orthogonal statecharts is that events from
every composed statechart are broadcast to all oth-
ers. Therefore an event can cause transitions in two
or more orthogonal statecharts simultaneously” (Ma-
honey et al., 2004).

BMSD 2011 - First International Symposium on Business Modeling and Software Design

18

The ideas proposed by Mahoney et al. were fur-
ther developed in the approach called High-Level As-
pects (HiLA) (Hölzl et al., 2010). HiLA modifies the
semantics of BSM allowing classifiers to apply ad-
ditional or alternative behaviour. Aspects extend the
behaviour specified for classifiers.

The basic static structure usually contains one or
more classes. Each base state machine is attached to
one of these classes and specifies its behaviour. HiLA
offers two kinds of aspects to modify such a model.
Static aspects directly specify a model transformation
of the basic static structure of the model. Dynamic
(high-level) aspects only apply to state machines and
specify additional or alternative behaviour to be ex-
ecuted at certain ”appropriate” points in time in the
base machines execution.

HiLA introduces patterns for specification of dy-
namic aspects (Figure 4). A pattern Whilst always
has an annotation Trigger = e. ”Conceptually it se-
lects the compound transition from State∗ to State∗∗

with trigger e, but if this transition does not exist, it is
created.” This means that an aspect is added while an
action is in the stack of active actions.

A pattern labelled with Before selects each tran-
sition T entering any state contained in State∗, but
only in active state configurations where after tak-
ing T all states in State∗∗, will become active”(Hölzl
et al., 2010). An aspect may extend the behaviour of
a class or introduce a new class to the specification.

Figure 5 shows the aspect validating if the
Coordinator is logged in. The aspect is taken from
the model of a crisis management system (Holzl1
et al., 2010). Before the Idle state of system becomes
active, the system checks whether the coordinator is
not logged in (coordinator == null). If this is the
case, the Login sub-state machine is triggered and
operation validateCoordinator() becomes possible.
The aspect is regulative, it changes the flow of control
in the base state machine.

- PROS: HiLA patterns support specification of as-
pects in BSM.
- CONS: Evolution of models and reasoning on them
do not become easier. Active objects represented with
classifies with aspects and new aspect classes execute
asynchronously resulting in non-deterministic system
behaviour. HiLA uses formal methods of model val-
idation. The application of aspects to BSM results
in another UML state machine which is analyzed us-
ing the model checking component of Hugo/RTmodel
checking tools. Hugo/RT translates the state machine
and the assertions into the input language of a back-
end model checker SPIN. SPIN then verifies the given
properties presented in Linear Temporal Logic.

3.4 Revision of Design by Contract

The search of composition techniques suitable for
AOM led to the new look at the set-theory composi-
tion. Such approaches as Package Merge (Ammour
and Desfray, 2006) and Visual Contract Language
(VCL) (Amálio and Kelsen, 2010) explore the declar-
ative way of aspect specification based on composi-
tion of sets.

VCL revises the Design By Contract (DbC) prin-
ciple. An element of behaviour is an operation. Ac-
cording to the DbC (Meyer, 1991) the pre-conditions
and post-conditions have to be defined for any speci-
fied behaviour.
- If the precondition is satisfied then the result of the
corresponding behaviour is defined. It satisfies the
post-condition.
- If a precondition is violated, the effect of the corre-
sponding behaviour becomes undefined.
This means that only the non-interactive part of be-
haviour that takes place, when the preconditions are
not violated, can be composed and analyzed. VCL
inherits this property of DbC.

A VCL model is organized around packages,
which are reusable units encapsulating structure and
behaviour. Packages represent either a traditional
module or an aspect. VCL’s package composition
mechanisms allow larger package to be built from
smaller ones. A package is denoted by a cloud. In
Figure 6 package Authentication Ops extends pack-
age Authentication. A package encapsulates state and
behaviour in form of attributes and operations. Pack-
age Authentication Ops contains operations Login and
Logout.

Ordinary packages define global state. Abstract
packages do not define global state, they act as con-
tainers for state structures and their local behaviour to
be used in other packages.

VCL behavioural diagrams (BDs) identify the op-
erations of a package. There are two types of oper-
ations: update and observe (or query). Update oper-
ations perform changes of state in the system; they
involve a pair of states: before-state (described by
pre-condition) and an after-state (described by post-
condition). They are defined in VCL contract dia-
grams. Figure 6 shows examples of VCL contract di-
agrams for LogIn and LogOut operations that belong
to the package Authentication Ops.

Aspects are composed using join extensions,
which is illustrated in Figure 7. In a join extension,
there is a contract that describes the joining behaviour
of an aspect (a join contract) that is composed with
a group of operations placed in a join-box. All op-
erations of package CrisisWithJI are conjoined with

ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED

19

AuthenticationOps

Authentication

Login Logout

u?

loggedOut

status

pw?
pw

u? 0
pwMisses

loginOkr!

u? : User

pw? : Password

r!: LoginResult

LogInOk Logout

u? : User

status

u?

loggedIn

status

u?

loggedOut

loggedIn

status

Figure 6: Packages in VCL.

join contracts LoggingOp, SessionMgmtOp and Au-
thorisationOp. Join contract AuthorisationOp speci-
fies the extra behaviour of the Authorisation concern
by adding an extra pre-condition to all operations of
package CrisisWithJI; this specifies that the users ex-
ecuting operations of package CrisisWithJI must be
logged-in and have the required permissions to exe-
cute that task.

VCL is designed with a formal Z semantics and
so it has the potential for verification and global
reasoning using theorem proving.

- PROS: The VCL extends the DbC approach by
visual means to capture aspects. Modelling of pack-
ages is simple. It demands only knowledge of the set
theory and predicate logic.

- CONS: The use of the DbC does not allow lo-
calizing of reasoning on aspects about behaviour of
the whole model. Verification of the complete model
is needed after every modification in the number and
the content of aspects.

3.5 Revision of Mixins

Mixins are applied in the Protocol Modelling ap-
proach defined by McNeile and Simons (McNeile and
Simons, 2003). A protocol model of a system is
a composition of protocol machines. Protocol ma-
chines are partial descriptions of class behaviours.
The composition operator for protocol machines is a
variant of the parallel composition operator defined
by Hoare (Hoare, 1985) in his process algebra Com-
munication of Sequential Processes (CSP). This oper-
ator was extended by McNeile and Simons (McNeile

and Simons, 2003) for machines and events with data.
A protocol machine has its own alphabet of recog-

nized events and a local state. An event type is spec-
ified as a data structure (Figure 8). An event instance
contains values of the attributes.

The local state of a machine is presented as a set
of own attributes and attributes derived from the state
of other machines. A machine can read the state of
other machines but cannot alter it. The derived states
should not be topologically connected. They are al-
ready spectative aspects inside of protocol machines.

Moreover, a machine has a set of transitions being
triples (state, event, state). Events are presented to the
model by the environment. Being in a suitable state,
a protocol machine accepts the presented event, oth-
erwise it refuses the event. A protocol model handles
one event at a time and reaches a well defined qui-
escent state between each event. An element of be-
haviour is an accepted event. The behaviour of a pro-
tocol model is a set of sequences of accepted events.

Protocol machines use the CSP parallel compo-
sition algorithm to form more complex protocol ma-
chines. This is the description of the CSP parallel
composition algorithm:
- If all machines of the protocol model having an event
in their alphabet accept the event, the protocol model
accepts it.
- If at least one of protocol machines having this event
in its alphabet refuses the event, the composition of
machines refuses it.
So, the semantics of refusal which is absent in other
modelling semantics (BSM, workflows, sequence di-
agrams and contracts) is the key to synchronization
and CSP parallel composition.

BMSD 2011 - First International Symposium on Business Modeling and Software Design

20

CrisisWithAspects

AuthorisationCCCMSCrisisWithJI

LoggingCCCMS SessionMgmtCCCMS

↑CrisisOp

UserLoggedInAndHasPerm [t?/t!]

AuthorisationCCCMS

AuthorisationOp

cu? : User

AuthorisationOp

CrisisOp

LoggingOp

CrisisOp

All CrisisWithJI

SessionMgmtOp

Join

Figure 7: Aspect Composition in VCL.

It is recognized in (McNeile and Roubtsova, 2008)
that protocol machines are natural abstractions to
specify aspects. For example, a protocol model of a
bank Account and a Customer is shown in Figure 8.
Behaviours of both objects include and equally com-
pose behaviours of aspects Freezing and Freeze Con-
trol. These aspects model the possibility to freeze
the behaviour of an account or a customer. The
INCLUDE-relation shown as a half-dashed triangle
gives to Protocol Models the expressiveness of multi-
ple inheritance. Behaviours of aspects are instantiated
with instantiation of objects, each of which has its ob-
ject identifier.

All behaviours are equally composed on the ba-
sis of the CSP parallel composition as shown in Fig-
ure 9. A new registered Customer and a new open
Account are not-frozen. A bank security service may
freeze both an Account and(or) a Customer submit-
ting events Freeze.Customer and(or) Freeze.Account.
Then such an Account or Customer transits to state
Frozen. A Frozen behaviour cannot accept any event.
Its state is derived from the instances of the behaviour
Freezing included into the objects Account and Cus-
tomer correspondingly.

A join point in protocol model is a set of events or

states that can be seen identical in the context a par-
ticular protocol machine.
For example, the join point Generic Operate matches
events Deposit, Withdraw, Transfer, Leave, and Close
and any of these events can be accepted only in state
Freeze Not Active which is derived from state not
Frozen.

The proof presented in (McNeile and Roubtsova,
2008) shows that the CSP parallel composition
of Protocol Machines guarantees preservation of
ordering of traces of aspects in the whole specifi-
cation. This property is called local reasoning or
observational consistency (Ebert and Engels., 1994).
It simplifies reasoning on models as the traces can
become longer or shorter but the order of events
will be never changed. For example, trace Open,
Withdraw, Freeze Account is a trace of the compo-
sition of Freezing and Account, but the sub-trace
Open, Withdraw is a valid trace of Account. Small
and deterministic protocol machines are verified
or tested by direct execution. Then the syntactic
checks of specifications of join point are sufficient
for verification of the whole model.

- PROS: Protocol machines with generic events and

ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED

21

Customer

Register

Date,
Customer OId,
Full Name,
Address

Leave

leftregistered

Open, Deposit, Withdraw,
Transfer [Source, Target]

Account

Open

Store:
Balance=0,
Customer OID

Close

closedactive

Deposit,
Withdraw,

Freezing Freeze Control

Operate
Freeze

Not
active

Open,
Register

Freeze Account,
Freeze Customer

Frozen
not

Frozen

Withdraw, Transfer [Source, Target]

Events:
Register
Date:Date
Customer OID: Customer
Full Name: String
Address: String
Leave
Date:Date
Customer OID: Customer
Reason: String
Open
Date:Date
Owner OID: Customer
Account: String

State Function:
If state=“not-frozen”
return “Freeze
not active”;
else return “Frozen”;
Join Point
Specification:
Generic Operate
matches Deposit,
Withdraw, Transfer,
Leave, Close

Freezing

INCLUDE

INCLUDE

Events:
Close:
Date o: Date
Account: OID :Account
Freeze:
Date of Freeze: Date
Account: OID :Account
Reason: String
Release:
Date of Release: Date
Account: OID :Account

Events:
Deposit:
Date of Deposit: Date
TargetOID :Account
Amount: Currency
Withdraw:
Date of Withdraw: Date
SourceOID :Account
Amount: Currency
Transfer:
Date of Transfer: Date
Source: OID :Account
Target: OID :Account
Amount: Currency

Figure 8: Protocol Model.

states and the synchronous composition are natural
means for modelling of aspects. The CSP parallel
composition provides flexible support for model evo-
lution. Protocol machines are not hierarchical, they
are equally composed. The composition operator
guarantees preservation of behaviour and properties
of aspects in the behaviour of the whole system.
- CONS: The understanding of a protocol model is not
very intuitive. It takes some time to begin freely ap-
ply the CSP parallel composition. However, the tool
Modelscope1 supports execution and understanding
of protocol models.

1http://www.metamaxim.com/pages/download.htm

Bank Account with Customer and Freezing Aspects

<<Object>>

Account

<<Object>>

Customer

<<Aspect>>

Freezing

<<CSP parallel composition>>

<<Aspect>>

Freeze Control

Figure 9: CSP composition of Protocol Machines.

4 CONCLUSIONS

Models should have higher abstraction level than pro-
grams and may more freely experiment with compo-

BMSD 2011 - First International Symposium on Business Modeling and Software Design

22

sition techniques unavailable in the main stream mod-
elling languages. However, the composition tech-
niques of many modelling techniques nowadays does
not deviate from composition forms available in dom-
inant programming languages. These languages are
designed to cover asynchronous communication and
have restricted means to deal with shared data. That
is why it is not a surprise that the extension of
models with the aspect building constructions causes
the same problems as in aspect-oriented programs.
Namely, such AOM models do not prevent specifica-
tion of invasive aspects, do not guarantee local reason-
ing and have to be globally verified after every modi-
fication. Using AOM approaches with the same com-
position techniques as in programs we just move the
complexity from models to analysis techniques and
tools and rely heavily on results of this analysis. As
the models are subject of frequent changes, after any
new change the analysis should be repeated. This de-
pendence on analysis and verification after any step
of modelling slows down the modelling process, re-
stricts the number of demonstrations of the model to
the client and makes the modelling process inflexible.

However, the understanding of the nature of as-
pects can simplify the analysis. Aspect-abstractions
exist at the same level as objects and they are not dis-
tributed from object. Therefore they need synchro-
nization with objects and access to shared data. The
lessons learned from the analysis of aspect-oriented
modelling approaches trying to use asynchronous
composition for aspects shows that approaches con-
fuse aspects and other abstraction sorts. Each type of
abstraction should be used on its own place. Aspects
and objects present problem frames, share data and
communicate synchronously. The distributed compo-
nents or services built from aspects and objects com-
municate asynchronously (Roubtsova and McNeile.,
2009). Such separation will simplify the AOM analy-
sis.

The mixin-based group of AOM approaches offers
to AOM a synchronous and agile way of modelling.

• The semantic restriction when one machine can-
not alter the state of other machines makes it im-
possible to specify invasive aspects.

• Using sets of events and states as join points is
more abstract and technology independent than
using operation calls and returns.

• Derived states provide unlimited weaving abstrac-
tions.

• Determinism of machines is assured by the con-
cept of quiescent states.

• The CSP parallel composition technique guaran-
tees the property of local reasoning on aspects

about the behaviour of the whole system. The lo-
cal properties of mixins survive their composition
and are preserved in the whole behaviour of the
system.
As a consequence of local reasoning, analysis and
execution of mixin-based models does not require
generation of the complete model or a computa-
tion tree after adding/removing/changing of as-
pects.
The semantics of event refusal splits the global
computation tree into sets of traces of woven pro-
tocol machines. The traces of the whole model are
generated on the fly by a tool or a middleware im-
plementing CSP parallel composition algorithm.

• All these features reduce the analysis of mixin-
based models to verification or testing of separate
machines and syntactic checks of specification of
join points.

As the proposed semantics is notation indepen-
dent and it can be applied in many approaches, the
next step is to apply it and investigate the implemen-
tation of systems in mixin-based and object-oriented
languages. Most probably that offering of a CSP par-
allel composition middleware service will result in a
new group of aspect-oriented languages.

ACKNOWLEDGEMENTS

The author thanks all participants of the workshops
ABMB’05, ABMB’06, AOM’08, BM-MDA’09,
AOM’10 in Bellairs, and BM-FA’10 for fruitful dis-
cussions of different modelling approaches.

REFERENCES

Amálio, N. and Kelsen, P. (2010). VCL, a Visual Language
for Modelling Software Systems Formally. In Dia-
grams, pages 282–284.

Ammour, S. and Desfray, P. (2006). A Concern-based
Technique for Architecture Modelling Using the UML
Package Merge. M.Aksit and E.Roubtsova eds. Pro-
ceedings of ABMB2005, ENTCS, 163(1):7–18.

Baniassad, E. and Clarke, S. (2004). Theme: An Approach
for Aspect-Oriented Analysis and Design. ICSE 2004.
Proceedings. 26th International Conference on Soft-
ware Engineering. IEEE, pages 158–167.

Cardone, R. and Lin, C. (2004). Using Mixin Technol-
ogy to Improve Modularity. Aspect-Oriented Software
Development. R.Filman, T.Elrad, S.Clarke, M.Akşit
eds.Addison-Wesley, pages 219–241.

Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alar-
con, M., Bakker, J., Tekinerdogan, B., Clarke, S., and

ASPECT-ORIENTATION IN MODELLING: LESSONS LEARNED

23

Jackson, A. (2005). Survey of Aspect-Oriented Anal-
ysis and Design Approaches. Technical Report D11
AOSD-Europe-ULANC-9, AOSD-Europe.

Chwif, L., Barretto, M. R. P., and Paul, R. (2000). On sim-
ulation model complexity. In WSC ’00: Proceedings
of the 32nd conference on Winter simulation. Society
for Computer Simulation International.

Ciraci, S., Havinga, W. K., Aksit, M., Bockisch, C. M., and
van den Broek, P. M. (2009). A Graph-Based As-
pect Interference Detection Approach for UML-Based
Aspect-Oriented Models. Technical Report TR-CTIT-
09-39, Enschede.

Clarke, S. and Baniassad, E. (2005). Aspect-Oriented Anal-
ysis and Design: The Theme Approach. Addison Wes-
ley.

Ebert, J. and Engels., G. (1994). Observable or invocable
behaviour-you have to choose. Technical report. Uni-
versitt Koblenz, Koblenz, Germany.

Filman, R., Elrad, T., Clarke, S., and Akşit, M. (2004).
Aspect-Oriented Software Development. Addison-
Wesley.

Filman, R. and Friedman, D. (2004). Aspect-Orineted Pro-
gramming is Quantification and Obliviosness. Aspect-
Oriented Software Development. Addison-Wesley,
pages 21–35.

Harel, D. and Gery, E. (1997). Executable Object Modelling
with Statecharts. IEEE Computer, 30(7), pages 31–42.

Hoare, C. (1985). Communicating Sequential Processes.
Prentice-Hall International.

Hölzl, M. M., Knapp, A., and Zhang, G. (2010). Mod-
eling the Car Crash Crisis Management System Us-
ing HiLA. T. Aspect-Oriented Software Development,
7:234–271.

Holzl1, M., Knapp, A., and Zhang, G. (2010). Modeling
the car crash crisis management system using HiLA.
S. Katz et al. (Eds.): Transactions on AOSD VII, LNCS
6210, pages 234–271.

Jackson, M. (2005). Problem frames and software engineer-
ing, volume 47. Butterworth-Heinemann.

Katz, S. (2006). Aspect Categories and Classes of Temporal
Properties. Transactions on Aspect-Oriented Software
Development, LNCS 3880, pages 106–134.

Kiczales, G. and Mezini, M. (2005). Aspect-Oriented Pro-
gramming and Modular Reasoning. Proc. of the Inter-
national Conference on Software Engineering, pages
49–58.

Mahoney, M., Bader, A., Elrad, T., and Aldawud, O.
(2004). Using Aspects to Abstract and Modularize
Statecharts. In the 5th Aspect-Oriented Modeling
Workshop In Conjunction with UML 2004.

McNeile, A. and Roubtsova, E. (2008). CSP parallel com-
position of aspect models. AOM’08: Proceedings of
the 2008 AOSD Workshop on Aspect-Oriented Model-
ing, pages 13–18.

McNeile, A. and Roubtsova, E. (2009). Composition se-
mantics for executable and evolvable behavioral mod-
eling in MDA. In BM-MDA ’09: Proceedings of

the 1st Workshop on Behaviour Modelling in Model-
Driven Architecture, pages 1–8, New York, NY, USA.
ACM.

McNeile, A. and Simons, N. (2003). State Machines as
Mixins. Journal of Object Technology, 2(6):85–101.

Meyer, B. (1991). Design by contract. Advances in Object-
Oriented Software Engineering, eds. D. Mandrioli
and B. Meyer, pages 1–50.

Mosser, S., Blay-Fornarino, M., and France, R. (2010).
Workflow Design Using Fragment Composition - Cri-
sis Management System Design through ADORE. T.
Aspect-Oriented Software Development, 7:200–233.

OMG (2003). Unified Modeling Language: Superstructure
version 2.1.1 formal/2007-02-03.

Op de Beeck, S., Truyen, E., Boucke, N., Sanen, F., By-
nens, M., and Joosen, W. (2006). A study of aspect-
oriented design approaches. Technical Report CW435,
Department of Computer Science, Katholieke Univer-
siteit Leuven.

Reddy, R., Ghosh, S., France, R., and Straw, B. (2006).
Directives for composing aspect-oriented design class
models. Transactions on AOSD, LNCS 3880 , pages
75–105.

Reina, A. M., Torres, J., and Toro, M. (2004). Separating
Concerns by Means of UML-profiles and Metamodels
in PIMs. In Proc. of the 5th Aspect-Oriented Modeling
Workshop (UML04), Lisbon, Portugal.

Robinson, S. (1994). Successful simulation: A practical ap-
proach to simulation projects. McGraw-Hill, Maiden-
head,UK.

Roubtsova, E. and McNeile., A. (2009). Abstractions,
composition and reasoning. Proceedings of the 13th
Intl Workshop on Aspect-Oriented Modeling, Char-
lottesville. Virginia, USA, ACM DL, pages 19–24.

Schauerhuber, A., Schwinger, W., Kapsammer, E., Rets-
chitzegger, W., and Wimmer, M. (2007). A survey
on aspect-oriented modeling approaches. Technical
report, E188 - Institut für Softwaretechnik und Inter-
aktive Systeme; Technische Universität Wien.

Stein, D. and Hanenberg, S. (2006). Why Aspect-Oriented
Software Development And Model-Driven Develop-
ment Are Not The Same - A Position Paper. M.Aksit
and E.Roubtsova eds. Proceedings of ABMB2005,
ENTCS, 163(1):71–82.

Stein, D., Hanenberg, S., and Unland, R. (2005). Visual-
izing Join Point Selections Using Interaction-Based
vs. State-Based Notations Exemplified With Help of
Business Rules. EMISA-2005, pages 94–107.

BMSD 2011 - First International Symposium on Business Modeling and Software Design

24

