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Abstract: Given a default theory, we first show that the justified extensions of this theory characterize the maximal
conflict-free sets of the corresponding abstract argumentation framework such as defined by Dung. We then
show how to specialize justified extensions in order to represent admissible (and hence preferred and stable)
extensions inside default theories. Relying on the correspondance of justified extensions withι-answer sets on
one hand, on the semi-monotonic character of justified extensions on the other hand, we then show that any
admissible (or preferred) set of arguments of the initial argumentation framework can be directly computed
from theι-answer sets of the equivalent logic program. Eventually, this allows us to consider the addition of
integrity constraints with whom the admissible sets are filtered from eachι-answer set.

1 INTRODUCTION

Since abstract argumentation frameworks have been
introduced by Phan Minh Dung in his seminal pa-
per (Dung, 1995), several authors have considered
the links with default theories and answer set pro-
gramming (Dung, 1995), (Bondarenko et al., 1997),
(Nieves et al., 2008), (Egly et al., 2010). The whole
of these works proceeds from a common approach
which has successfully stressed, both in defaults and
logic programs, the major role played by the idea of
two conflicting informations. In this respect, abstract
argumentation sheds a clear light on how nonmono-
tonicity is at work inside these formalisms. With-
out denying this fact, we propose however to return
to the opposite and, in our opinion, barely explored
question, that is: what default theories and logic pro-
grams can tell us about abstract argumentation frame-
works? Because abstract argumentation frameworks
appear formally to be a fragment of defaults, we es-
pecially would like to investigate how one of the most
basic concepts of argumentation frameworks – ad-
missible sets – is related to the same idea in default
theories. Our motivations are manifold. We expect
to clear up in a more precise way the links among
these various formalisms: especially, while the ques-
tion whether the definition of arguments should gen-
erally rely on logical criterions is controversial (e.g.

in (Amgoud and Besnard, 2009)), we propose the ba-
sis for a reassessment of abstract argumentation un-
der logic. Although out of the scope of this paper, but
from the same point of view, our work intends to base
the ability for a better understanding on how known
results on preferences, cumulativity, or other logical
properties could be applied to argumentation frame-
works. Eventually, we expect to catch interesting and
powerful methods of computation of arguments from
a direct translation of argumentation frameworks into
logic programming. The last section of the current
paper is a step into this direction. Our paper is orga-
nized as follows: we first show that maximal conflict-
free sets of arguments correspond strictly to justified
extensions of a default theory (Łukaszewicz, 1988),
and hence to theι-answer sets (iota-answer sets) of a
logic program (Gebser et al., 2009). We propose then
a characterization of the admissible sets of arguments
of any abstract argumentation framework obtained
from a default theoryvia an additional constraint on
justified extensions of this theory. Relying on the bi-
jection of justified extensions withι-answer sets, we
then show that any admissible set of arguments of the
initial argumentation framework can be characterized
via theι-answer sets of the equivalent logic program.
It becomes then possible to add to any such program
a set of integrity constraints that filters the admissi-
ble sets of arguments from itsι-answer sets. Sinceι-
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answer sets inherit semi-monotonicity (from justified
extensions), this clearly emphasizes their central role
in a possible incremental treatment of arguments with
logic programs. In the second section below, we re-
call some basic notions about abstract argumentation
frameworks (Dung, 1995) and default theories (Re-
iter, 1980). After reminding (after (Dung, 1995)) how
to extract an argumentation framework from an equiv-
alent initial default theory, we propose in the third sec-
tion the converse translation, that is how to express an
argumentation framework as a default theory. In the
fourth section we establish a mapping between max-
imal conflict-free sets of arguments and justified ex-
tensions, which allows to further characterize admis-
sible sets of arguments (and hence preferred exten-
sions) as a special kind of justified extensions. The
fifth section extends this characterization toι-answer
sets and describes the computation of admissible sets
with help of integrity constraints.

In the following, we will denote atomic elements
by lowercase letters and sets by shift case letters. Fol-
lowing a widespread tradition, greek letters are also
used in definitions and theorems related to defaults
and answer sets. We will use some of the standard
operations of set theory (∪ for union,\ for set differ-
ence,× for cartesian product, 2S for the power set of
S). The symbols⊤ and⊥ denote the usual truth val-
ues, and¬, ∨, ∧ the usual connectors of propositional
logic.

2 PRELIMINARIES

We briefly recall some basic definitions, first on
argumentation frameworks, then on default theories.
Logic programs will be considered in a further
section.

An argumentation frameworkis a pair〈AR,attacks〉
whereAR is a set andattacks is a relation overAR,
i.e. attacks ⊆ AR×AR. Each element ofAR is
called anargumentanda attacks bmeans that there
is an attack froma to b. Accordingly a is said to
be anattackerof b (thusa is a counterargumentfor
b). By extension, a setS⊆ AR attacksan argument
a ∈ AR iff some argument inS attacksa. On the
contrary,S defends aiff for eachb∈AR, if b attacks a
then S attacks b. In this case,a is also said to be
acceptable with respect to S. The attacks relation
induces a kind of coherence with different degrees
among arguments. First,S⊆ AR is conflict freeiff
there are noa andb in Ssuch thata attacks b. Further,
S is saidadmissibleiff S is conflict free and defends
all its elements.S is called acomplete extensioniff

S is an admissible set such that each argument that
S defends is inS. A preferred extensionis then a
⊆-maximal admissible subset ofAR. Eventually,S
is a stable extensioniff S is conflict free and attacks
each argument that is not inS.

Example 1. Consider the following argument frame-
work AF1, in which the arrows represent the attack
relation over the argumentsa, b, c, d, e, f , g:

a b c d e

f

g

The admissible sets are:/0, {a}, {c}, {d}, {a,c},
{a,d}, {d, f}, {a,d, f}. The preferred extensions
are {a,c}, {a,d, f}. The unique stable extension
is {a,d, f}. Remind that, whatever the kind of
extension being under consideration (admissible,
preferred, or stable), it is a subset of a maximal
conflict-free set, being here one among{a,c,e},
{a,c, f}, {a,c,g}, {a,d, f}, {a,d,g}, {b,d, f},
{b,d,g}, {b,e}.

Let us now briefly remind some of the principal
notions about default reasoning (Reiter, 1980). A
defaultis an expression of the formα:β1...βn

γ whereα,
βi , 1≤ i ≤ n, andγ are closed first-order sentences
with α being called the prerequisite,βi the justifi-
cations, andγ the conclusion. Considering a set of
defaults D, the functionsPREREQ(D), JUST(D),
andCONS(D) refer respectively to all prerequisites,
justifications, and consequences of the defaults ofD.
A default theory∆ is a pair(W,D) whereW is a set of
closed first-order sentences, andD is a set of defaults.
Intuitively, the consequence of a default holds if its
prerequisite holds and nothing can prevent the justi-
fication to hold (i.e. the negation of the justification
does not hold). The main consequence of this idea is
captured by the notion ofextension. The following
characterizations of R- and J-extensions (respectively
due to (Reiter, 1980) and (Łukaszewicz, 1988)) are
given here after (Risch, 1996). Consider∆ = (W,D).
A subsetD′ of D is grounded in Wiff for all d ∈ D′,
there is a finite sequenced0, . . .dk of elements
of D′ such that (1) PREREQ({d0}) ∈ Th(W),
(2) for 1 ≤ i ≤ k − 1,PREREQ({di+1}) ∈
Th(W) ∪ CONS({d0, . . .di}), and dk = d. Then,
let D′ be any subset ofD; E = Th(W∪CONS(D′)) is:
(1) a J-extensionof ∆ iff D′ is a maximal grounded
subset ofD such that for allβ ∈ JUST(D′), ¬β 6∈ E;
(2) a R-extensionof ∆ iff it is a J-extension, and for
each defaultd ∈ D \D′,d = α:β1...βn

γ , eitherα 6∈ E or
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¬βi ∈ E for someβi. WhenE = Th(W∪CONS(D′))
is an extension (either J- or R-), the setD′ is called
the set ofgenerating defaults of E, and is denoted
by GD(E,∆). Note that J-extensions have interesting
properties: they always exist, they denote consistant
sets (in the standard case), and R-extensions are a
special case easily characterized among J-extensions.
Moreover, they are semi-monotonic i.e. adding new
defaults to a default theory does not remove the
previous J-extensions of this theory. Note that in the
sequel, since there is no need for the full expressive
power of first-order logic, we restrict ourselves to
propositional default theories.

3 TRANSLATING ARGUMENTS
INTO DEFAULTS AND
CONVERSELY

Following (Dung, 1995), let us remind how a default
theory can be expressed as an abstract argumentation
framework. Consider∆ = (W,D) a default theory
and Λ = {β1, . . . ,βn} ⊆ JUST(D). A sentenceλ
is said to be adefeasible consequence of∆ and Λ
(Dung, 1995) if there is a sequence(e0, . . .en) with
en = λ such that, for eachei ,0 ≤ i ≤ n, either (1)
ei ∈ W or (2) ei is a logical consequence of the
preceding members in the sequence, or (3)ei is the
conclusionγ of a defaultα:β1...βn

γ whose prerequisite
α is a preceding member in the sequence and whose
justifications βi belongs toΛ. Λ is said to be a
support forλ with respect to∆. The theory∆ is
then interpreted as an argumentation framework
〈AR∆,attacks∆〉 as follows: (1)AR∆ = {(Λ,λ) | Λ ⊆
JUST(D),Λ is a support forλ with respect to∆};
(2) (Λ,λ) attacks∆ (Λ′,λ′) iff ¬λ ∈ Λ′. Conversely,
let us introduce now a simple translation from any
abstract argumentation framework into the langage of
default theories. We first define a so-calledAttackers
function from AR to 2AR such that for everya,b in
AR, Attackers(a) = {⊤} ∪ {¬b | b attacks a} In
other word, when an argument in〈AR,attacks〉 is
attacked by no argument, the function associates it
with the “empty” attacker⊤, otherwise it associates it
with the set of its standard attackers logicaly negated.
Any argumentation frameworkAF = 〈AR,attacks〉
is then interpreted modularly as a default theory
∆AF = ( /0,DAF) with DAF = {⊤: Attackers(a)

a | a∈ AR}
Note that, while a default with a set of justifications
restricted to⊤ will participate in the generation of
a consistantextension, the same default but with an
empty set of justifications may lead to aninconsistant
set. This represents a degenerated case never consid-

ered in standard default reasoning. Hence, in order
to ensure a standard behaviour, the empty attacker⊤
is indeed the least element needed in the set of justi-
fications of the defaults resulting from our translation.

Example 2.(continued) Consider again the argument
framework AF1 given above. The corresponding
default theory is given by∆AF = ( /0,DAF) with
DAF = { :⊤

a ,

:¬a,¬c
b ,

:¬d
c ,

:¬c
d ,

:¬d,¬g
e ,

:¬e
f ,

:¬ f
g }

Note that, where translating anAF to a default
theory generates a number of defaults equal the
number of arguments inAF, the translation in the
other direction, that is from a default theory to an
AF, generates many more (generaly infinitely many)
arguments. This complexification is mainly due
to the fact that we move from full propositional
logics (on the side of defaults) to the simple flat
fragment of propositional atoms, negated or not,
with no operation of deductive closure (on the side
of AF). Let us still point out that, as in the logical
approaches of argumentation (cf. (Besnard and
Hunter, 2008)), the standard translations defined here
leads to define the arguments with a structure under
the form(support,conclusion). Eventually, note that
the notion ofdefeasible consequencedefined above
allows precisely to express the arguments under this
form by sort of removing the prerequisites from the
initial default theory. This stresses indeed the fact that
going from default theories to argument frameworks
is an abstraction process (which, as noticed, is
intractable in its full generality) while going from
argument frameworks to default theories is amodular
translation toward a fragment of defaults (linear,
since there are as many defaults as arguments and,
for each default, as many justifications as attackers,
plus one for the empty attacker). Now, what remains
to do regarding this translation is to ensure that
any admissible set of arguments get an equivalent
representation as some sort of default extension.

As shown in (Dung, 1995), there is an exact
correspondence between the R-extensions of a
default theory and the stable extensions of an
abstract argumentation theory. ConsiderA, a first-
order theory, andA′ ⊆ AR∆ a set of arguments
obtained from a default theory∆. Define (1)
arg(A) = {(Λ,λ) ∈ AR∆ | ∀β ∈ Λ,β ∪ A 6 ⊢}; (2)
flat(A′) = {λ | ∃(Λ,λ) ∈ A′}. Let ∆ be a default
theory. Then (lemma 42 and theorem 43 of (Dung,
1995)): (1) GivenE any R-extension of∆, arg(E)
is a stable extension of〈AR∆,attacks∆〉; (2) Given
E′ any stable extension of〈AR∆,attacks∆〉, flat(E′)
is an R-extension of∆. In order to consider into
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defaults the case of other types of extensions used in
abstract argumentation frameworks, we establish the
following corollary which characterizes the existence
of arguments inAR∆ regarding a default theory∆.

Corollary 1. Let ∆ = (W,D) be a default the-
ory and 〈AR∆,attacks∆〉 the corresponding argu-
mentation framework. Then: (1)(Λ,λ) ∈ AR∆ iff
there exists D′ ⊆ D, D′ grounded in W such that
Λ = JUST(D′) and λ ∈ Th(W ∪ CONS(D′)); (2)
flat(AR∆) =

⋃

D′∈2D

D′grounded

Th(W∪CONS(D′)).

4 A J-EXTENSION BASED
APPROACH OF ADMISSIBLE
EXTENSIONS

Let us consider in deeper way how to get arguments
of AR∆ from a default theory∆. Our idea is to map
any subset of applied defaults to a subset of argu-
ments as accurately as possible in the most possible
general way, and hence to relate eventually extensions
of AR∆ with extensions of∆. Note that Corollary 1
stresses the crucial role played by the subsets ofD in
the constitution of any argument(Λ,λ) of AR∆, since
for any such argument there existsD′ ⊆ D such that
Λ = JUST(D′) andλ ∈ Th(W∪CONS(D′)). The last
set is precisely of the form taken by the different kinds
of extensions of∆ (with possibly different constraints
on it). In other words, we expect to relate different
types of subsets ofAR∆ with some type of extension
of ∆ via JUST(D′) (for the supports of the arguments)
andTh(W∪CONS(D′)) (for the consequences of the
samearguments). To achieve this goal however, the
operatorarg defined earlier is too sloppy. Hence we
introduce a more accurate operator, directly defined
on a subset of defaults:

Definition 1. Given a default theory∆ = (W,D), and
D′ ⊆ D, let AR∆(D′) = {(Λ,λ) ∈ AR∆ | λ ∈ Th(W∪
CONS(D′))}

Obviously,AR∆(D) = AR∆. We can now come to
the characterization of conflict-free sets of arguments
via a subsetD′ of defaults:

Theorem 1. Given a default theory∆ = (W,D),
let D′ ⊆ D, D′ grounded in W and E= Th(W ∪
CONS(D′)). Then AR∆(D′) is conflict-free iff ∀β ∈
JUST(D′),¬β 6∈ E.

The two following corollaries show that J-
extensions correspond to conflict-free maximal sub-
sets of arguments. More precisely, from the definition
of J-extensions and theorem 1, we get immediately:

Corollary 2. Let ∆ = (W,D) be a default theory
and〈AR∆,attacks∆〉 the corresponding argumentation
framework. Let E∆ be any conflict-free⊆-maximal
subset of AR∆. Then flat(E∆) is a J-extension of∆.

Corollary 3. Let ∆ = (W,D) be a default theory
and〈AR∆,attacks∆〉 the corresponding argumentation
framework. Let E be any J-extension of∆. Then
AR∆(GD(E,∆)) is a conflict-free⊆-maximal subset
of AR∆.

The question is now to filter J-extensions in or-
der to represent admissible extensions in default logic.
We do it thank to the following characterization theo-
rem:

Theorem 2. Let ∆ = (W,D) be a default theory
and 〈AR∆,attacks∆〉 the corresponding argumenta-
tion framework. Let{Di,i∈N} be any enumeration
of the grounded subsets of D and E(Di) = Th(W ∪
CONS(Di)) for any i∈ N. For any D′ ⊆ D, AR∆(D′)
is an admissible set of〈AR∆,attacks∆〉 iff

(i) there is i∈ N such that D′ = Di

(ii) there is j∈ N such that D′ ⊆ D j and E(D j) is a
J-extension

(iii) for any k ∈ N, (∃β ∈ JUST(D′),¬β ∈ E(Dk))⇒
(∃γ ∈ E(D′),¬γ ∈ JUST(Dk))

What is shown here is that in order for a subset
of a J-extension to correspond to an admissible set,
one has to check that if any negation of a justification
used to derive this subset can be found in one of
the grounded subsets ofD (i.e. some argument is
attacked) then some formula of this grounded subset
will be found negated among the initial justifications
(i.e. the argument is defended). In other words, in
order to compute any admissible set inside a default
theory (and hence any preferred extension when
considering⊆-maximal subsets), it is sufficient to
filter inside the J-extensions. The most interesting
consequence of this result comes from the one-to-one
correspondence between J-extensions andι-answer
sets, which is the matter of the following section.

Note that in the case where the consequence
(∃γ ∈ E(D′),¬γ ∈ JUST(Dk)) of the implication of
(iii) is always true, we characterize stable extensions,
which indeed correspond directly to the R-extensions
via the characterization considered earlier.

5 LINK WITH ι-ANSWER SETS

Put into the context of answer set programming, J-
extensions have been shown by (Delgrande et al.,
2003) to correspond to some way of relaxing answer
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sets. This idea was further fully developed in (Gebser
et al., 2009) who defines theι-answer sets of a logical
program as the exact counterpart of the J-extensions
of the corresponding default theory. Following (Geb-
ser et al., 2009), remind that a normal logic program
is a finite set of rules of the form

p0← p1, . . . , pm,not pm+1, . . . ,not pn

where eachpi is anatom. For a ruler, head(r) and
body(r) denote the usual corresponding parts ofr,
while body+(r) andbody−(r) denote respectively the
positive part and the negative part ofbody(r). This
definition are extended from a rule to a programΠ,
e.g. head(Π) = {head(r) | r ∈ Π}. Eventually, note
that an empty head is similar to⊥, while an empty
body is similar to⊤. A programΠ is called ba-
sic if body−(Π) = /0. Each basic programΠ has a
unique⊆-minimal model, denoted byCn(Π), that is
the smallest set of atoms closed under the rules ofΠ.

Let Cn+(Π) = Cn(Π /0) = Cn(head(r) ←
body+(r) | r ∈ Π). ConsideringΠ a logic pro-
gram and X a set of atoms,X is an ι-answer
set of Π if X = Cn+(Π′) for some maximal
Π′ ⊆ Π such that (1)body+(Π′) ⊆ Cn+(Π′) and
(2) body−(Π′) ∩ Cn+(Π′) = /0. The ι-answer
sets of a programΠ correspond to the justified
extensions of the default theory given by the fol-
lowing known modular translation: each ruler

of Π yields a default
∧

body+(r):¬|body−(r)|
head(r) (where

| S |= {a | not a∈ S}), andW = /0. Given Π′ ⊆ Π,
let (1) ARΠ(Π′) = {(body−(r),head(r)) | r ∈ Π′},
(2) flatΠ(Π′) = {head(r) | r ∈ Π′} Given any argu-
mentation frameworkAF = 〈AR,attacks〉, from the
translation defined earlier we get a default theory
∆AF = ( /0,DAF). In turn, from the modular translation
defined just above, this default theory yields a logic
program ΠAF with an empty positive body (i.e.
body+(Π)AF = /0). Clearly, ARΠ(ΠAF) = AR, and
for everyD′ ⊆ DAF there existsΠ′ ⊆ ΠAF such that
AR∆(D′) = ARΠ(Π′) andflat(AR∆(D′)) = flatΠ(Π′).
As a consequence of corollaries 2 and 3 we then get
immediately:

Corollary 4. LetΠ be a program with an empty pos-
itive body and ARΠ(Π) the corresponding argumen-
tation framework. For anyΠ′ ⊆ Π, ARΠ(Π′) is a⊆-
maximal conflict-free subset of ARΠ(Π) iff head(Π′)
is a ι-answer set ofΠ.

From theorem 2 we get directly:

Corollary 5. LetΠ be a program with an empty pos-
itive body and ARΠ(Π) the corresponding argumen-
tation framework. Let X1, . . . ,Xk be a collection of
all theι-answer sets ofΠ and ARΠ(Π1), . . . ,ARΠ(Πk)
the corresponding conflict-free maximal subsets of

ARΠ(Π). For any Π′ ⊆ Π, ARΠ(Π′) is an admis-
sible set of ARΠ(Π) iff there is i, 1 ≤ i ≤ k, such
thatΠ′⊆Πi and(∀r ′ ∈Π′)(∃r ∈Π\Π′)(body−(r ′)∩
head(r) 6= /0⇒ head(Π′)∩body−(r) 6= /0).

Example 3. (continued) Back toAF1, we get the fol-
lowing logic programΠAF1:

r1 : a ← r5 : e ← not d,not g
r2 : b ← not a,not c r6 : f ← not e
r3 : c ← not d r7 : g ← not f
r4 : d ← not c

Eight ι-answer sets are generated, namelyX1 =
{a,c,e}, X2 = {a,c, f}, X3 = {a,c,g}, X4 = {a,d, f},
X5 = {a,d,g}, X6 = {b,d, f}, X7 = {b,d,g},
X8 = {b,e}. For instance, consider especiallyX1
andX5 that respectively correspond to the following
two conflict-free⊆-maximal subsets ofARΠ(ΠAF1):
ARΠ(Π1) = {({},a),({not d},c),({not d,not g},e)},
ARΠ(Π5) = {({},a),({not c},d),({not f},g)}, with
Π1 = {r1

, r3
, r5}, Π5 = {r1

, r4
, r7}. Applying corol-

lary 5, it is easy to check that while({not f},g)
from ARΠ(Π5) attacks ({not d,not g},e) from
ARΠ(Π1) (that is body−(r5) ∩ head(r7) 6= /0),
ARΠ(Π1) does not defends itself from this attack
(that ishead(Π1)∩body−(r7) = /0). This means that
ARΠ(Π1) is not admissible and that the argument
({not d,not g},e) has to be removed in order to get
{({},a),({not d},c)} as an admissible subset of
ARΠ(ΠAF1). Similar checks apply to all theι-answer
sets found here.

Let us now define the counterpart of an admis-
sible set of arguments inside a logic program:
Definition 2. LetΠ be a logic program and X be a set
of atoms. X is called anadmissible answer set ofΠ iff
there isΠ′ ⊆Π such that X= flatΠ(Π′) and ARΠ(Π′)
is an admissible set of ARΠ(Π).

Following (Gebser et al., 2009), we can augment
our framework with integrity constraints whose pur-
pose here will be to filter inside theι-answer sets the
subsets that are admissible. Remind that an integrity
constraint is a rulec with an empty head, that is

← p1, . . . , pm,not pm+1, . . . ,not pn

After (Gebser et al., 2009), we consider a constraintc
satisfied with respectto a setX of atoms if for any rule
r of Π, body+(c) 6⊆X or body−(c)∩X 6= /0. In order to
eliminate intoι-answer sets the subsets that would not
correspond to admissible sets ofARΠ(Π) for a given
programΠ obtained from an abstract argumentation
framework, let

C
Ad
Π = {← head(r ′),body−(r) |

r, r ′ ∈Π,head(r) ∈ body−(r ′)}
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Remark:Just as we label every rule of a program
with a unique natural number, we find convenient to
label every constraint from the two rules that yield
it in a program, i.e. in the sequelci j will denote
← head(r i),body−(r j) whenhead(r i) ∈ body−(r j).

Definition 3. Let Π be a logic program,C Ad
Π be a set

of integrity constraints and X be a set of atoms. X is
admissible with respect toC Ad

Π iff X is a subset of an
ι-answer set ofΠ such that every c∈ C Ad

Π is satisfied
with respect to X.

Theorem 3. LetΠ be a logic program and X be a set
of atoms. Then X is an admissible answer set ofΠ iff
X is admissible with respect toC Ad

Π .

Example 5. (continued) Back toAF1, we add to the
logic programΠAF1 the set of constraintsC Ad

ΠAF1
:

c12 : ← b c56 : ← f ,not d,not g
c32 : ← b,not d c67 : ← g,not e
c45 : ← e,not c c75 : ← e,not f

X1 = {a,c,e} is eliminated byc75 sincebody+(c75)⊆
X1 whilebody−(c75)∩X1 = /0, and hencec75 is not ad-
missibly satisfied with respect toX1. On the contrary,
X1 \ {e} is an admissible set ofΠAF1 with respect to
C

Ad
ΠAF1

. Note that any set containingb is immediately

eliminated byc12. Note that in order to automatize
the enumeration of the possible candidates among the
subsets of theXi , it is necessary to relax the defini-
tion of anι-answer set by removing the condition on
maximality.

6 CONCLUSIONS

In this paper, we have established a characterization
of the admissible semantics defined by Dung inside
defaults and answer-set programming. Although not
surprising, to our opinion these results show a closer
relation of abstract argumentation frameworks with
defaults and answer sets than initially described by
Dung. Notably, and contrary to the approaches used
for instance by (Dung, 1995), (Nieves et al., 2008)
or (Egly et al., 2010), a first-order encoding appears
useless for processing abstract argumentation frame-
works with logic programs. Especially, this means
that no grounding is necessary for the logic programs
obtained from our transformation of argumentation
frameworks. Among further perspectives, we are con-
cerned with the ability to extend the current charac-
terization to other different semantics, e.g. obviously
complete extensions, but also the CF2 (Baroni et al.,
2005) or the semi-stable (Caminada, 2006) seman-
tics. Of course, and regarding complexity issues, we

are also concerned with a detailed comparison with
the computation methods proposed in (Nieves et al.,
2008) and (Egly et al., 2010). Finally, note that an-
other direction under way concerns the possibility to
extend the bipolar approach of abstract argumentation
frameworks in order to provide them with the same
expressive power as normal logic programs.

REFERENCES

Amgoud, L. and Besnard, P. (2009). Bridging the gap
between abstract argumentation systems and logic.
In Godo, L. and Pugliese, A., editors,Scalable Un-
certainty Management: Proceedings of SUM 2009,
volume 5785 ofLecture Notes in Computer Science,
pages 12–27. Springer.

Baroni, P., Giacomin, M., and Guida, G. (2005). Scc-
recursiveness: a general schema for argumentation se-
mantics.Artificial Intelligence, 168(1-2):162–210.

Besnard, P. and Hunter, A. (2008).Elements of Argumenta-
tion. The MIT Press.

Bondarenko, A., Dung, P. M., Kowalski, R. A., and Toni, F.
(1997). An abstract, argumentation-theoric approach
to default reasoning. Artificial Intelligence, 93(1-
2):63–101.

Caminada, M. (2006). Semi-stable semantics. In Dunne,
P. E. and Bench-Capon, T. J. M., editors,COMMA:
Computational Models of Argument, volume 144 of
Frontiers in Artificial Intelligence and Applications,
pages 121–130. IOS Press.

Delgrande, J. P., Gharib, M., Mercer, R. E., Risch, V., and
Schaub, T. (2003). Lukaszewicz-style answer set pro-
gramming: A preliminary report. In Vos, M. D. and
Provetti, A., editors,ASP: Second International Work-
shop on Answer Set Programming. CEUR Workshop
Proceedings, Aachen, Germany.

Dung, P. M. (1995). On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic
programming and n-person games.Artificial Intelli-
gence, 77(2):321–358.

Egly, U., Gaggl, S. A., and Woltran, S. (2010). Answer-
set programming encodings for argumentation frame-
works. Argument and Computation, 1(2):147–177.

Gebser, M., Gharib, M., Mercer, R. E., and Schaub, T.
(2009). Monotonic answer set programming.Jour-
nal of Logic and Computation, 19(4):539–564.

Łukaszewicz, W. (1988). Considerations on default logic –
an alternative approach.Computational Intelligence,
4:1–16.

Nieves, J. C., Cortés, U., and Osorio, M. (2008). Preferred
extensions as stable models.TPLP, 8(4):527–543.

Reiter, R. (1980). A logic for default reasoning.Artificial
Intelligence, 13:81–132.

Risch, V. (1996). Analytic tableaux for default logics.Jour-
nal of Applied Non-Classical Logics, 6:71–88.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

242


