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Abstract: We present an idea of probabilistic estimation of Vapnik-Chervonenkis dimension given a set of indicator
functions. The idea is embedded in two algorithms we propose — namedA andA′. Both algorithms are based
on an approach that can be described asexpand or divide and conquer. Also, algorithms are parametrized
by probabilistic constraints expressed in a form of(ε,δ)-precision. The precision implies how often and by
how much the estimate can deviate from the true VC-dimension. Analysis of convergence and computational
complexity for proposed algorithms is also presented.

1 INTRODUCTION

Vapnik-Chervonenkis dimension is an important no-
tion within Statistical Learning Theory (Vapnik and
Chervonenkis, 1968; Vapnik and Chervonenkis,
1989; Vapnik, 1995; Vapnik, 1998). Many bounds
on generalization or sample complexity are based on
it.

Recently, several other measures of functions sets
capacity (richness) have been under study. Particu-
larly, of great interest arecovering numbers(Bartlett
et al., 1997; Anthony and Bartlett, 2009). In many
cases covering numbers can lead to tighter bounds
(on generalization or sample complexity) than pes-
simistic bounds based on VC-dimension. However,
the constructive derivation of covering numbers itself
is usually a challenge. One has to suitably take ad-
vantage of some properties of given set of functions
or of the learning algorithm and discover how they
translate onto a cover. One of such attractive results is
e.g. a result from (Zhang, 2002) related to regulariza-
tion. Qualitatively, it states that for sets of functions
linear in parameters and under aLq-regularization
(generalq = 1,2, . . .) the bound on covering number
scales only linearly with the dimension of input do-
main. This allows to learn and generalize well with
a sample complexity logarithmic in the number of at-
tributes. On the other hand, there exist results where
the property used for the derivation of covering num-
bers is actually the known VC-dimension of some
set of functions (Anthony and Bartlett, 2009), which

again proves its usefulness.
Known are some sets of functions for which the

exact value of VC-dimension has been established
by suitable combinatorial or geometric proofs (of-
ten very complex). Here are some examples. For
polynomials defined overRd of degree at mostn,
the VC-dim is

(n+d
d

)
, see e.g. (Anthony and Bartlett,

2009). For hyperplanes inRd (which can be bases
for multilayer perceptrons) the VC-dim isd+1 (Vap-
nik, 1998). For rectangles inRd the VC-dim is 2d
(Cherkassky and Mulier, 1998). For spheres inRd

(which can be bases of RBF neural networks) the
VC-dim is d+1 (Cherkassky and Mulier, 1998). As
regards linear combinations of bases as above the
VC-dim can typically be bounded by the number of
bases times the VC-dim of a single base (Anthony and
Bartlett, 2009, p. 154), this fact however requires usu-
ally a careful analysis.

Also, some analysis has been done in the subject
of computational complexity for the VC-dimension.
In particular, in (Papadimitriou and Yannakakis,
1996) authors take up the following problem,,given
a set of functions F and a natural number k, is
VC-dim(F) ≥ k?” , i.e. one asks about a lower bound
of VC-dimension. And the problem is proved to be
logNP-complete.

Our motivation for this paper is to introduce an
idea for algorithms, which given an arbitrary set of
functions (plus a learning algorithm) would be able
to estimate its VC-dimension with an imposedproba-
bilistic accuracy. Such algorithms, if sufficiently suc-
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cessful, could potentially replace the need for com-
plex proofs establishing the exact value of the VC-
dimension.

2 NOTATION, NOTIONS, TOOLS

We restrict considerations to the binary classification
learning problems.

Let F denote the set of indicator functions1, which
we have at disposal for learning. LetL denote the
learning algorithm we use to choose a single function
from F . This happens via thesample error minimiza-
tion2 principle.

Let P denote the unknown joint probability distri-
bution defined overZ = X ×Y from which training
pairsz = (x,y) are drawn, where in generalx ∈ Rd

are input points andy∈ {0,1} are corresponding class
labels. Byz = {z1,z2, . . . ,zm} we shall denote the
whole training sample of sizemdrawn from the prod-
uct distributionPm in a i.i.d. manner3.

For any fixed functionf ∈ F the true generaliza-
tion error with respect toP is typically calculated as

erP( f ) =
∫

Z
l f (z)dP(z), (1)

wherel f is the following loss function

l f (z) = l f
(
(x,y)

)
=

{
0, for f (x) = y;
1, for f (x) 6= y.

(2)

Therefore erP( f ) expresses the probability of misclas-
sification of (x,y) drawn randomly fromP. Since
P is unknown the learning algorithmL can only try
to minimize the frequency of misclassification on the
observed sample i.e.:

êrz( f ) =
1
m

m

∑
i=1

l f (zi). (3)

Let the solution-function ofL be denoted bŷf .
We now briefly remind some notions introduced

by Vapnik. LetlF = {l f : f ∈F} denote the set of loss
functions generated byF . Consider the following set

{(
l f (z1), . . . , l f (zm)

)
: f ∈ F

}
. (4)

It contains all distinguishable functions inlF re-
stricted to the fixed samplez1, . . . ,zm. Throughout the
paper we shall denote (4) by(lF)|z1,...,zm.

1{0,1}-valued functions.
2Alternatively also calledempirical risk minimization
3Independent, identically distributed. This meansPm is

unknown but fixed.

Using a natural correspondence between indica-
tor functions and dichotomies of a set, Vapnik intro-
duces the notion ofshattering. We say thatlF shat-
ters a samplez1, . . . ,zm if all its dichotomies can be
generated using functions fromF , equivalently this
means that the number of distinguishable functions is
#(lF)|z1,...,zm = 2m. The Vapnik-Chervonenkis dimen-
sion for lF (or equivalently forF) is equal to the size
of some largest sample that can be shattered.

It will be helpful to remind three more quantities:

• Vapnik-Chervonenkis entropy

HF(m) =
∫

Zm
ln#(lF)|z1,...,zmdPm(z1, . . . ,zm),

(5)
which is an expectation of the logarithm of the
number of distinguishable functions;

• annealed entropy

HF
ann(m) = ln

∫
Zm

#(lF)|z1,...,zmdPm(z1, . . . ,zm),

(6)
which is a logarithm of expected number of dis-
tinguishable functions;

• growth function

GF(m) = sup
z1,...,zm

#(lF)|z1,...,zm, (7)

which is supremum number of distinguishable
functions.

Known is the connectionHF(m) ≤ HF
ann(m) ≤

lnGF(m), where the first inequality is due to Jensen
inequality. Known also is the fact, that VC-dim(F) is
equal to such an argument ofGF after which it stops
growing exponentially.

As a tool, throughout the paper, we shall exten-
sively take advantage of one-sided Chernoff inequali-
ties (Hellman and Raviv, 1970; Schmidt et al., 1995),
which we now write down the following way

p−νm ≤

√
− lnδ
2m

, (8)

νm− p≤

√
− lnδ
2m

, (9)

wherep is a probability of some event (that will be
of interest for us) andνm is its frequency observed in
m independent trials. Each inequality holds true with
probability4 at least 1− δ.

Also, in several places we are going to take ad-
vantage of Iverson notation[s], which returns 1 if the
statements is true and 0 otherwise (Graham et al.,
2002).

4The 1−δ is an outer probability calculated with respect
to probabilistic space defined over all random experiments
consisting ofm independent trials.
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3 PROBABILISTIC SHATTERING

In this section we introduce several new notions,
which can be regarded as probabilistic versions of se-
lected notions reminded in the previous section. The
new notions are suitable for our purposes and give a
high-level intuition on algorithms we are about to pro-
pose.

3.1 Distribution Dependence — Two
Conceptual Scenarios

We start with the following remark. It is the fact
that: shattering, growth function and VC-dimension
are distribution-independentnotions. For our pur-
poses it will be convenient though to define notions
that are distribution-dependent, because we are going
to carry out probabilistic estimations. All the notions
shall therefore refer toP or Pm. Two conceptual sce-
narios are possible here.

I. In this scenario we think ofP as it was originally
defined — i.e. the joint probability distribution de-
fined overX ×Y describing the specific learning
problem. And therefore we should treat all new
notions asdistribution-dependentcounterparts of
classical Vapnik’s notions.

II. In this scenario we conceptually replaceP by
the uniform distribution. By doing so we sep-
arate ourselves from the specific problem. For
this purpose, we only need to assume a bound-
edness ofX. The P will still explicitly appear
in the notions and formulas. But, we can then
agree (as a form of convention) to look at the no-
tions asdistribution-independentor at least ‘orig-
inal problem’-distribution-independent, since the
uniformness does not favor any samples.

The reader can therefore treat further considera-
tions in either context — of scenario I or II. In both
scenarios we shall assume that we can freely and nu-
merously redraw samples fromP.

3.2 New Notions

Definition 1. We say that µF(m) is a shatterability
measure with respect to the probability distribution
Pm, and is calculated as follows

µF(m) =

∫
Zm

[#(lF)|z1,...,zm = 2m]dPm(z1, . . . ,zm).

(10)

Intuitively the shatterability measureexpresses
how frequently one ‘comes across’ samples drawn
from Pm which can be shattered. We suggest to

think of shatterability measure in conjunction with
the growth functionGF(m), see (7). Imagine some
method trying to discover the argumentz1, . . . ,zm in
Pm for which the supremum is attained. Of course for
strictness, we must remind that firstly the definition of
GF(m) is distribution-independent and secondly even
if it was distribution-dependent then the supremum
could be attained on sets of measure zero. Never-
theless, the intuition that the smallerµF(m) the more
difficult it is to indicate the supremum represented by
GF(m) is true. In particular ifGF(m) < 2m then cer-
tainly µF(m) = 0.

Definition 2. We say that a set of indicator functions
F is an m-shatterer with respect to Pm (or: shatters
some samples of size m drawn from Pm) if µF(m)> 0.

Definition 3. We say that a set of indicator functions
F is not an m-shatterer with respect to Pm everywhere,
if the two conditions are met:

1. µF(m) = 0,

2. ∄ z1, . . . ,zm such that#(lF)|z1,...,zm = 2m.

Definition 4. We say that a set of indicator functions
F is not an m-shatterer with respect to Pm almost ev-
erywhere, if the two conditions are met:

1. ∃ z1, . . . ,zm such that#(lF)|z1,...,zm = 2m,

2. µF(m) = 0.

The complementary definitions above follow from
the arguments discussed earlier, and thealmost every-
wherecondition takes into account that the case where
2m dichotomies are feasible but for sets (samples) of
measure zero.

3.3 Probabilistic Estimation of
VC-dimension — Sketch of Idea

We now sketch an idea according to which the algo-
rithms to be presented later shall work.

Suppose that for given sample of sizem we exe-
cute multiple times (sayn times) an experiment con-
sisting of drawing a samplez1, . . . ,zm from Pm and
checking exhaustively if all its dichotomies are fea-
sible, i.e. checking if #(lF)|z1,...,zm = 2m. If for any
experiment this is true, then we can stop (beforen is
reached), since certainly VCdim(F) ≥ m and we can
try to increase the sample size. If this event did not
occur in any experiment, then by means of Chernoff
inequality we have that with probability at least 1−δ:

µF(m)≤ 0+

√
− lnδ

2n
. (11)

We write down 0 explicitly on purpose — it is the
observed frequency of the event ‘all dichotomies are
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feasible on random sample’. In that case we shall de-
crease the sample size. We would also like to intro-
duce a probabilistic precision parameter for the algo-
rithm. We name it(ε,δ)-precision, 0< ε,δ < 1. If we
insertε :=

√
− lnδ/(2n), it follows that the needed

number of experiments isn= ⌈− lnδ/(2ε2)⌉.
Now, by analogy to the definition 4, we introduce

the following definition.

Definition 5. We say that a set of indicator functions
F is not a(m,ε,δ)-shatterer with respect to Pm if with
probability at least1− δ:

µF(m)≤ ε.

In simple words we say (with an imposed proba-
bilistic precision) thatF does not shatter samples of
sizem, if the probability that 2m dichotomies on a ran-
dom sample are feasible is suitably small.

Now, we define theprobabilistic VC-dimension.

Definition 6. We say that the probabilistic
(ε,δ)-VC-dimension for the set F equals m, we
write

VCdimε,δ(F) = m,

if there exists a sample of size m that can be
shattered by F and simultaneously F is not a
(m+1,ε,δ)-shatterer.

4 ALGORITHM A

The algorithmA, we are about to propose, returns the
probabilistic dimension VCdimε,δ(F). This value is
an estimate of the true VC-dimension.

First, we present an auxiliary algorithm calledB,
which will be invoked by the main algorithmA in a
loop. The algorithmB works as the checker of feasi-
bility of all dichotomies given a fixed sample, accord-
ingly to the sketch from the section 3.3. The algo-
rithm returns 1 when all dichotomies are feasible and
0 otherwise.

B(F;z1, . . . ,zm)

1. For all(t1, . . . , tm) ∈ {0,1}m:

1.1. Create a temporary training sampleS =
(x1, t1), . . . ,(xm, tm) and execute learning algo-
rithm L on it, which yieldsf̂ .

1.2. If êrS( f̂ )> 0 return 0.

2. Return 1.

Figure 1: Auxiliary algorithmB.

We now present the algorithmA which works with
an imposed(ε,δ)-precision, see the Fig. 2. As argu-
ments forA, apart fromF we also enlistP, with solely

such an intention that we will be able to draw multiple
samples from it, nothing more (sinceP in general can
be unknown, recall scenario I).

Aε,δ(F,P)

1. SetmL := 1, mU := ∞, m := mL.

2. Repeat whilemU −mL > 1:

2.1. Sets := 0.
2.2. Repeatn= ⌈− lnδ/(2ε2)⌉ times:

2.2.1 Draw a samplez1, . . . ,zm from Pm.
2.2.2 If B(F;z1, . . . ,zm) = 1 then sets := 1 and jump

out of the loop 2.2.
2.3 If mU = ∞:
2.3.1 If s= 1 then setmL := 2m, m := mL.
2.3.2 Else setmL := 1/2m, mU := m, m := (mL +

mU)/2.
2.4 Else
2.4.1 If s= 1 then setmL := m, m := (mL +mU )/2.
2.4.2 Else setmU := m, m := (mL +mU )/2.

3. Return⌊mL⌋.

Figure 2: AlgorithmA.

The algorithm uses an approach that could be de-
scribed asexpand or divide and conquer. At the start
we set the lower boundmL and the current sample size
m to 1, whereas we set the upper boundmU to infin-
ity. At first, as the algorithm progresses and all di-
chotomies prove feasible (s flag equals 1), the tested
sample sizes are doubled (step 2.3.1.). Let us call it
the expand-phase. When a moment is reached such
that all dichotomies are not feasible despiten trials,
the algorithm suitably setsmL andmU (no longer in-
finite) and puts the next sample sizem to be tested in
the middle ofmL andmU (step 2.3.2.). This moment
starts thedivide-phase. Since then, all next execu-
tions of the main loop (step 2) make the algorithm
enter step 2.4. and suitably narrow down the interval
[mL,mU ) until the stop condition is reached.

The form of the return value⌊mL⌋ requires a short
explanation. The floor function is meant to handle
the special case when after the first iteration of the
main loop (step 2.) thesflag is already equal 0. Then
halfening (step 2.3.2.) causesmL to be 1/2, and since
the stop condition is reached we want to correct this
value to 0.

5 CONVERGENCE AND
COMPUTATIONAL
COMPLEXITY ANALYSIS

We will show that it is convenient to analyze con-
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vergence of the algorithmA in terms of shatterability
measures for given problem.

5.1 Sequence of Shatterability Measures
— General Observations

Consider the sequence of shatterability measures
along growing sample size:

µF(1),µF(2), . . . .

A moment of thought leads to the following observa-
tion.

Lemma 1. The sequence µF(1),µF(2), . . . is non-
increasing.

Proof. By independence and Fubini’s theorem we
have that:

µF (m+1)

=
∫

Zm+1
[#(lF )|z1,...,zm+1

= 2m+1]dPm+1(z1, . . . ,zm+1)

=

∫
Z

∫
Zm

[#(lF)|z1,...,zm+1
= 2m+1]dPm(z1, . . . ,zm)dP(zm+1)

≤
∫

Z

∫
Zm

[#(lF)|z1,...,zm
= 2m]dPm(z1, . . . ,zm)dP(zm+1)

≤ µF (m)

∫
Z

dP(zm+1).

Please note that in the second equality-pass anyzi
can be taken outside the inner integral, not necessarily
zm+1, and the rest of the proof is still valid.

A second obvious observation is thatµF(m) = 0
for all m> VCdim(F). This follows from the defini-
tion of VC-dimension.

A more interesting fact is that there exist
sets of functionsF and distributionsP for which
the sequence complies with the following pattern:
(1, . . . ,1,0, . . .). It means the sequence consists solely
of starting ones and after some point zeros take place.
Consider e.g. hyperplanes on a plane. Clearly any sin-
gle point or two points can be shattered by a hyper-
plane. Any three points can also be shattered provided
that they do not lie in the same line. This is called
a “general position”, see e.g. (Anthony and Bartlett,
2009, Theorem 3.1), (Wenocur and Dudley, 1981).
But even so, the situation of three points lying in the
same line is of probability measure zero in continuous
spaces. Therefore the sequence for that case would
be (1,1,1,0, . . .). On the other hand it is possible to
indicate certain setsF and distributionsP for which
the sequence that does not consist solely of ones and
zeros. As an example see the Fig. 3. It illustrates a
set of functions defined over a plane with the decision
boundary in the shape of ‘U’ letter. Suppose ‘U’ is

of fixed width and height and it can be shiftedonly
along horizontal axes. As the figure shows there exist
samples of sizem= 1 (with positive probability mea-
sure) for which only 1 dichotomy is feasible. Also,
there exist such samples (also with positive proba-
bility measure) for which 2 dichotomies are feasible.
The same is true for the case ofm= 2. Therefore, the
corresponding shatterability measures must be frac-
tions.

(a) m= 1; all dichotomies feasible

(b) m= 1; not all dichotomies feasible

(c) m= 2; all dichotomies feasible

(d) m= 2; not all dichotomies feasible

Figure 3: Set of functions with horizontally shifting ‘U’-
shaped decision boundary of fixed width. Illustration of
feasibility of all dichotomies for different samples.

From now one, for shortness we will denote the
sequence byµ1,µ2, . . ..

5.2 Results Distribution and
Convergence for Algorithm A

As one may note, the result of algorithmA being
VCdimε,δ(F) cannot be an overestimation of the true
VCdim(F), but it might be its underestimation. In
this section we analyze how often this underestima-
tion takes place and in effect we derive the probabil-
ity distribution defined over the results to whichA can
converge. The analysis is carried out in terms of the
sequenceµ1,µ2, . . ..

Let p(h) denote the probability thatA returns
VCdimε,δ(F) = h and let us start by taking a closer
look at small cases. Forh= 0 we have
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p(0) = (1−µ1)
n, (12)

since it requires that in alln = ⌈− lnδ/(2ε2)⌉ inde-
pendent trials the event opposite to feasibility of all
dichotomies occurs (inn times the algorithmB re-
turned 0). Forh= 1 we have

p(1) =
(
1− (1−µ1)

n)(1−µ2)
n. (13)

The first factor arises as a complement ofp(0) —
the algorithm discovered that for some sample of size
m= 1 all dichotomies were feasible, but it failed to
discover such property form= 2, hence the second
factor. The cases ofh = 2,3 reveal more of theex-
pand or divide and conquerapproach:

p(2) =
(
1− (1−µ1)

n)(1− (1−µ2)
n)(1−µ4)

n

(1−µ3)
n. (14)

p(3) =
(
1− (1−µ1)

n)(1− (1−µ2)
n)(1−µ4)

n

(
1− (1−µ3)

n), (15)

After the algorithm failed to discover feasibility of all
dichotomies form= 4, it had to make a jump back-
wards to check the case ofm= 3. We now move to a
bigger case example ofh= 21 which illustrates well
forward and backward jumps during thedivide phase
in a chronological order (see indices ofµ).

p(21)=
(
1−(1−µ1)

n
)(

1−(1−µ2)
n
)(

1−(1−µ4)
n
)

(
1− (1−µ8)

n
)(

1− (1−µ16)
n
)
(1−µ32)

n

(1−µ24)
n
(
1− (1−µ20)

n
)
(1−µ22)

n
(
1− (1−µ21)

n
)
.

(16)

A careful analysis allows to find a regular formula for
the whole distribution. We state it as the following
theorem.
Theorem 1. Suppose µ1,µ2, . . . is the sequence of
shatterability measures for given set of functions
F and distribution P. Let q= ⌊log2h⌋ and let
(hq,hq−1, . . . ,h0)2 denote a binary representation for
each h> 0. Then, the probability distribution of re-
sults to which algorithm A may converge is:

p(0) = (1−µ1)
n,

p(1) =
(
1− (1−µ1)

n)(1−µ2)
n.

p(h) =
q

∏
k=0

(
1− (1−µ2k)n)(1−µ2q+1)n

·
q−1

∏
k=0

(
hq−k−1+(−1)hq−k−1(1−µi(h,k))

n),

(17)

for h≥ 2, where

i(h,k) =
1
2
(2q+1+2q)+

k

∑
j=1

(−1)1−hq− j ·2q− j−1.

(18)

Sketch of proof.Note that during theexpand phase
the algorithm performs⌊log2 h⌋+2 iterations (which
is q+2) and this is represented inp(h) by the product
∏q

k=0

(
1− (1−µ2k)n

)
(1−µ2q+1)n. In this product all

but last factors must be of form 1− (1−µ2k)n, since
the algorithm discovered that some sample of size 2k

can be shattered, whereas the last factor must be of
form (1− µ2q+1)n, since inn trials samples of size
2q+1 failed to be shattered. In thedivide phasethe al-
gorithm performs log2(2

q+1−2q) = q iterations, this
is represented by the remaining product. Thei(h,k)
function handles suitably successive indices visited
by the algorithm and it is easy to check that these in-
dices are determined by theq−1 least significant bits
in the binary representation(hq,hq−1, . . . ,h0)2. These
bits determine also whether the factor should be of
form (1−µi(h,k))

n or 1− (1−µi(h,k))
n.

The following statements are direct consequences
of p(h) distribution.

Corollary 1. Suppose that VCdim(F) = h∗ and sup-
pose the sequence of shatterability measures for given
F and P consists solely of ones and zeros. Then dis-
tribution of results is p(h∗) = 1 and p(h) = 0 for all
h 6= h∗. Therefore, for any0< ε,δ < 1 we have that
Aε,δ(F,P) = h∗.

This states that the algorithmA always converges
to the true Vapnik-Chervonenkis dimension if the se-
quence of shatterability measures does not contain
fractions.

Corollary 2. Suppose that VCdim(F) = h∗ and sup-
pose the sequence of shatterability measures contains
fractions. Then the expected result isEAε,δ(F,P) <
h∗, where expectation is taken over infinite number of
runs of algorithm A for given problem.

This states that the algorithmA underestimates the
true Vapnik-Chervonenkis dimension if the sequence
of shatterability measures does contain fractions.

5.3 Computational Complexity

It is easy to see that the number of iterations of the
main loop in algorithmA (step 2.) is logarithmic as a
function of the true VCdim(F) = h∗. The number of
iterations is at most 2 log2h∗+2. Recall that there are
q+2 iterations needed by theexpand phaseandq it-
erations by thedivide phase. Unfortunately the most
heavy step is the execution of the algorithmB (step
2.2.2.), since it is an exhaustive check of feasibility of
all dichotomies. Therefore if we consider the compu-
tational complexity as a function ofε,δ,h∗ then the
pessimistic number of iterations
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∑
visited indices

of µi

n2i ≤ n
2h∗

∑
i=1

2i = O
(

n(2h∗+1−1)
)
, (19)

which is exponential inh∗. This is a consequence of
the fact theB is an exact algorithm.

In the next section we propose a new algorithm
namedA′. It is very similar toA but uses an auxiliary
algorithmB′ being a softened probabilistic version of
B. This leads to a constant (at most) complexity of the
step 2.1.2. and in effect logarithmic complexity of the
whole algorithm.

6 ALGORITHM A′

First, we formulate a probabilistic auxiliary algorithm
B′. For a fixed samplez1, . . . ,zm consider the follow-
ing quantity: ηF(z1, . . . ,zm) defined as the probabil-
ity that a random dichotomy drawn from the uniform
distribution (defined over{0,1}m) is feasible by some
function inF onz1, . . . ,zm:

ηF(z1, . . . ,zm) = (20)
2m−1

∑
i=0

1
2m[∃ f ∈ F realizing dichotomy

(im−1, . . . , i0)2 onz1, . . . ,zm], (21)

where(im−1, . . . , i0)2 is a binary representation ofi.
We shall introduce an additional(ε,δ)-precision.

Suppose we would like to haveB′
ε,δ(F ;z1, . . . ,zm) =

0 if an unfeasible dichotomy occurred, and to have
B′

ε,δ(F ;z1, . . . ,zm)= 1 if with probability at least 1−δ

ηF(z1, . . . ,zm)≥ 1− ε (22)

holds true.
The algorithmB′ is presented in the Fig. 4.

B′
ε,δ(F ;z1, . . . ,zm)

1. RepeatN =− lnδ/(2ε2) times:

1.1. Draw a random dichotomy(t1, . . . , tm) from a
uniform distribution.

1.2. Create a temporary training sampleS =
(x1, t1), . . . ,(xm, tm) and execute learning algo-
rithm L on it, which yieldsf̂ .

1.3. If êrS( f̂ )> 0 return 0.

2. Return 1.

Figure 4: Auxiliary algorithmB′.

We now present the algorithmA′. Since the inner
auxiliary algorithm was probabilistically softened, the

A′
ε1,δ1,ε2,δ2

(F,P)

1. SetmL := 1, mU := ∞, m := mL.

2. Repeat whilemU −mL > 1:

2.1. Sets := 0.
2.2. Repeatn= ⌈− lnδ1/(2ε2

1)⌉ times:
2.2.1 Draw a samplez1, . . . ,zm from Pm.
2.2.2 If B′

ε2,δ2
(F ;z1, . . . ,zm) = 1 then sets := 1 and

jump out of the loop 2.2.
2.3 If mU = ∞:
2.3.1 If s= 1 then setmL := 2m, m := mL.
2.3.2 Else setmL := 1/2m, mU := m, m := (mL +

mU)/2.
2.4 Else
2.4.1 If s= 1 then setmL := m, m := (mL +mU)/2.
2.4.2 Else setmU := m, m := (mL +mU)/2.

3. Return⌊mL⌋.

Figure 5: AlgorithmA′.

algorithmA′ requires now four precision parameters
ε1,δ1,ε2,δ2, see the Fig. 5.

The result ofA′ is quantity compliant with the fol-
lowing definition (and is an estimation of the true VC-
dimension).

Definition 7. We say that the probabilistic
(ε1,δ1,ε2,δ2)-VC-dimension for the set F equals m,
we write

VCdimε1,δ1,ε2,δ2
(F) = m,

if there exists a sample of sizez1, . . . ,zm such that with
probability at least1− δ2

ηF(z1, . . . ,zm)≥ 1− ε2 (23)

and with probability at least1− δ1

µF(m+1)≤ ε1. (24)

Putting it in simpler wording, the probabilistic
(ε1,δ1,ε2,δ2)-VC-dimension ism if we can indicate
a sample of sizem for which with high probability
all dichotomies are feasible, and simultaneously with
high probability we cannot indicate such sample of
size m+ 1. Obviously, both probability parameters
refer strictly to quantitiesµ andη, which one should
be aware of. They are related to different probabilistic
spaces. The probability 1− δ1 andµ quantities refer
to the probabilistic space withP distribution, whereas
the probability 1− δ2 and η quantities refer to the
probabilistic space describing feasibility of random
dichotomies drawn uniformly from{0,1}m for some
fixed samplez1, . . . ,zm.

Please note that, in contrast to the algorithmA, the
result ofA′ can be (with small probability) both under-
estimation and overestimation of the true VCdim(F).
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It is worth remarking that the algorithmB′ is of
constant complexityO(N) whereN = − lnδ2/(2ε2

2).
Therefore, it is easy to see that the complexity of the
A′ algorithm is

O

(
− lnδ1

2ε2
1

− lnδ2

2ε2
2

log2h∗
)
. (25)

6.1 Notes on Distribution of Results for
Algorithm A′

Having in mind the theorem 1 which describes the
probability distributionp(h) of results to which the
algorithmA may converge, we can try to do a sim-
ilar analysis for theA′ algorithm. The main differ-
ence now is thatA′ can overestimate the true VC-
dimension. This happens when for some sample
drawn in the step 2.2.1. some dichotomies are not fea-
sible, butB′ fails to discover it in itsN trials. In other
words, apart from quantitiesµF(m) the involvement
of ηF(z1, . . . ,zm) must be taken into account.

Consider the following expectation

αm =

∫
Zm

(
[#(lF)|z1,...,zm = 2m]

+ [#(lF)|z1,...,zm < 2m]ηF(z1, . . . ,zm)
N
)

dPm(z1, . . . ,zm)

= µF(m)

+
∫

Zm
[#(lF)|z1,...,zm < 2m]ηF(z1, . . . ,zm)

N

dPm(z1, . . . ,zm). (26)

It describes (in an average case) the probability of an
event of interest, i.e. : that either a randomly drawn
sample of sizem can be shattered (first summand) or
it cannot be shattered, but this fact was not discovered
in N trials (second summand). Therefore, to explicitly
write down the theoretical probability distribution for
results ofA′ it is sufficient to insert into (17) quantities
αi in the place ofµi .

7 SUMMARY AND FUTURE
RESEARCH

In the paper we propose a general idea for probabilis-
tic estimation of the VC-dimension for an arbitrary
set of indicator functions. The idea required suitable
definitions of several notions and quantities which can
be regarded as probabilistic counterparts of some tra-
ditional notions defined by Vapnik.

The main idea is based on an approach we call
expand or divide and conquerand is represented

by two algorithmsA and A′ that we propose. The
analysis of computational complexity shows thatA′

requires only logarithmic time with respect to the
true VC-dimension it tries to discover. This time
scales also with imposed precision parameters:n =
− lnδ1/(2ε1)

2, N = − lnδ2/(2ε2)
2, and their scaling

influence on the time isO(n ·N).
We are aware that the presented part of research

constitutes only the theoretical part. Certainly, practi-
cal applications of the idea may still require a thor-
ough experimental research first, possibly some re-
finements in algorithms, in order to be successful.
In the future, we plan to carry out the following
experimentally-oriented studies on the idea:

1. executions ofA andA′ on sets of functions with
simple geometrical bases (hyperplanes, spheres,
rectangles etc.),

2. tests for linear combinations of bases,

3. tests for sets of functions with regularization,

4. tests on convergence and performance,

5. registering histograms of experimental distribu-
tions of results to see how heavy are the tails
(i.e. how often under/overestimations of the true
VC-dimension occur),

6. discovering ‘good’ settings for precision parame-
ters for given conditions of experiment,

7. tests for sets of functions for which the true VC-
dimension is unknown.

Results of these studies ought to form a separate pub-
lication.
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