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Abstract: Time varying model parameters offer tremendous flexibility while requiring more sophisticated learning meth-
ods. We discuss on-line estimation of time varying DLM parameters by means of a dynamic mixture model
composed of constant parameter DLMs. For time series with low signal-to-noise ratios, we propose a novel
method of constructing model priors. We calculate model likelihoods by comparing forecast distributions
with observed values. We utilize computationally efficient moment matching Gaussians to approximate exact
mixtures of path dependent posterior densities. The effectiveness of our approach is illustrated by extracting
insightful time varying parameters for an ETF returns model in a period spanning the 2008 financial crisis.
We conclude by demonstrating the superior performance of time varying mixture models against constant
parameter DLMs in a statistical arbitrage application.

1 BACKGROUND

1.1 Linear Models

Linear models are utilitarian work horses in many do-
mains of application. A model’s linear relationship
between aregression vector Ft and anobserved re-
sponse Yt is expressed through coefficients of are-
gression parameter vectorθ. Allowing anerror of fit
termεt , a linear regression model takes the form:

Y = FTθ+ ε , (1)

whereY is a column vector of individual observations
Yt , F is a matrix with column vectorsFt correspond-
ing to individual regression vectors, andε a column
vector of individual errorsεt .

The vectorY and the matrixF are observed. The
ordinary least squares(“OLS”) estimateθ̂ of the re-
gression parameter vectorθ is (Johnson and Wichern,
2002):

θ̂ =
(

FFT
)−1

FY . (2)

1.2 Stock Returns Example

In modeling the returns of an individual stock, we
might believe that a stock’s return is roughly a linear
function of market return, industry return, and stock

specific return. This could be expressed as a linear
model in the form of (1) as follows:

r = FTθ+ ε, F =





1
rM
rI



 , θ =





α
βM
βI



 , (3)

wherer represents the stock’s return,rM is the market
return,rI is the industry return,α is a stock specific
return component,βM is the sensitivity of the stock to
market return, andβI is the sensitivity of the stock to
it’s industry return.

1.3 Dynamic Linear Models

Ordinary least squares, as defined in (2), yields a sin-
gle estimateθ̂ of the regression parameter vectorθ
for the entire data set. Problems arise with this frame-
work if we don’t have afinitedata set, but rather anin-
finitedata stream. We might expectθ, the coefficients
of a linear relationship, to vary slightly over time
θt ≈ θt+1. This motivates the introduction ofdynamic
linear models(West and Harrison, 1997). DLMs are a
generalized form, subsuming Kalman filters (Kalman
et al., 1960), flexible least squares (Kalaba and Tesfat-
sion, 1996), linear dynamical systems (Minka, 1999;
Bishop, 2006), and several time series methods —
Holt’s point predictor, exponentially weighted mov-
ing averages, Brown’s exponentially weighted regres-
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sion, and Box-Jenkins autoregressive integrated mov-
ing average models (West and Harrison, 1997). The
regime switching model in (Hamilton, 1994) may
be expressed as a DLM, specifying an autoregres-
sive model where evolution variance is zero except
at times of regime change.

1.4 Contributions and Paper Structure

The remainder of the paper is organized as follows.
In section §2, we introduce DLMs in further detail;
discuss updating estimated model parameter distri-
butions upon arrival of incremental data; show how
forecast distributions and forecast errors may be used
to evaluate candidate models; the generation of data
given a DLM specification; inference as to which
model was the likely generator of the observed data;
and, a simple example of model inference using syn-
thetic data with known parameters. Building upon
this base, in section §3 multi-process mixture mod-
els are introduced. We report design challenges we
tackled in implementing a mixture model for finan-
cial time series. In section §4, we introduce an al-
ternative set of widely available financial time series
permitting easier replication of the work in (Montana
et al., 2009); and we provide an example of apply-
ing a mixture model to real world financial data, ex-
tracting insightful time varying estimates of variance
in an ETF returns model during the recent financial
crisis. In section §5, we augment the statistical ar-
bitrage strategy proposed in (Montana et al., 2009)
by incorporating a hedge that significantly improves
strategy performance. We demonstrate that an on-line
dynamic mixture model outperforms all statically pa-
rameterized DLMs. Further, we draw attention to the
fact that the period of unusually large mispricing iden-
tified by our mixture model coincides with unusually
high profitability for the statistical arbitrage strategy.
In §6, we conclude.

2 DYNAMIC LINEAR MODELS

2.1 Specifying a DLM

In the framework of (West and Harrison, 1997), a
dynamic linear model is specified by its parameter
quadruple{Ft ,G,V,W}. DLMs are controlled by two
key equations. One is theobservation equation:

Yt = FT
t θt +νt , νt ∼ N(0,V) , (4)

the other is theevolution equation:

θt = Gθt−1+ωt , ωt ∼ N(0,W) . (5)

Algorithm 1: Updating a DLM givenG,V,W.

Initialize t = 0
{Initial informationp(θ0|D0)∼ N[m0,C0]}
Input: m0, C0, G, V, W
loop

t = t +1
{Compute prior att: p(θt |Dt−1)∼ N[at ,Rt ]}

at = Gmt−1
Rt = GCt−1GT +W

Input: Ft
{Compute forecast att: p(Yt |Dt−1)∼ N[ ft ,Qt ]}

ft = FT
t at

Qt = FT
t RtFt +V

Input: Yt
{Compute forecast erroret}

et =Yt − ft
{Compute adaptive vectorAt}

At = RtFtQ
−1
t

{Compute posterior att: p(θt |Dt)∼ N[mt ,Ct ]}
mt = at +Atet
Ct = Rt −AtQtAT

t
end loop

FT
t is a row in thedesign matrixrepresenting inde-

pendent variables effectingYt . G is the evolution
matrix, capturing deterministic changes toθ, where
θt ≈ Gθt−1. V is theobservational variance, Var(ε)
in ordinary least squares.W is the evolution vari-
ance matrix, capturing random changes toθ, where
θt = Gθt−1 +wt , wt ∼ N(0,W). The two parame-
tersG andW make a linear modeldynamic.

2.2 Updating a DLM

The Bayesian nature of a DLM is evident in the care-
ful accounting of sources of variation that generally
increase system uncertainty; and, information in the
form of incremental observations that generally de-
crease system uncertainty. A DLM starts with initial
information, summarized by the parameters of a (fre-
quently multivariate) normal distribution:

p(θ0|D0)∼ N (m0,C0) . (6)

At each time step, the information is augmented as
follows:

Dt = {Yt ,Dt−1} . (7)

Algorithm 1 details the relatively simple steps of
updating a DLM as additional regression vectorsFt
and observationsYt become available. Note that upon
arrival of the current regression vectorFt , a one-step
forecast distributionp(Yt |Dt−1) is computed using the
prior distributionp(θt |Dt−1), the regression vectorFt ,
and the observation noiseV.
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2.3 Model Likelihood

The one-step forecast distribution facilitates compu-
tation of model likelihoodby evaluation of the den-
sity of the one-step forecast distributionp(Yt |Dt−1)
for observationYt . The distributionp(Yt |Dt−1) is ex-
plicitly a function of the previous periods informa-
tion Dt−1; and, implicitly a function of static model
parameters{G,V,W} and model state determined by
a series of updates resulting from the historyDt−1.
Defining a model at timet asMt = {G,V,W,Dt−1},
and explicitly displaying theMt dependency in the
one-step forecast distribution, we see that the one-
step forecast distribution is equivalent to model like-
lihood1:

p(Yt |Dt−1) = p(Yt ,Dt−1|Dt−1,Mt) = p(Dt |Mt) (8)

Model likelihood,p(Dt |Mt), will be an important in-
put to our mixture model discussed below.
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Figure 1: ObservationsYt generated from a mixture of three
DLMs. Discussion appears in §2.4

2.4 Generating Observations

Before delving into mixtures of DLMs, we illustrate
the effect of varying the evolution varianceW on the
state variableθ in a very simple DLM. In Figure 1
we define three very simple DLMs,{1,1,1,Wi} ,Wi ∈
{.0005, .05,5}. The observations are from simple
random walks, where the level of the seriesθt varies
according to an evolution equationθt = θt−1+ωt , and
the observation equation isYt = θt +νt . Compare the
relative stability in the level of observations generated
by the three models. Dramatic and interesting behav-
ior materializes asW increases.

1Dt = {Yt ,Dt−1} by definition; Mt contains
Dt−1 by definition; and, p(Yt ,Dt−1|Dt−1) =
p(Yt |Dt−1)p(Dt−1|Dt−1) = p(Yt |Dt−1).
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Figure 2: Estimates of the mean of the state variableθt for
three DLMs when processing generated data of Figure 1.

2.5 Model Inference

Figure 1 illustrated the difference in appearance of ob-
servationsYt generated with different DLM parame-
ters. In Figure 2, note that models with smaller evo-
lution varianceW result in smoother estimates — at
the expense of a delay in responding to changes in
level. At the other end of the spectrum, largeW per-
mits rapid changes in estimates ofθ — at the ex-
pense of smoothness. In terms of the model likeli-
hood p(Dt |Mt), if W is too small, the standardized
forecast errorset/

√
Qt will be large in magnitude, and

therefore model likelihood will be low. At the other
extreme, ifW is too large, the standardized forecast
errors will appear small, but the model likelihood will
be low now due to the diffuse forecast distribution.

In Figure 3, we graph the trailing interval log like-
lihoods for each of the three DLMs. We define trailing
interval (k-period) likelihood as:

Lt(k) = p(Yt ,Yt−1, . . . ,Yt−k+1|Dt−k)
= p(Yt |Dt−1)p(Yt−1|Dt−2) . . .

p(Yt−k+1|Dt−k) .
(9)

This concept is very similar to Bayes’ factors dis-
cussed in (West and Harrison, 1997), although we
do not divide by the likelihood of an alternative
model. Our trailing interval likelihood is also simi-
lar to the likelihood function discussed in (Crassidis
and Cheng, 2007); but, we assume the errorset are
not autocorrelated.

Across the top of Figure 3 appears a color code
indicating the true model prevailing at timet. It is
interesting to note when the likelihood of a model ex-
ceeds that of the true model. For instance, around the
t = 375 mark, the model with the smallest evolution
variance appears most likely. Reviewing Figure 2,
the state estimates of DLM{1,1,1,W = .0005} just
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Figure 3: Log likelihood of observed data during most re-
cent 10 days given the parameters of three DLMs when pro-
cessing generated data of Figure 1. Bold band at top of fig-
ure indicates the true generating DLM.

happened to be in the right place at the right time.
Due to the more concentrated forecast distributions
p(Yt |Dt−1) of this model, it briefly attains the high-
est trailing 10-period log likelihood. A similar oc-
currence can be seen for the DLM{1,1,1,W = .05}
aroundt = 325.

While the series on Figure 3 appear visually close
at times, note the log scale. After converting back to
normalized model probabilities, the favored model at
a particular instance is more apparent as illustrated in
Figure 4. In §5, we will perform model inference on
the return series of exchange traded funds (ETFs).

3 PARAMETER ESTIMATION

In §2, we casually discussed DLMs varying in pa-
rameterization. Generating observations from a spec-
ified DLM or combination of DLMs, as in §2.4, is
trivial. The inverse problem, determining model pa-
rameters from observations is significantly more chal-
lenging. There are two distinct versions of this task
based upon area of application. In the simpler case,
the parameters are unknown but assumed constant. A
number of methods are available for model identifi-
cation in this case, both off-line and on-line. For ex-
ample, (Ghahramani and Hinton, 1996) use E-M off-
line, and (Crassidis and Cheng, 2007) use the likeli-
hood of a fixed-length trailing window of prediction
errors on-line. Time varying parameters are signifi-
cantly more challenging. The posterior distributions
are path dependent and the number of paths is expo-
nential in the length of the time series. Various ap-
proaches are invoked to obtain approximate solutions
with reasonable computational effort. (West and Har-

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

Time t

P
( 

M
 | 

D
 )

W=5  W=.05 W=.0005

Figure 4: Model probabilities from normalized likelihoods
of observed data during most recent 10 periods. Bold band
at top of figure indicates the true generating DLM.

rison, 1997) approximate the posterior with a single
Gaussian that matches the moments of the exact dis-
tribution. (Valpola et al., 2004; Sarkka and Nummen-
maa, 2009) propose variational Bayesian approxima-
tion. (Minka, T.P., 2007) discusses Gaussian-sum and
assumed-density filters.

3.1 Multi-process Mixture Models

(West and Harrison, 1997) define sets of DLMs,
where the defining parametersMt = {F,G,V,W}t are
indexed byλ2, so thatMt = M(λt ). The set of DLMs
at time t is {M(λt) : λt ∈ Λ}. Two types of multi-
process models are defined. Aclass I multi-process
model, where for some unknownλ0 ∈ Λ,M(λ0) holds
for all t; and, aclass II multi-process modelfor some
unknown sequenceλt ∈ Λ,(t = 1,2, . . .),M(λt ) holds
at timet. We build our model in §4 in the framework
of a class II mixture model. We do not expect to be
able to specify parameters exactly or finitely. Instead,
we specify a set of models that quantize a range of
values. In the terminology of (Sarkka and Nummen-
maa, 2009), we will create agrid approximationto
the evolution and observation variance distributions.

Class II mixture models permit the specification
of a model per time period, leading to a number of
potential model sequences exponential in the steps,
|Λ|T . However, in the spirit of the localized nature of
dynamic models and practicality, (West and Harrison,
1997) exploit the fact that the value of information
decreases quickly with time, and propose collapsing

2(West and Harrison, 1997) index the set of component
modelsα ∈ A ; however, by convention in finance,α refers
to stock specific return, consistent with §1.2. To avoid con-
fusion, we index the set of component modelsλ ∈ Λ, con-
sistent with the notation of (Chen and Liu, 2000).
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the paths and approximating common posterior dis-
tributions. In the filtering literature, this technique is
referred to as theinteracting multiple model (IMM)
estimator(Bar-Shalom et al., 2001, Ch. 11.6.6). In
our application, in §5, we limit our sequences to two
steps, and approximate common posterior distribu-
tions by collapsing individual paths based on the most
recent two component models. To restate this briefly,
we model two step sequences — the component
modelMt−1 just exited, and the component modelMt
now occupied. Thus, we consider|Λ|2 sequences. Re-
viewing Algorithm 1, the only information required
from t − 1 is captured in the collapsed approximate
posterior distributionp(θt−1|Dt−1) ∼ N (mt−1,Ct−1)
for each component modelλt−1 ∈ Λ considered.

3.2 Specifying Model Priors

One key input to mixture models are the model pri-
ors. We have tried several approaches to this task
before finding a method suitable for our statistical
arbitrage modeling task in §5. The goal of our en-
tire modeling process is to design a set of model
priors p(M(λt)) and model likelihoodsp(D|M(λt))
that yield in combination insightful model posterior
distributionsp(M(λt)|D), permitting the computation
of quantities of interest by summing over the model
spaceλt ∈ Λ at timet:

p(Xt |Dt) ∝ ∑
λt∈Λ

p(Xt |M(λt))p(M(λt)|Dt) (10)

In the context of modeling ETF returns discussed
in §5, the vastly different scales for the contribu-
tion of W andV to Q left our model likelihoods un-
responsive to values ofW. This unresponsiveness
was due to the fact that parameter valuesW andV
are of similar scale; however, a typical|Ft | for this
model is approximately 0.01, and therefore the re-
spective contributions to the forecast varianceQ =
FTRF+V = FT(GCGT +W)F +V are of vastly dif-
ferent scales, 1 : 10,000. Specifically, density of the
likelihood p(Yt |Dt−1) ∼ N( ft ,Qt) is practically con-
stant for varying W after the scaling by 0.012. The
only knob left for us to twist is that of the model pri-
ors.

DLMs with static parameters embed evidence of
recent model relevance in their one-step forecast dis-
tributions. In contrast, mixture model component
DLMs move forward in time from posterior distribu-
tions that mask model performance. The situation is
similar to the gamebest ballin golf. After each player
hits the ball, all players’ balls are moved to a best po-
sition as a group. Analogously, when collapsing pos-
terior distributions, sequences originating from differ-
ent paths are approximated with a common posterior

based upon end-point model. While some of us may
appreciate obfuscation of our golf skills, the obfus-
cation of model performance is problematic. Due to
the variance scaling issues of our application, the path
collapsing, common posterior density approximating
technique destroys the accumulation of evidence in
one-step forecast distributions for specific DLM pa-
rameterizationsλ ∈ Λ. In our current implementa-
tion, we retain local evidence of model effectiveness
by running a parallel set of standalone (not mixed)
DLMs. Thus, the total number of models maintained
is |Λ|2 + |Λ|, and the computational complexity re-
mains asymptotically constant. In our mixture model,
we define model priors proportional to trailing in-
terval likelihoods from the standalone DLMs. This
methodology locally preserves evidence for individ-
ual models as shown in Figure 3 and Figure 4.

The posterior distributionsp(θt |Dt)M(λ) emitted
by identically parameterized standalone and compo-
nent DLMs differ in general. A standalone constant
parameter DLM computes the priorp(θt |Dt−1)M(λt )

as outlined in Algorithm 1 using its own poste-
rior p(θt−1|Dt−1)M(λt=λt−1). In contrast, component
DLMs compute prior distributions using a weighted
posterior:

p(θt−1|Dt−1)M(λt ) =

∑
λt−1

p(M(λt−1)|M(λt))p(θt−1|Dt−1)M(λt−1) .

(11)

4 A FINANCIAL EXAMPLE

(Montana et al., 2009) proposed a model for the re-
turns of the S&P 500 Index based upon the largest
principal component of the underlying stock returns.
In the formY = FTθ+ ε used throughout this paper,

Y = rs&p, F = rpc1, and θ = βpc1. (12)

The target and explanatory data in (Montana et al.,
2009) spanned January 1997 to October 2005. We
propose the use of two alternative price series that are
very similar in nature; but, publicly available, widely
disseminated, and tradeable. The proposed alterna-
tive to the S&P Index is theSPDR S&P 500 ETF
(trading symbol SPY). SPY is an ETF designed to
mimic the performance of the S&P 500 Index(PDR
Services LLC, 2010). The proposed alternative to the
largest principal component series is theRydex S&P
Equal Weight ETF(trading symbol RSP). RSP is an
ETF designed to mimic the performance of the S&P
Equal Weight Index (Rydex Distributors, LLC, 2010).
While perhaps not as obvious a pairing as S&P Index /
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Figure 5: SPDR S&P 500 (SPY) and Rydex S&P Equal
Weight (RSP) ETF closing prices, scaled to April 30, 2003
= 100.

SPY, a first principal component typically is the mean
of the data — in our context, the mean is the equal
weighted returns of the stocks underlying the S&P
500 Index. SPY began trading at the end of January
1993. RSP began trading at the end of April 2003.
We use the daily closing pricesPt to compute daily
log returns:

rt = log

(

Pt

Pt−1

)

. (13)

Our analysis is based on the months during which
both ETFs traded, May 2003 to present (August
2011).

The price levels, scaled to 100 on April 30, 2003
are shown in Figure 5. Visually assessing the price
series, it appears the two ETFs have common direc-
tions of movement, with RSP displaying somewhat
greater range than SPY. Paralleling the work of (Mon-
tana et al., 2009), we will model the return of SPY as
a linear function of RSP,Y = FTθ+ ε:

Y = rspy, F = rrsp, and θ = βrsp. (14)

We estimate the time varying regression parameter
θt using a class II mixture model composed of 50 can-
didate models with parameters{Ft ,1,V,W}. Ft = rrsp,
the return of RSP, is common to all models. The
observation variances are the valuesV×1,000,000∈
{ 1, 2.15, 4.64, 10, 21.5, 46.4, 100, 215, 464, 1,000}.
The evolution variances are the values
W × 1,000,000 ∈ { 10, 56, 320, 1,800, 10,000}.
Our on-line process computes 502 + 50 = 2550
DLMs, 502 DLMs corresponding to the two-period
model sequences, and 50 standalone DLMs required
for trailing interval likelihoods. In the mixture
model, the priorsp(M(λt)) for component models
M(λt), λt ∈ Λ, are proportional to trailing inter-
val likelihoods (9) of corresponding identically
parameterized standalone DLMs.

It’s an interesting side topic to consider the po-
tential scale of these mixtures. Circa 1989, in the
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Figure 6: The daily standard deviation ofνt and ωt as
estimated by the mixture model. Observation noiseνt ∼
N(0,V); evolution noiseωt ∼ N(0,W).

predecessor text to (West and Harrison, 1997), West
and Harrison suggested the use of mixtures be re-
stricted for purposes of “computational economy”;
and that a single DLM would frequently be adequate.
Approximately one decade later, (Yelland and Lee,
2003) were running a production forecasting system
with 100 component models, and 10,000 model se-
quence combinations. Now, more than two decades
after West and Harrison’s practical recommendation,
with the advent of ubiquitous inexpensive GPGPUs,
the economics of computation have changed dramat-
ically. A direction of future research is to revisit im-
plementation of large scale mixture models quantiz-
ing several dimensions simultaneously.

Subsequent to running the mixture model for the
period May 2003 to present, we are able to review es-
timated time varying parametersVt andWt , as shown
in Figure 6. This graph displays the standard devia-
tion of observation and evolution noise, commonly re-
ferred to as volatility in the financial world. It is inter-
esting to review the decomposition of this volatility.
Whereas the relatively stationary series

√
W in Fig-

ure 6 suggests the rate of evolution ofθt is fairly con-
stant across time; the observation varianceV varies
dramatically, rising noticeably during periods of fi-
nancial stress in 2008 and 2009. The observation vari-
ance, or standard deviation as shown, may be inter-
preted as the end-of-day mispricing of SPY relative
to RSP. In §5, we will demonstrate a trading strategy
taking advantage of this mispricing. The increased
observational variance at the end of 2008, visible in
Figure 6 results in an increase in the rate of profitabil-
ity of the statistical arbitrage application plainly visi-
ble in Figure 7.

5 STATISTICAL ARBITRAGE

(Montana et al., 2009) describe an illustrative statis-
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Figure 7: Cumulative return of the various implementations
of a statistical arbitrage strategy based upon a time varying
mixture model and 10 constant parameter DLMs.

tical arbitrage strategy. Their proposed strategy takes
equal value trading positions opposite the sign of the
most recently observed forecast errorεt−1. In the ter-
minology of this paper, they tested 11 constant param-
eter DLMs, with a parameterization variableδ equiv-
alent to:

δ =
W

W+V
. (15)

They note that this parameterization variableδ per-
mits easy interpretation. Withδ ≈ 0, results ap-
proach an ordinary least squares solution:W = 0 im-
pliesθt = θ. Alternatively, asδ moves from 0 towards
1, θt is increasingly permitted to vary.

Figure 6 challenges the concept that a constant
specification of evolution and observation variance
is appropriate for an ETF returns models. To ex-
plore the effectiveness of class II mixture models
versus statically parameterized DLMs, we evalu-
ated the performance of our mixture model against
10 constant parameter DLMs. We setV = 1 as
did (Montana et al., 2009), and specifiedW ∈
{29,61,86,109,139,179,221,280,412,739}. These
values correspond to the 5, 15, . . . 95%-tile values of
W/V observed in our mixture model.

Figure 6 offers no justification of usingV = 1.
While the priorp(θt |Dt−1), one-stepp(Yt |Dt−1) and
posterior p(θt |Dt) “distributions” emitted by these
DLMs will not be meaningful, the intent of such a
formulation is to provide time varyingpoint estimates
of the state vectorθt . The distribution of θt is not
of interest to modelers applying this approach. In the
context of the statistical arbitrage application consid-
ered here, the distribution is not required. The trading
rule proposed is based on the sign of the forecast er-
ror; and, the forecast is a function of the prior meanat
(a point estimate) for the state vectorθt and observed
valuesFt andYt : εt =Yt −FT

t at .
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Figure 8: Sharpe ratios realized by the time varying mixture
model and 10 constant parameter DLMs.

5.1 The Trading Strategy

Consistent with (Montana et al., 2009), we ignore
trading and financing costs in this simplified experi-
ment. Given the setup of constant absolute value SPY
positions taken daily, we compute cumulative returns
by summing the daily returns. The rule we implement
is:

portfoliot(εt−1) =

{

+1 if εt−1 ≤ 0,
−1 if εt−1 > 0.

(16)

where portfoliot = +1 denotes a long SPY and
short RSP position;portfoliot =−1 denotes a short
SPY and long RSP position. The SPY leg of the trade
is of constant magnitude. The RSP leg is−at× SPY-
value, whereat is the mean of the prior distribution of
θt , p(θt |Dt−1) ∼ N(at ,Rt); and, recall from (14) the
interpretation ofθt is the sensitivity of the returns of
SPYYt to the returns of RSPFt . Note that this strat-
egy is a modification to (Montana et al., 2009) in that
we hedge the S&P exposure with the equal weighted
ETF, attempting to capture mispricings while elimi-
nating market exposure. The realized Sharpe ratios
appear dramatically higher in all cases than in (Mon-
tana et al., 2009), primarily attributable to the hedging
of market exposure in our variant of a simplified arbi-
trage example. Montana et al. report Sharpe ratios in
the 0.4 - 0.8 range; in this paper, after inclusion of the
hedging technique, Sharpe ratios are in the 2.3 - 2.6
range.

5.2 Analysis of Results

We reiterate that we did not include transaction costs
in this simple example. Had we done so, the results
would be significantly diminished. With that said, we
will review the relative performance of the models for
the trading application.

In Figure 7, it is striking that all models do fairly
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well. The strategy holds positions based upon a com-
parison of the returns of two ETFs, one scaled by
an estimate ofβrsp,t . Apparently small variation in
the estimates of the regression parameter are not of
large consequence. Given the trading rule is based
on thesign of the errorεt , it appears that on many
days, slight variation in the estimate ofθt across
DLMs does not result in a change tosign(εt ). Fig-
ure 8 shows that over the interval studied, the mixture
model provided a higher return per unit of risk, if only
to a modest extent. What is worth mentioning is that
the comparison we make is theon-linemixture model
against theex postbest performance of all constant
parameter models. Acknowledging this distinction,
the mixture model’s performance is more impressive.

6 CONCLUSIONS

Mixtures of dynamic linear models are a useful tech-
nology for modeling time series data. We show the
ability of DLMs parameterized with time varying val-
ues to generate observations for complex dynamic
processes. Using a mixture of DLMs, we extract time
varying parameter estimates that offered insight to the
returns process of the S&P 500 ETF during the finan-
cial crisis of 2008. Ouron-linemixture model demon-
strated superior performance compared to theex post
optimal component DLM in a statistical arbitrage ap-
plication.

The contributions of this paper include the pro-
posal of a method, trailing interval likelihood, for
constructing component model prior probabilities.
This technique facilitated successful modeling of time
varying observational and evolution variance parame-
ters, and captured model evidence not adequately con-
veyed in the one-step forecast distribution due to scal-
ing issues. We proposed the use of two widely avail-
able time-series to facilitate easier replication and
extension of the statistical arbitrage application pro-
posed by (Montana et al., 2009). Our addition of
a hedge to the statistical arbitrage application from
(Montana et al., 2009) resulted in dramatically im-
proved Sharpe ratios.

We have only scratched the surface of the mod-
eling possibilities with DLMs. The mixture model
technique eliminates the burden ofa priori specifica-
tion of process parameters. We look forward to evalu-
ating models with higher dimension state vectors and
parameterized evolution matrices. Due to the inher-
ently parallel nature of DLM mixtures, we also look
forward to exploring the ability of current hardware
to tackle additional challenging modeling problems.
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