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Abstract: Together with the population aging concern, increasing health care costs require understanding the causal
basis for common genetic diseases. The high dimensionality and complexity of genetic data hamper the
detection of genetic associations. To alleviate the core risks (missing of the causal factor, spurious discoveries),
machine learning offers an appealing alternative framework to standard statistical approaches. A novel class
of probabilistic graphical models has recently been proposed - the forest of latent tree models - , to obtain
a trade-off between faithful modeling of data dependences and tractability. In this paper, we evaluate the
soundness of this modeling approach in an association genetics context. We have performed intensive tests,
in various controlled conditions, on realistic simulated data. We have also tested the model on real data.
Beside guaranteeing data dimension reduction through latent variables, the model is empirically proven able
to capture indirect genetic associations with the disease, both on simulated and real data. Strong associations
are evidenced between the disease and the ancestor nodes of the causal genetic marker node, in the forest. In
contrast, very weak associations are obtained for other nodes.

1 INTRODUCTION

Thanks to their ability to capture (conditional) inde-
pendences and dependences between variables, pro-
babilistic graphical models (PGMs) offer an adapted
framework for a fine modeling of relationships bet-
ween variables in an uncertain data framework. A
PGM is a probabilistic model relying on a graph en-
coding conditional dependences within a set of ran-
dom variables. A PGM provides a compact and natu-
ral representation of the joint distribution of the set of
variables. Bayesian networks (BNs) are a commonly
used branch of PGMs.

Despite the fact that the observed variables are of-
ten sufficient to describe their joint distribution, some-
times, additional unobserved variables, also named
latent variables, have a role to play. In this context,
hierarchical Bayesian networks such as latent tree
models (LTMs), formerly named hierarchical latent
class models, were proposed. LTMs are tree-shaped
BNs where leaf nodes are observed while internal
nodes are not. LTMs generalize latent class models

(LCMs), defined as containing a unique latent varia-
ble and edges only connecting the latent variable to all
the observed variables. In LTMs, multiple latent va-
riables organized in a hierarchical structure allow to
depict a large variety of relations encompassing local
to higher-order dependences (see Figure 1). LCMs
enforce observed variables to be independent, condi-
tionally on the latent variable. In contrast, LTMs re-
lax this local independence assumption which is often
violated for observed data.

Few algorithms have been developed to learn such
models and still fewer for applications in association
genetics (Zhang and Ji, 2009). Forests of LTMs have
been recently proposed as potentially useful for asso-
ciation studies (Mourad et al., 2010; Mourad et al.,
2011). In the biomedical research domain, associa-
tion studies rely on the description of DNA variants at
characterized genome loci - or genetic markers - for
all subjects in case and control cohorts. Such studies
attempt to identify any putative dependence - or asso-
ciation - between one or possibly some genetic mark-
ers and the affected/unaffected status. In the case of a
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single causal locus, a putative association is revealed
if the distribution of variants between cases and con-
trols shows an accumulation of the former with re-
spect to some variant(s). From now on, we will refer
to the most popular genetic markers, that is, Single
Nucleotide Polymorphisms (SNPs).

One of the first motivations to propose this novel
model - the forest of LTMs (FLTM) - is to take ac-
count of linkage disequilibrium (LD) in the most pos-
sible faithful way. Linkage disequilibrium occurs be-
cause DNA variants close on the chromosome are
scarcely separated by the shuffling of chromosomes
(recombination) that takes place during sex cell for-
mation. Such variants are therefore transmitted to-
gether (as an haplotype) from parent to child. Such
patterns are at the basis of the so-called haplotype
block structure (Daly et al., 2001): ”blocks” where
statistical dependences between loci are high alter-
nate with shorter regions characterized by low statis-
tical dependences, the recombination hotspots. LD
is crucial for association studies since a causal lo-
cus not sharply coinciding with a SNP is neverthe-
less expected to be flanked by SNPs highly likely to
be shown (indirectly) associated with the phenotype.
Besides, benefitting from high correlations is appea-
ling to implement data dimension reduction.

Data dimension reduction exploiting LD is not
new to genetics. However, tackling this issue through
adapted Bayesian networks has but recently been pro-
posed (Mourad et al., 2011). Notably, these authors
have successfully compared the FLTM-based method
to other methods with respect to faithfulness in LD
modeling and data dimension reduction. Besides,
FLTM models seem appealing to enhance associa-
tion studies: due to their hierarchical structure, FLTM
models would help pointing out a region containing
a genetic factor associated with a studied disease.
However, bottom-up information fading is likely to
be observed in the hierarchical structure. The im-
pact on downstream analyses such as association stu-
dies remains questionable. The very point is to check
whether latent variables covering a causal region are
found associated with the disease. In this paper, we
have conducted a systematic and comprehensive eva-
luation of the ability of the FLTM model to help evi-
dence genetic associations through latent variables.

This paper is organized as follows: after the
Section ”Definitions”, the motivation for the FLTM
model proposal is provided, together with the con-
text of this proposal. The next Section describes the
FLTM learning algorithm used in this paper and high-
lights the differences with the initial version. In Sec-
tion ”Study Protocol”, we define the notion of ”indi-
rect association”; then we detail the protocol imple-
mented to evaluate the ability of FLTM’s latent va-

riables to capture indirect associations. The Section
Results and Discussion describes and discusses inten-
sive tests on realistic simulated data and real geno-
typic data.

2 DEFINITIONS

BNs are defined by a directed acyclic graph G(X ;E)
and a set of parameters q. The set of nodes X =
fX1; :::;Xpg represents p random variables and the set
of edges E captures the conditional dependences bet-
ween these variables (i.e. the structure). The set of
parameters q describes a conditional probability dis-
tributions qi = [P(Xi=PaXi)] where PaXi denotes node
i’s parents. If a node has no parent, then it is described
by an a priori probability distribution. The variables
are described for n observations. For further under-
standing, we now briefly recall some definitions.

Definition 1 (conditional independence). Given a
subset of variables S � XnfXi;X jg, conditional
independence between Xi and X j is defined as:
P(Xi;X jjS) = P(XijS) P(X jjS). The non-equality en-
tails that both variables are conditionally dependent
given S.

Definition 2 (entropy, mutual informa-
tion). The entropy of variable X writes as:
H (X) = �å

n
i=1P(xi) logP(xi) where P(xi) is

the probability mass function of outcome xi.
Given two variables X1 and X2, the mutual in-
formation measures the dependence of the two
variables, expressing the difference of entropies
between the independent model P(X1) P(X2) and
the dependent model P(X1jX2) P(X2): I (X1;X2) =�

H (X1) + H (X2)
�
�

�
H (X1jX2) + H (X2)

�
=

H (X1) � H (X1jX2). The larger the difference
between entropies, the higher is the dependence.

Due to the presence of pairs of chromosomes in
the human genome, the DNA at a given chromosome
locus (SNP) may either be described through a pair
of variants (alleles or phased data) at the finer de-
scription level or through a unique variant (unphased
data). As SNPs are biallelic, only two alleles are en-
countered at the corresponding loci (instead of the 4
possible nucleotides A,T,C,G). Thus, SNPs are dis-
crete variables whose three possible values may be
coded as, say 0, 1 and 2, to respectively account for
aa, fAa; aAg (usually not distinguishable) and AA,
where A and a are the two alleles. In the context of
this paper, we restrain our concern to discrete and fi-
nite variables (either observed or latent). In this work,
we address the case of the single causal genetic factor.
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Figure 1: Latent tree model and forest of latent tree models.
The light shade indicates the observed variables whereas the
dark shade points out the latent variables.

3 MOTIVATION AND RELATED
WORK

3.1 Motivation

To tackle the difficult problem of disease association
detection, several algorithms coming from the ma-
chine learning domain have been proposed. Some
of them use PGMs (Verzilli et al., 2006; Han et al.,
2010). Recently, forests of latent tree models have
been investigated for LD modeling purpose (Mourad
et al., 2011). A forest of latent tree models (FLTM)
is a forest whose trees are LTMs (see Figure 1).
FLTMs generalize LTMs, since the variables are not
constrained to be dependent upon one another, either
directly or indirectly. Thus, FLTMs can describe a
larger set of configurations than LTMs.

When modeling such highly correlated variables
as those in genotypic data, the challenge is all the
more crucial for downstream analyses such as study
and visualization of linkage disequilibrium, mapping
of disease susceptibility genetic patterns and study of
population structure. Most notably, the benefits of
using FLTMs to model LD rely on their ability to ac-
count for multiple degrees of SNP dependences and
to naturally deal with the fuzzy nature of LD block
boundaries. As we will further emphasize, this latter
advantage results from the FLTM learning algorithm,
which does not impose that the SNPs subsumed by
the same latent variable be neighbouring SNPs (along
the genome).

3.2 Related Work

As for general BNs, besides learning of parameters
(q), i.e. a priori and conditional probabilities, one of
the tasks in LTM learning is structure inference. This
task generally remains the most challenging due to
the complexity of the search space. Regarding LTM
learning, the proposals published in the literature fall

A nodes

OT nodes

O nodes

causal SNP
x

causal tree

OO nodes

Figure 2: Illustration of key terms specific to our approach.
A nodes: ancestor nodes of the causal SNP; O nodes: other
latent nodes categorized in OT nodes (in causal tree) and
OO nodes (outside the causal tree). See Figure 1 for node
nomenclature.

into two categories. The first category relies on stan-
dard Bayesian network learning techniques. The se-
cond category is based on the clustering of the varia-
bles. To learn q, both categories rely on the expecta-
tion maximization (EM) algorithm or an EM variant.

In the first category, the algorithms explore the
search space through a local search strategy and opti-
mize a score, such as the BIC score (Schwartz, 1978).
Zhang proposed a greedy algorithm, to navigate in the
structure search space (Zhang, 2004). This algorithm
is coupled with a hill climbing procedure, to adjust the
cardinality of the latent variables. A more efficient
variant of this algorithm has recently been proposed
(Chen et al., 2011). In this first category, structural ex-
pectation maximization (SEM) has also been adapted
to the case of Bayesian networks with latent varia-
bles. SEM successively optimizes q, conditionally
on the structure S , then optimizes S conditionally on
q. Parameter learning being a time-consuming step,
in this framework, Zhang and Kocka have adapted a
procedure, called local EM, to optimize the variables
whose connexion or cardinality have been modified
in the transition from former to current model (Zhang
and Kocka, 2004). In one of the two LTM-based ap-
proaches dedicated to LD modeling, Zhang and Ji use
a set of LCMs and apply a SEM strategy (Zhang and
Ji, 2009). The number of LCMs has to be specified.
To avoid getting trapped in local optima while run-
ning the EM algorithm to learn a set of latent models,
these authors have adapted a simulated annealing ap-
proach.

The above score-based approaches require the
computation of the maximum likelihood in presence
of latent variables, a prohibitive task regarding com-
putational burden. Thus, various methods based on
the clustering of variables have been implemented.
They all construct the model following an ascending
strategy; they all rely on the mutual information (MI)
criterion, to identify clusters of dependent variables.
In their turn, these methods may be sub-categorized
into binary- and non binary-based approaches.
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Hwang and co-workers’ learning algorithm is de-
dicated to binary trees and binary latent variables
(Hwang et al., 2006). It has to be noted that the trees
are possibly augmented with connexions between si-
blings, that is nodes sharing the same parent into the
immediate upper layer. Also confining themselves to
binary trees, Harmeling and Williams have proposed
two learning algorithms (Harmeling and Williams,
2011). One of them approximates MI between a la-
tent variable H and any other variable X , based on a
linkage criterion (single, complete or average) applied
for X and the variables in the cluster subsumed by
H. A variant of this first algorithm locally infers the
data corresponding to any latent variable; therefore it
is possible to achieve an exact computation of the MI
criterion between a latent variable and any other va-
riable.

Two approaches have been proposed to circum-
vent binary tree-based structures. Wang and co-
workers first build a binary tree; then they apply re-
gularization and simplification transformations which
may result in subsuming more than two nodes through
a latent variable (Wang et al., 2008). In their approach
devoted to LD modeling, Mourad and collaborators
implement the clustering of variables through a par-
titioning algorithm (Mourad et al., 2011); the latter
yields cliques of pairwise dependent variables. Be-
sides, this method imposes the control of information
fading as the level increases in the hierarchy, which
generally results in the production of a forest of LTMs
(instead of a single LTM).

Two of the above cited methods have been shown
to be tractable. For these two non binary-based ap-
proaches, some reports are available: Hwang and co-
workers’ approach was able to handle 6000 variables
and around 60 observations. The scalability of the
FLTM construction by Mourad et al. has been shown
for benchmarks describing 105 variables and 2000 in-
dividuals.

4 THE LEARNING ALGORITHM

We now describe the algorithm we have used to test
the FLTM model in the context of association gene-
tics. We have adapted the initial version of Mourad
and co-workers. We will highlight the differences bet-
ween the two implementations.

4.1 Sketch of the Algorithm

The learning is performed through an adapted ag-
glomerative hierarchical clustering procedure. At
each iteration, a partitioning method is used to as-

sign variables into non-overlapping clusters. The par-
titioning is based on the identification of cliques of
strongly dependent variables in the complete graph
of pairwise dependences. Amongst the clusters, each
cluster of size at least two is a candidate for subsump-
tion into a latent variable H. To acknowledge or re-
ject the creation of H, a prior task considers the LCM
rooted in this latent variable candidate and whose
leaves are all the variables of the cluster. Parame-
ter learning using the EM algorithm is performed for
this LCM. Then probabilistic inference allows mis-
sing data imputation for the latent variable. Once all
the data are known for this LCM, a validation step
checks whether the latent variable captures enough
information from its children. If a latent variable is
validated, its child variables are then replaced with
the latent variable. In contrast, the nodes in unvali-
dated clusters are kept isolated for the next iteration.
Iterating these steps yields a hierarchical structure. In
other words, latent variables capture the information
borne by underlying observed variables (e.g. genetic
markers). In their turn, these latent variables, now
playing the role of observed variables, are synthesized
through additional latent variables, and so on.

For a better understanding, we now detail five
points of this algorithm. We start with the two points
establishing the difference between the initial version
in (Mourad et al., 2011) and our novel version.

4.1.1 Window-based Data Scan versus
Straightforward Data Scan

First, we remind the reader that the initial observed
variables are SNPs, which are located along the
genome in a sequence of ”neighbouring” (but gene-
rally non contiguous) genetic markers. To meet the
scalability criterion, a divide-and-conquer procedure
has been implemented in (Mourad et al., 2011): the
data is scanned through contiguous windows of iden-
tical fixed sizes. However, such splitting is questio-
nable. It entails a bias in the processing of the varia-
bles located in the neighbourhood of the artificial win-
dow frontiers. Managing overlapping windows would
not have lead to a practicable algorithm. Therefore, a
first notable difference with the algorithm in (Mourad
et al., 2011) lies in that our novel version does not
require data splitting. Instead, a simple principle is
implemented: not all pairs of variables are processed
by the partitioning algorithm. Beyond a physical dis-
tance on the chromosome, d, specified by the geneti-
cist, variables are not allowed in the same cluster. Set-
ting the d constraint actually corresponds to imple-
menting a sliding window approach.
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4.1.2 Partitioning of Variables into Cliques

Standard agglomerative hierarchical clustering con-
siders a similarity matrix. As a latent variable is in-
tended to connect pairwise dependent variables, the
standard agglomerative approach was adapted accor-
dingly. Within each window, our previous version run
a clique partitioning algorithm on the complete graph
of pairwise dependences. In the novel version, no
complete matrix is required anymore. The physical
constraint d leads to calculate a sparse matrix of pair-
wise dependences, where only computed values are
stored.

In our former version, we used the clique parti-
tioning algorithm CAST devoted to the clustering of
variables (Ben-Dor et al., 1999). The dependence bet-
ween two variables, evaluated through pairwise mu-
tual information, is used to derive a binary similar-
ity measure (requested by CAST), depending on a
threshold tpairwise. Our algorithm automatically ad-
justs this threshold, based on a given quantile value
of the mutual information values in the whole matrix
(e.g. the median value). We have rewritten the CAST
algorithm to take account of the physical constraint
d. Through the management of a sparse matrix of
pairwise dependences, we actually allow the modu-
lation of the useful matrix bandwidth, depending on
the physical constraint imposed by the sliding win-
dow size d.

However, unlike SNPs, latent variables are not
characterized by a physical location on the chromo-
some. In this specific case, we average the locations
of the SNPs subsumed by the latent variable.

4.1.3 Data Imputation for Latent Variables

Data imputation is processed locally, that is conside-
ring the LCM rooted in the latent variable and whose
leaves are the variables in the cluster. For simplifica-
tion, the cardinality of the latent variable is estimated
as an affine function of the number of leaves. Para-
meter learning is first performed in this LCM, through
the EM algorithm. This step yields the marginal dis-
tribution of the latent variable and the conditional dis-
tributions of the child variables. Therefore, (linear)
probabilistic inference can be carried on, based on the
following principle:

P(H = cjx j) =
P

p
i=1 P(x

j
i jH = c) P(H = c)

å
k
c=1 P

p
i=1 P(x

j
i jH = c) P(H = c)

;

with k the cardinality of latent variable H, c a possi-
ble value for H, j an observation, i.e. an individual in
our case, and x j the vector of values fx j

1; :::;x
j
pg cor-

responding to the variables in the cluster fX1; :::;Xpg.

4.1.4 Local Parameter Learning

In parallel with the structure growing, the parameters
of the forest of LTMs are learned locally (see Sub-
section 4.1.3). At a given iteration, for any varia-
ble shown to be a leaf node in an LCM (correspond-
ing to a cluster), the current marginal distribution is
replaced with the conditional distribution learned in
the LCM. Thus, during the bottom-up construction of
the FLTM, marginal distributions are successively re-
placed with conditional distributions.

4.1.5 Validation of Latent Variables

The subsumption of the candidate cluster into the la-
tent variable H is validated through a criterion ave-
raging a normalized dependence measure between H
and each of H’s child nodes:

Criter =
1
jCH j å

i 2 CH

I (Xi;H)

min (H (Xi); H (H))
� tlatent ;

with jCH j the size of cluster CH .

4.2 Recapitulation

In the forest of LTMs, the subsumption process is
controlled through thresholds tpairwise and tlatent and
constraint d. No latent variable is allowed to sub-
sume variables which are not highly pairwise depen-
dent (tpairwise) or which refer to regions which are too
far from one another (d); tlatent controls bottom-up
information fading through the hierarchy. tpairwise,
tlatent and d thus monitor the number of connected
components (trees) and the number of layers in the
forest. These three parameters rule the trade-off bet-
ween faithfulness to the underlying reality and tracta-
bility of the modeling.

We have tested the behaviour of our algorithm -
in particular its handling of large sparse matrices - on
datasets describing 105 SNPs for 2000 individuals.
In (Mourad et al., 2011), the running time was
around 15 hours for an arbitrary window size of
100 SNPs. When setting the sliding window size d

to 0:5 Mb, a reasonable choice to capture LD, our
novel algorithm now runs in less than 12 hours. It
has to be emphasized that as our algorithm runs EM
with 10 restarts, a significant improvement has been
brought with respect to the initial version. Finally,
we have checked that our algorithm is quasi linear
with the number of SNPs and linear with the sliding
window size. The corresponding experimentations
are not shown in this paper. Neither are our exami-
nations of the robustness with respect to parameter
adjustment. The application software is available at
http://sites.google.com/site/raphaelmourad/Home/pro
grammes.
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5 STUDY PROTOCOL

Our purpose in this paper is to investigate how infor-
mation about causality fades from bottom to top in
the hierarchy and what are the trends regarding the ra-
tios of latent variables erroneously associated with the
disease. Therefore, we used realistic simulated data
or real data designed or known to harbour a causal
SNP. We name indirect genetic association any de-
pendence between a causal SNP ancestor node (ab-
breviated as A) in the FLTM and the disease. This
dependence is due to the fact that an A node is likely
to capture the information of the causal SNP. If in-
direct genetic association may be evidenced for A
nodes, the identification of A nodes will allow poin-
ting out potentially causal markers since the latter are
leaf nodes of the trees rooted in A nodes (see Figure 2
which clarifies the meaning of specific key terms fur-
ther used). We will examine the difference between
causal SNP ancestors (As) and other latent nodes (ab-
breviated as Os). We will also examine the behaviour
of Os in causal trees (OTs) and of Os outside causal
trees (OOs).

5.1 Simulation of Realistic Genotypic
Data

Conducting a systematic analysis under con-
trolled conditions requires that we are able to
simulate both realistic SNP data and an as-
sociation between one of these SNPs and the
disease status (affected/unaffected). For this pur-
pose, we have chosen one of the most widely
used software applications, namely HAPGEN
(http://www.stats.ox.ac.uk/�marchini/software/gwas
/hapgen.html) (Spencer et al., 2009). The reader well
acquainted with such HAPGEN simulations may skip
the two following paragraph, where we describe the
simulation in the case of a single causal SNP.

Generating realistic genotypic simulation lies in
the ability to mimic linkage disequilibrium (see Intro-
duction, fourth paragraph). HAPGEN relies on the
haplotypes (sequence of alleles, see Introduction, last
paragraph) of a population of reference, to generate
new haplotypes as mosaics of the known haplotypes,
for a user-specified number of cases and controls. The
genotype of any individual is generated based on the
two haplotypes simulated for this individual.

HAPGEN selects at random the causal SNP,
checking for the minor allele frequency to be within
a user-specified range. Assuming causality under a
specific disease model and effect sizes, it is straight-
forward to calculate the genotype frequencies in cases
at that locus. On this basis, any case individual is

simulated by first simulating the alleles at the causal
locus and then working outwards in each direction
to construct the two haplotypes. Note that the same
mechanism governs the construction of haplotypes,
whatever the status of the individual (case or control).
The only distinction lies in that the locus from which
the extension is started is chosen at random, for con-
trols. For cases, the extension is initiated from the
causal locus. The extension processes conditionally
on reference haplotypes and is ruled by the fine-scale
knowledge of recombination rates and the physical
distance between loci, to calculate the probability of
breaks in the mosaic pattern as one moves along the
region. Moreover, partial copies (of haplotype subre-
gions) are blurred by simulated mutations.

To control the simulation conditions, three ingre-
dients have been combined: minor allele frequency
(MAF) of the causal SNP, severity of the disease
expressed as genotype relative risks (GRRs) for va-
rious disease models. The range of the MAF at the
causal SNP has been specified to be 0.1-0.2, 0.2-0.3
or 0.3-0.4. Various genotype relative risks have been
considered and the disease model has been specified
amongst additive, dominant, multiplicative or reces-
sive (add, dom, mul, rec). These choices are justified
as standards used for simulations in association gene-
tics.

For short, together with GRRs, the disease models
allow specifying the probability to be affected, de-
pending on the genotype at the causal locus: GRR =
P(a f f ectedjAa)
P(a f f ectedjaa) , where A is the disease allele. The speci-
fication of the disease model amongst add, dom, mul
and rec allows the adjustment of the probability to
be affected when carrying the two disease alleles AA,
with respect to the probability to be affected when
carrying Aa (or aA). Thus various effect sizes may
be simulated. If 1 stands for the effect when no dis-
ease allele is present at the causal locus (aa), the ef-
fect sizes for the Aa and AA carriers are respectively:
1+ a

2 ,1+a (add); 1+a, 1+a (dom); 1+a, 1+a2

(mul); 1, 1+a (rec).
To run HAPGEN, we have chosen the widely used

reference haplotypes of the HapMap phase II coming
from U.S. residents of northern and western European
ancestry (CEU) (http://hapmap.ncbi. nlm.nih.gov/).
The disease prevalence (percentage of cases observed
in a population) specified to HAPGEN has been set to
0:01, a standard value used for disease locus simula-
tion. The simulated data have been generated for 1000
unaffected subjects and 1000 affected subjects and
consist of unphased genotypes relative to a 1:5 Mb re-
gion containing around 100 SNPs. Combining all pre-
vious conditions led to testing 36 scenarii (3�3�4).
To derive significant trends, we replicated each sce-
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nario 100 times. Together with our aim of a com-
prensive study, the necessity to replicate explains our
choice of the number of variables (100 SNPs). Stan-
dard quality control for genotypic data has been car-
ried out: SNPs with MAF less than 0:05 and SNPs de-
viant from the so-called Hardy-Weinberg Equilibrium
(not detailed) with a p-value below 0:001 have been
removed.

5.2 Detection of Genetic Associations

We have used the G2 standard test of independence
rather than the well-known Chi2 test: for relatively
small sample sizes (below 300 subjects) as is the case
for the real dataset analyzed, G2 is recommended. We
have compared the p-values obtained, successively
testing the phenotype Y against the causal SNP, the
causal SNP ancestor nodes (A nodes) and other nodes
(abbreviated as Os) in the FLTM’s graph. We dis-
play the �log10(p-value) values. Values near 0 point
out independence and the previous indicator increases
with the strength of the dependence.

To measure the significance of associations, we
have implemented a permutation procedure dedicated
to the computation of the per-test error rate a0 (type
I error), in order to control the family-wise error rate
a (type I error) at 5%. Namely, a0 defines the signif-
icance threshold for each association test. a controls
the probability to make one or more false discoveries
among all hypotheses when performing multiple as-
sociation tests. The procedure implemented to obtain
a0 is the following: (i) for each permutation, and each
FLTM’s layer L, we perform independence tests bet-
ween the variables in L and the phenotype. For each
permutation, the minimum of the p-values over all va-
riables belonging to L is identified (pmin). Given the
threshold a, the distribution of pmins over all permu-
tations allows to extract a pointwise threshold a0.

An advantage of the FLTM strategy relies on the
fact that there are less variables in the highest layers
than in the lowest ones. Thus, we expect an increase
of a0 with the layer level. That is the reason why our
permutation procedure was adapted to the calculation
of layer-specific thresholds a0.

6 RESULTS AND DISCUSSION

6.1 Simulated Data

In the following, the data analysis has entailed the ge-
neration of up to 7 layers in the FLTMs. We will not
report results obtained for layers with numbers above

Figure 3: Histograms of �log10(p-value) values resulting
from association tests of the phenotype with the causal SNP
ancestor nodes (As) and the other latent nodes (Os). Gene-
ral results compiling all simulated scenarii (see 5.1): MAF
(0.1-0.2, 0.2-0.3 and 0.3-0.4), heterozygous GRR (1:4, 1:6
and 1:8) and disease model (dominant, recessive, additive
and multiplicative).

3: such layers do not provide sufficient data to com-
pute representative medians or draw informative box-
plots. On average, over all 3600 FLTMs (36 scenarii
� 100 replicates), the percentages of nodes are dis-
tributed as follows: 89:1% in layer 0, 9:5% in layer 1,
1:2% in layer 2 and 0:2% in layer 3.

6.1.1 General Trends

Figure 3 compares the histograms of �log10(p-value)
values resulting from association tests of Y with A
nodes and O nodes, respectively. The comparison of
these two histograms reveals a large dissimilarity bet-
ween the two distributions. The majority (70%) of
�log10(p-value) values relative to A nodes is greater
than 1, whereas it is the case for only 19% of O nodes.
Indeed, we observe that large �log10(p-value) values
(e.g., greater than 5) are common for the former and
are very rare for the latter. A non-parametric test, the
Wilcoxon rank-sum test, shows a p-value less than
10�16, thus confirming that A and O p-values follow
two different distributions.

Figure 4(a) more thoroughly describes the
�log10(p-value) values observed for the different la-
yers of the FLTM in the cases of tests relative to A
and O nodes. The layer 0 refers to the association
tests between the phenotype and the causal SNP and
serves as the reference value. In this figure, we ob-
serve that the association strength for A nodes slowly
decreases when the layer number increases, whereas
the association for O nodes sticks to �log10(p-value)
values below 0:4, corresponding to p-values greater
than 0:4. Although O nodes reveal false positive as-
sociations (less than 10% have a p-value below 0:01),
these results clearly highlight a general trend: indi-
rect associations are captured by the A nodes while it
is not the case for a large majority of O nodes.

Figure 4(b) emphasizes the general trend of
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Median -log10(p-value)

Causal SNP
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Per-test error rate α'

O

(a) (b)
Figure 4: �log10(p-value) values for the different layers of the FLTM, resulting from association tests of the phenotype with
the causal SNP ancestor nodes (As) and with the other latent nodes (Os) - simulated data. (a) Boxplots. (b). Median values.
The layer 0 shows the results of the association tests between the phenotype and the causal SNP (over all simulated scenarii).
See Figure 3 for details about the scenarii, see last paragraph of 5.2 for the definition of error rate a0.

Legend
GRR = 1.4
GRR = 1.6
GRR = 1.8

(a)

(b)

Figure 5: Median �log10(p-value) values for the different layers of the FLTM, resulting from association tests between the
phenotype and latent nodes - simulations under thirty-six conditions. (a) Causal SNP ancestor nodes (As). (b) Other latent
nodes (Os). The different windows represent possible genetic scenarii. At the top of each window, the range of the simulated
causal SNP’s minor allele frequency and the disease model assumption (additive, dominant, multiplicative or recessive) are
indicated. The three different symbols used refer to as many genotype relative risks considered for the simulated causal SNP
(see Legend and 5.1). The layer 0 refers to the association tests between the phenotype and the causal SNP (over all 100
replications).
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�log10(p-value) observed for A and O nodes, and
compares the median �log10(p-value) value obtained
for each layer to the corresponding value associated
with the significance threshold a0 specific to this layer
(see Subsection 5.2, second paragraph). This figure
reveals that up to the second layer, significant asso-
ciations are identified for A nodes. In contrast, regar-
ding O nodes, for all layers, median �log10(p-value)
values are smaller than the corresponding �log10(a0)
values. Focusing on the O distribution, we observe
that the percentage of p-values lower than a0 (false
positives) is 4:7%.

The existence of the false positives (FPs) can
partly be explained by the presence of indirect depen-
dences between the causal SNP and the OTs, that is
the O nodes located in the causal tree. The causal tree
is the tree containing the causal SNP (see Figure 2).
At the opposite, no FPs are expected for O nodes out-
side the causal tree (OOs). The three key relations
are: Os = OTs(21%) + OOs(79%); True Positives =
As; False Positives = FP Os = FP OTs (73%) + FP
OOs (27%). Thus 73% of FPs are in the causal tree,
representing only 21% of O nodes (in causal tree and
other trees). In the causal tree, the FP rate is 16%;
over all non causal trees, the FP rate is 1.6%. In con-
clusion, the major part of FPs is confined in the causal
tree.

6.1.2 Behaviour under Thirty-six Genetic
Scenarii

We now compare association test results between A
and O nodes for each scenario described in Subsec-
tion 5.1 (see Figure 5). Globally, similar tendencies
are observed over all scenarii: the association strength
drops continuously from bottom to layer number 3; in
the case of O nodes, an overwhelming majority of re-
sults points out the absence of association, whichever
the FLTM’s layer concerned.

When considering the easiest case (MAF range
= 0.3-0.4, GRR = 1:8 and multiplicative model),
over all layers, the A nodes present strong asso-
ciations (�log10(p-value) > 7). Regarding a less
ideal but more plausible configuration (MAF range
= 0.2-0.3, GRR = 1:6 and additive model), the me-
dian�log10(p-value) value computed for A nodes de-
creases from 8:3 at layer 0, to reach 4:6, 3:2 and 2:2 at
layers 1, 2 and 3, respectively. On the contrary, when
the model is recessive, the association with the causal
SNP is low and the A nodes cannot capture anything
(similar results are obtained with most of the methods
dedicated to association studies). As regards the O
nodes, null associations are reported in all configura-
tions.

Figure 6: Boxplot of �log10(p-value) values for the diffe-
rent layers of the FLTM, resulting from association tests of
the phenotype with the causal SNP ancestor nodes (As) or
with the causal SNP non-ancestor nodes (Os) - real data.
Layer 0 refers to the association test between the phenotype
and the causal SNP (marker 19). In layer 3, no O nodes are
observed in the FLTMs.

6.2 Real Data

We have also evaluated on real data the ability of
FLTM models to capture the indirect associations
with the phenotype. We have used a reference dataset
relative to a 890 kb region flanking the CYP2D6 gene
on human chromosome 22q13. This gene has a con-
firmed role in drug metabolism (Hosking et al., 2002).
The dataset consists of 32 SNP markers genotyped
for 268 individuals and was downloaded from the R
package graphminer developed by Verzilli and colla-
borators (Verzilli et al., 2006). The SNP 19 at the
position 550 kb is the closest marker to CYP2D6 gene
(at 525:3 kb). For this reason, for our experiment, we
have considered the SNP 19 as the causal marker.

To take into account the stochastic nature of our
algorithm (random initialization of parameters during
the EM algorithm), we present the results relative to
1000 runs. Each run takes on average 5:4 s on a
standard PC computer (3 GHz, 2 GB RAM). On ave-
rage, over all 1000 FLTMs (1000 replicates), the per-
centages of nodes are distributed as follows: 82:62%
in layer 0, 16:89% in layer 1, 0:39% in layer 2 and
0:10% in layer 3. Figure 6 shows the�log10(p-value)
values of association tests relative to As and Os. As
expected in view of experiments led on simulated
data, the A nodes succeed in capturing indirect asso-
ciation, in particular in layer 1, with a median value of
5:5, corresponding to p-values lower than 5:10�6. In
the other layers, the strength of associations is lower
but remains relatively high as in the layer 2 showing
a median value of 4, equivalent to a p-value of 10�4.
As previously seen, when we focus on O nodes, we
observe very few strong associations. The majority of
p-values (over 80%) is greater than 0:01.
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7 CONCLUSIONS AND
PERSPECTIVES

Based on both simulated and real data analyses, this
paper promotes the use of FLTMs as a simple and use-
ful framework for disease association detection in hu-
man genetics. Efficient capture of indirect genetic as-
sociation is achieved through two major reasons: (i)
the causal SNP ancestor nodes succeed in capturing
indirect associations with the phenotype; (ii) at the
opposite, the other latent nodes globally show very
weak associations. In other words, this property al-
lows to distinguish between true and false indirect ge-
netic associations.

The numbers of SNPs in the benchmarks were
limited. Nonetheless, this limitation is not a bias to
the sound characterization of the fading of informa-
tion in the FLTM hierarchies: bottom-up information
decays does concern the forest depth and does not in-
terfere with the forest width. It must be underlined
that our tests were not designed to meet the small
n, large p condition (many more variables (SNPs)
than subjects) as in genome-wide association studies
(GWASs). Again, this is not a bias to our study:
over thirty-six various scenarii, we have shown that
the overwhelming part (about three quarters) of false
positives confines in a unique tree, namely the one
harbouring the causal SNP (causal tree). In the con-
ditions of a GWAS, the forest width may well be far
larger than those observed in our tests, the false po-
sitives are expected to remain confined in the causal
tree, for the major part.

In a previous work, we have developped a scala-
ble FLTM learning algorithm, thus reaching orders of
magnitude consistent with GWAS demands (105 va-
riables, 2000 individuals). In addition to scalability,
data dimension reduction advocates the use of FLTM-
based modeling in GWASs: the issue of multiple hy-
pothesis testing in GWASs would be resolved by tes-
ting a low number of latent variables instead of a large
number of observed variables. However, before en-
visaging an FLTM-based GWAS, an inescapable pre-
requisite was testing whether the bottom-up informa-
tion fading through the forest would nevertheless al-
low reliable association detection. No less unavoida-
ble was the close examination of ratios of latent varia-
bles erroneously associated with the disease.

A precursory work to the GWAS concern, the
present contribution assets the soundness of the
FLTM model for association detection. Besides, we
have conceived a procedure to guarantee a given
family-wise (type I) error rate through the computa-
tion of layer-specific per-test error rates. The success-
ful test of our algorithm under a large spectrum of

conditions allows its integration in a GWAS tool.
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