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Abstract: In this paper, we consider a problem still seldom studietiériterature, the Close Enough Traveling Salesman
problem with covering constraints on the arcs. This prokéeises in the context of utility companies that use
automated meter reading (AMR) with radio frequency idecdiibn (RFID) technology to read meters from
a distance. The contribution of this paper is to introducew mathematical formulation and to propose a
first exact algorithm for this problem. Computational rés@ghow that our algorithm is capable of solving
to optimality instances of realistic size, such as thosedhiced in (Golden et al., 2008), with 1000 arcs and
9000 customers in less than 2 hours.

1 INTRODUCTION set of sizem. Numbering the arcs enablésto be
expressed a&a;, ay, ...,am} and a cost, to be asso-
Recent technological advances in the combined us-ciated with each arc o&. LetW = {wy,wy,...,w } be
age of automated meter reading and radio frequencya set of customers that must be covered. These cus-
identification are allowing an increasing number of tomers can be located everywhere on the area covered
utility companies to retrieve customer information re- by the network, and have a different vertex. Tese
motely. With this technology, the exact consumption Enough Traveling Salesman Problem with arc cover-
of a resource (electricity, gas or water) by customers is ing constraints(CETSP) consists in finding a mini-
coded in a unique radio frequency signal and transmit- mum cost tour, which begins and ends at the depot,
ted from metering devices, situated at the customer such that every customer éf is covered by the tour,
location, to portable receivers, which can be mounted i.e. lies within a distance from anarc of the tour.
in moving vehicles. The effective radius of automated The CETSP is NP-hard as it reduces tRaral Post-
meter reading (AMR), also called read range, is nor- man Problem(RPP) wherr =0, i.e. every customer
mally between 150 and 300 meters, but may be asof W coincides with a point on an arc &, and the
high as 381 meters (see (Golden et al., 2008)). Al- number of arcs containing the customers (called re-
though AMR is based on various technologies, we quired arcs) is less tham, the number of arcs in the
consider the most common version (radio frequency graph. Note that, if the number of required arcs is
based) to study a variant of an arc routing problem equal tom, the problem becomes@hinese Postman
dealing with mobile or "drive-by” meter reading. In  Problem(CPP).
this variant, a reading device is installed in a vehi- To the best of our knowledge, the only work on
cle, which drives around to collect remotely the data the CETSP can be credited to (Golden et al., 2008).
sent by metering devices. Thus, the reader does notThe authors call the problem@ETSP over a street
have to reach each customer to collect the data, butnetworkand propose four heuristics to solve 18 in-
only needs to pass within its read range. Each vehicle stances with an average of about 900 arcs and 9000
must traverse a service area and pass close enough toustomers each. Among these instances, only two of

each meter so that they can all be read. them are described in more detail: a sparse instance
More formally, letG = (V,A) be a directed graph, thatincludes 3345 customers and 405 arcs and a dense
whereV is the vertex sel = {vo,...,vn_1}, vertexvg instance with 10,230 customers and 1099 arcs. Basi-
is the depot, and = {(v;,vj) : vi,vj € V} is the arc cally, the heuristics of (Golden et al., 2008) are imple-
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mented through a two-stage process. In stage one, the 4 B > B
heuristic identifies a subset of arcs to be traversed, ei- MX(6 (S)) X(E(S)) > 0vSCV - {vo}

ther with some simple greedy procedures or through and2<|§<n-2 (5)
solving an integer program. In stage two, the prob- +

lem becomes the well-knowRural Postman Problem XaCZ VacA ©)
(RPP) and is solved by a sophisticated heuristic. whereM is a large number. The objective (1) is

There is another problem which can be seen asto minimize the total travel cost. Constraint (2) en-
a CETSP with the vertex covering constraints is sures that the depot belongs to the tour, while (3)
namedhe covering tour problerny (Gendreau etal.,  are the flow conservation constraints. Constraints (4)
1997) and is similar to the CETSP with arc cover- enforce that every customer W is covered by the
ing constraints except that a closed tour has to betour and constraints (5) are the disjoint subtour elim-
determined so that every vertex Wf lies within a ination constraints. (In arc routing, an optimal tour
distancer from avertexof the tour. In (Gendreau can contain a cycle. The disjoint "subtour elimination
et al., 1997), an exact algorithm and a heuristic are constraints” eliminate subtours disconnected from the
presented. Heuristics have also been proposed fortour containing the depot). These constraints force
problems belonging to the family of the covering tour the presence of at least one outgoing arc of angset
problem, such athe CETSP in the plaria (Gulczyn- for every possible subs&tof V containing an arc be-
ski et al., 2006) and (Dong et al., 2007). longing to the tour. Constraints (6) define the variable

In this paper, we address the CETSP, which we domains.
formulate as an integer program and solve through'a  We propose to solve the CETSP optimally through
cutting plane approach. Computational experiments a cutting plane approach. The main strategy of this al-
show that our approach is efficient, being capable of gorithm is to solve iteratively an integer program in-
solving instances in some cases with up to 1500 arcscluding the constraints (2), (3), (4), and (6). At each
in less than 2 hours. iteration, the disjoint subtour elimination constraints

The remainder of the paper is organized as fol- (5) violated by the optimal solution are added to the
lows: Section 2 presents in detail our exact algo- model. A disjoint subtour can be identified through
rithm to solve the CETSP. Computational results are a depth-first search which, starting from a given ver-
reported and analysed in Section 3. Finally, Section 4 tex, traverses all the solution arcs to reach all other
summarizes our conclusions. vertices. The encountered vertices marked are placed

on a stack in the order in which they are visited. Af-
ter an arc is traversed, it is removed from the current
2 EXACT ALGORITHM FOR graph. A disjoint subtour is created when, starting
CETSP fron_1 some verte_x, it is not p055|ble to mz_;tr_k _aII the
vertices present in the solution. Once a disjoint sub-
tour is identified, the process can be repeated starting
from any unmarked vertex of the solution.

Note that the constraints (5) can only be applied
to the disjoint subtours that do not contain the depot.
This is because, for the subtogscontaining the de-
pot, the disjoint subtour elimination can be obtained
by the use of arcs not already used in the solution but
with head points belonging &, the set of nodes of
the subtour containing the depot. In order to improve
the performance of the algorithm, we first check the
covering of such subtours. If we can not cover all the
customers with the arcs & (used and unused), the
Minimize %Caxa (1) constraint (5) is then still applied; otherwise, we add

ac the following constraint fo&:

Given a node subsegC V, let 57 (S) denote the set
of outgoing arcs oBandd ™ (S) denote the set of in-
coming arcs of5. If S= {v}, we simply writed™ (k)

(or 8 (k)) instead ofd* ({w}) (or 8~ ({w})). E(S

is the set of arcs with both end-points$nLet x5 be
the number of times ara is traversed, and, the as-
sociated cost (distance or travel time). We define the
binary coefficientdx equal to 1 if and only ifvy e W
can be covered bgy € A. Givenx e NA andT c A,
X(T) denotesy 1 Xe. Then the CETSP can be stated
as:

subject tox(es*(O)) >1 )
Mx(d"(S) ) —x(E'(S)) >0 7
x(es*(i)) —x(6*(i)) —0vieV 3) ( ( )) ( ( )) (")
whereE’(S) denotes the set of arcs usedSs
a;\Xa-?\waZ Lywew @) while 5*(Sy) denotes the set of arcs that are not used

and whose heads are $3.
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3 COMPUTATIONAL examine the impact of increasing the radius parame-
EXPERIMENTS ter from 150 meters to 200 meters. To do this, we still

use the graph created with= 150 meters but change
the read range to 200 meters. In other words, the arcs
and coordinates of the customers and vertices are kept
constant while is increased.

For each value of, we thus generate 480 CETSP
instances named aek-t, wheren is the number of
nodesk indicates the number of arcs ahd the ra-
tio between the number of customers and the number
of arcs. For example, ce-300-450-10 stands for an in-
stance with 300 nodes, 450 arcs, ard.0.

In order to analyse further the impact of customer
number on our algorithm, we use a customer reduc-
tion procedure. Giveny € W, let Z(w;) be the set
3.1 Datalnstances of arcs that can covew;. Consider each pair of cus-

tomersw; andw, if Z(w;) € Z(w;) then customew;
To build the CETSP instances, we randomly generate can be eliminated. This is because when we service
graphs that imitate real street networks by the follow- w;, w; is covered at the same time. Note that, the

In this section, we describe the CETSP instances
and the computational evaluation of the proposed ap-
proach. Our algorithmis coded in C/C++ using Cplex
12.1 with Callable Library and was run on a 2.4 GHz
CPU with 2GB RAM. The running time for each in-
stance was limited to 2 hours. We have tested differ-
ent values oM (5000, 10,000 and 20,000) and ob-
served that its impact on the performance of the algo-
rithm is negligible. We decided to predetermideat

a value of 10,000 in the implementation.

ing procedure: number of remaining customers is also the maximum
. ¢ number of arcs that have to be activated for covering
e The coordinates af vertices are randomly gener- purpose

atedin a unitary square. Thena heuristicis usedto
find the shortest tour passing through all the nodes [
exactly once. This tour is a Hamiltonian cycle -2 Computational Results
and is used as a framework to construct the full
graph. The resulting graph is therefore strongly Tables 1 and 2 present the characteristics of the in-
connected. stances and the computational results obtained for
two different values of (radius of AMR). They in-
clude the name of the instance and the average num-
ber of remaining customers after the reduction pro-
cedure (in columns 1 and 2).o#Opt indicates the
number of optimal solutions obtained for each set and
OptVal the average optimal value (in km) for these
solutions. # flPlter presents the average, minimum
and maximum number of integer programming itera-
In our tests, we use the graphs with the num- tions. Timeshows the average, minimum and maxi-
ber of verticem € {300,400, 500} and the ratio be-  mum running time (in seconds).
tween the number of arcs and the number of nodes  The results presented on Table 1 and 2 indicate
d € {15,2,25,3}. For each couple af andd, we that the ratio between the number of remaining cus-
have generated 10 different graphs. Arc costs are de-tomers and the number of arcs in graph is often be-
fined ascjj kilometres, where;; is the Euclidean dis-  tween 0.2 and 0.5. Therefore, the number of arcs that
tance between; andvj multiplied by 5 to obtain an  must be activated for covering purpose is smaller than
average length of arcs close to reality (from about 0.2 the total number of arcs and our instances are thus far

e In order to imitate real networks, random arcs are
added to the currenttour to reach a total number of
arcsm = nd, wheren denotes the number of ver-
tices andd the ratio between the number of arcs
and the number of nodes, in such a way that: (i)
the arcs are not too long, and (ii) there is no inter-
section between any two arcs.

to 0.4 kilometres). from a CPP.
Once the graphs are created, the CETSP instances As can be observed in Table 1, for {5,10} our
are generated by randomly positionigg= mt cus- algorithm was able to solve all but one of the instances

tomer nodes on the square containing the graph,with 1250 arcs. It was also capable of solving some
wherem denotes the number of arcs anthe ratio instances with up to 1500 arcs. But whes smaller,
between the number of customers and the number ofthe instances become more difficult. This counterin-
arcs,t € {0.5,1,5,10}. Thus, for each graph, four tuitive behaviour can be explained as follows. When
CETSP instances are created. The effective RFID ra-the number of customers decreases, the number of
diusr is set at a value of 150 meters. In order to en- arcs that must be activated for covering purpose also
sure the existence of a solution, we delete all the cus-decreases. Thus, there are more potential combina-
tomers that can not be covered by any arc. We alsotions to connect these "covering” arcs. More MIP it-
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Table 1: Computational results with= 150 meters.

#of | #of | Opt Val # of IP Iter Time (sec)

Data Cus| Opt| (km) | Aver. | Min | Max | Aver. Min Max
ce300-450-0.5| 102 | 10 94.5 6.4 2 24 0.52 0.05 25
ce300-450-1 142 | 10 | 1188 | 2.8 1 8 0.08 0.02 0.31
ce300-450-5 202 | 10 | 1756 | 1.6 1 3 0.08 0.05 0.16
ce300-450-10 | 212 | 10 | 1954 | 1.6 1 3 0.15 0.09 0.36
ce300-600-0.5| 126 | 10 | 100.6 | 115 | 2 31 3.98 0.17 14.61
ce300-600-1 166 | 10 | 1235 | 85 2 33 3.01 0.14 17.78
ce300-600-5 224 | 10 | 1821 | 4.9 2 27 1.07 0.16 8.88
ce300-600-10 | 236 | 10 | 1956 | 2.1 1 4 0.27 0.16 0.45
ce300-750-0.5| 147 | 9 956 | 36.2| 5 112 | 308.52 | 1.98 | 1807.64
ce300-750-1 193 | 10 | 1204 | 8.2 4 12 5.40 1.59 10.17
ce300-750-5 248 | 10 | 1721 | 3.3 2 6 0.70 0.25 2.30
ce300-750-10 | 264 | 10 | 186.3 | 2.9 2 5 0.60 0.30 1.08
ce300-900-0.5| 166 | 7 9901 | 126 | 4 32 | 194.09 | 1.77 | 1034.83
ce300-900-1 213 | 10| 1220 | 109 | 2 26 45.03 0.56 | 258.08
ce300-900-5 276 | 10 | 1635 | 3.9 2 9 3.24 0.56 11.52
ce300-900-10 | 292 | 10 | 175.0 | 3.1 q! 5 2.18 0.61 3.78
ce400-600-0.5| 144 | 10 | 1003 | 112 | 2 49 1.94 0.05 12.45
ce400-600-1 194 | 10 | 129.4 | 3.3 2 7 0.16 0.06 0.41
ce400-600-5 260| 10 | 185.1 | 1.8 1 3 0.13 0.08 0.22
ce400-600-10 | 274 | 10 | 207.1 | 15 1 3 0.19 0.14 0.30
ce400-800-0.5| 174 | 9 102.1 | 35.7 | 4 88 88.25 1.76 | 356.92
ce400-800-1 226 | 10 | 1265 | 17.2 | 3 42 11.49 0.75 33.45
ce400-800-5 296 | 10 | 178.8 | 3.8 2 12 1.09 0.22 7.03
ce400-800-10 | 309 | 10 | 199.0 | 2.6 2 5 0.52 0.30 1.64
ce400-1000-0.5 198 | 3 1035 | 11.0 | 10 | 13 | 745.15| 40.94 | 2113.89
ce400-1000-1 | 252 | 9 122.1 | 131 | 5 25 | 49243 | 4.63 | 1992.3
ce400-1000-5 | 313 | 10 | 169.2 | 4.9 2 13 4.39 0.72 18.20
ce400-1000-10| 327 | 10 | 1835 | 4.2 2 9 4.94 0.59 24.59
ce400-1200-0.9 221 | O

ce400-1200-1 | 279 | 4 123.0 | 8.0 4 12 73.65 | 40.03 | 135.44
ce400-1200-5 | 357 | 10 | 157.1 | 5.7 4 9 29.07 6.43 | 129.79
ce400-1200-10| 373 | 10 | 167.0 | 6.9 3 23 26.83 3.21 91.48
ce500-750-0.5| 185 10 | 1135 | 39.0| 3 323 | 674.82| 0.13 | 6731.81
ce500-750-1 249 | 10 | 1413 | 107 | 2 70 6.71 0.11 63.13
ce500-750-5 319| 10 | 2013 | 2.6 2 4 0.21 0.17 0.28
ce500-750-10 | 328 | 10 | 227.1 | 2.2 1 4 0.30 0.23 0.43
ce500-1000-0.5 224 | 6 126.2 | 58.0 | 8 211 | 1271.11| 7.09 | 6161.19
ce500-1000-1 | 285 | 10 | 131.0 | 143 | 3 65 30.72 0.95 | 102.42
ce500-1000-5 | 360 | 10 | 181.8 | 4.4 3 9 1.80 0.57 7.25
ce500-1000-10| 375| 10 | 203.0 | 4.1 2 6 1.47 0.58 3.00
ce500-1250-0.9 262 | O

ce500-1250-1 | 330 | 4 1225 | 138 | 5 30 | 1385.46| 235.72| 2496.89
ce500-1250-5 | 408 | 9 172.0 | 9.0 3 31 62.24 2.17 | 201.83
ce500-1250-10| 428 | 10 | 182.2 | 55 3 13 38.53 2.48 | 124.22
ce500-1500-0.5 284 | 0

ce500-1500-1 | 354 | O

ce500-1500-5 | 458 | 5 163.9 | 8.0 6 12 | 402.75| 32.19 | 1008.89
ce500-1500-10| 477 | 8 1720 | 5.8 4 8 353.63 | 15.22 | 1994.36
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Table 2: Computational results withe 200 meters.
# of | #of | Opt Val # of IP Iter Time (sec)
Data Cus| Opt| (km) | Aver. | Min | Max | Aver. Min Max

ce300-450-0.5| 101 | 10 74.2 20.9
ce300-450-1 143 | 10 89.3 11.3
ce300-450-5 197 | 10 115.7 15
ce300-450-10 | 205 | 10 1295 | 1.3
ce300-600-0.5| 126 | 9 74.1 53.3
ce300-600-1 168 | 10 83.5 23.2
ce300-600-5 217 | 10 1151 | 64
ce300-600-10 | 220 | 10 125.7 | 5.6
ce300-750-0.5| 149 | 4 71.4 29.3
ce300-750-1 192 7 87.5 29.0
ce300-750-5 238 | 10 1139 | 11.2
ce300-750-10 | 240 | 10 1229 | 7.0
ce300-900-0.5| 169 | 1 81.4 87.0
ce300-900-1 212 | 3 90.0 35.7
ce300-900-5 2641 9 1104 | 154
€e300-900-10 | 269 | 10 1172 | 8.1
€e400-600-0.5| 146 | 10 79.2 134
ce400-600-1 202 9 88.3 22.4
€e400-600-5 274 10 | 1143 | 64
ce400-600-10 | 276 | 10 123.6 | 4.9
ce400-800-0.5| 180 | 7 77.6 20.0
ce400-800-1 239 | 8 85.2 11.3
€e400-800-5 314| 9 1116 | 8.8
ce400-800-10 | 321 | 10 120.3 | 245

93 7.76 0.05 52.38
70 1.31 0.05 10.98
3 0.07 0.05 0.13

3 0.11 0.08 0.18
201 | 844.57 442 | 6959.88
65 16.74 0.72 60.38
25 1.91 0.13 8.88
24 1.72 0.22 11.94
61 | 2981.45| 208.53 | 7088.2
109 | 1749.44| 14.36 | 7198.27
37 31.05 241 145.95
12 7.83 1.88 22.86
87 | 4352.8 | 4352.8 | 4352.8
52 | 2895.48| '127.5 | 7070.88
55 | 761.51 6.25 | 2542.66
25 | 148.26 2.80 | 1225.56
50 4.37 0.08 28.67
157 | 24.17 0.06 209.91
21 0.90 0.13 6.06
25 0.52 0.20 2.66
43 89.64 6.02 264.20
25 18.18 2.77 62.84
22 6.61 1.44 16.95
162 | 180.89 1.22 | 1723.02

rro~NRPNMRNwbroOoRrooRPNMREE MO

ce400-1000-0.5 208 | O

ce400-1000-1 | 270 | 1 95.9 | 240 | 24 | 24 | 7171.13| 7171.13| 7171.13
ce400-1000-5 | 331 | O

ce400-1000-10| 339 | 6 116.0 | 16.0| 6 39 | 1874.72] 18.91 | 7186.65
ce500-750-0.5| 192 | 10 78.0 | 51.8| 3 326 | 384.42 | 0.36 | 3534.50
ce500-750-1 263 | 10 96.3 | 28.1| 3 181 | 54.15 0.25 505.33
ce500-750-5 363 | 10 | 1186 | 5.0 2 24 1.44 0.19 11.27
ce500-750-10 | 377 | 10 | 128.8 | 3.0 2 4 0.54 0.34 0.78
ce500-1000-0.5 242 | 1 85.1 | 22.0| 22 | 22 | 842.83 | 842.83 | 842.83
ce500-1000-1 | 321 | 5 90.8 | 198 | 9 52 | 436.34 | 13.56 | 814.22
ce500-1000-5 | 411 | 9 109.0 | 282 | 6 78 | 1025.59| 6.23 | 5406.33
ce500-1000-10| 429 | 8 117.8 | 17.3| 5 28 | 483.14 | 2.81 | 3248.66

erations are thus needed to solve the problem. this remark. Developing new technology to allow an

We also observe that, for a given number of ver- increased read range could therefore be an effective
tices, the greater the vertex degree is, the harder themeans to reduce the distance driven to collect cus-
instance is. tomer information.

In Table 2, we see the results for the case where
r = 200 meters. The performance of our algorithm
degrades as it can only solve the instances with up
to 1000 arcs. When the read range increases, each4 CONCLUSIONS
customer can be covered by more arcs, so the solu-
tion space increases and the optimal solution becomedn this paper, we have formulated and solved the
more difficult to find. Obviously, increasing the read CETSP with arc covering constraints. An integer lin-
range leads to a considerable decrease in the travel€ar programming formulation has been proposed and

ing distance and cost. The colun@ptValconfirms ~ Solved through a cutting plane algorithm. Computa-
tional results on a set of 960 instances have been re-
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ported and analysed. These results show that our al-
gorithm is capable of solving to optimality instances
of realistic size and works better when there are many
customers to be covered. As we notice that RFID
technology is rather used when the customer density
is important, our algorithm is quite suitable to solve
real problems of utility companies.
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