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Abstract: We present an idea of probabilistic estimation of Vapnik-Chervonenkis dimension given a set of indicator
functions. The idea is embedded in two algorithms we propose — naraadA’. Both algorithms are based
on an approach that can be describeagsand or divide and conquerAlso, algorithms are parametrized
by probabilistic constraints expressed in a form(@®)-precision. The precision implies how often and by
how much the estimate can deviate from the true VC-dimension. Analysis of convergence and computational
complexity for proposed algorithms is also presented.

1 INTRODUCTION again proves its usefulness.

Known are some sets of functions for which the
Vapnik-Chervonenkis dimension is an important no- €xact value of VC-dimension has been established
tion within Statistical Learning Theory (Vapnik and by suitable combinatorial or geometric proofs (of-
Chervonenkis, 1968: Vapnik and Chervonenkis, t€n very complex). Here are some examples. For
1989; Vapnik, 1995; Vapnik, 1998). Many bounds polynomials defined oveRY of degree at mosh,

on generalization or sample complexity are based onthe VC-dim is(";%), see e.g. (Anthony and Bartlett,
it. 2009). For hyperplanes iR (which can be bases

Recently, several other measures of functions setsfor multilayer perceptrons) the VC-dimés+ 1 (Vap-
capacity (richness) have been under study. Particu-nik, 1998). For rectangles iR the VC-dim is 21
larly, of great interest areovering number¢Bartlett (Cherkassky and Mulier, 1998). For spheresRit
et al., 1997; Anthony and Bartlett, 2009). In many (which can be bases of RBF neural networks) the
cases covering numbers can lead to tighter boundsVC-dim is d+ 1 (Cherkassky and Mulier, 1998). As
(on generalization or sample complexity) than pes- regards linear combinations of bases as above the
simistic bounds based on VC-dimension. However, VC-dim can typically be bounded by the nhumber of
the constructive derivation of covering numbers itself bases times the VC-dim of a single base (Anthony and
is usually a challenge. One has to suitably take ad- Bartlett, 2009, p. 154), this fact however requires usu-
vantage of some properties of given set of functions ally a careful analysis.
or of the learning algorithm and discover how they Also, some analysis has been done in the subject
translate onto a cover. One of such attractive results isof computational complexity for the VC-dimension.
e.g. aresult from (Zhang, 2002) related to regulariza- In particular, in (Papadimitriou and Yannakakis,
tion. Qualitatively, it states that for sets of functions 1996) authors take up the following problergiven
linear in parameters and underlLg-regularization ~ a set of functions F and a natural number k, is
(generalg = 1,2,...) the bound on covering number VC-dim(F) > k?”, i.e. one asks about a lower bound
scales only linearly with the dimension of input do- of VC-dimension. And the problem is proved to be
main. This allows to learn and generalize well with logNP-complete.

a sample complexity logarithmic in the number of at- Our motivation for this paper is to introduce an
tributes. On the other hand, there exist results whereidea for algorithms, which given an arbitrary set of
the property used for the derivation of covering num- functions (plus a learning algorithm) would be able
bers is actually the known VC-dimension of some to estimate its VC-dimension with an impogemba-

set of functions (Anthony and Bartlett, 2009), which bilistic accuracy. Such algorithms, if sufficiently suc-
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cessful, could potentially replace the need for com-
plex proofs establishing the exact value of the VC-
dimension.

2 NOTATION, NOTIONS, TOOLS

We restrict considerations to the binary classification
learning problems.

LetF denote the set of indicator functionsvhich
we have at disposal for learning. Lketdenote the
learning algorithm we use to choose a single function
from F. This happens via theample error minimiza-
tion? principle.

Let P denote the unknown joint probability distri-
bution defined oveZ = X x Y from which training
pairsz = (x,y) are drawn, where in generalc R
are input points ange {0, 1} are corresponding class
labels. Byz = {z;,25,...,zm} we shall denote the
whole training sample of sizadrawn from the prod-
uct distributionP™ in a i.i.d. mannet.

For any fixed functionf € F the true generaliza-
tion error with respect t@ is typically calculated as

erp(f):/zlf(z)dP(z), 1)
wherels is the following loss function
0, for f(x)=y;,
=) -{7 o e

Therefore as( f) expresses the probability of misclas-
sification of (x,y) drawn randomly fromP. Since

P is unknown the learning algorithia can only try

to minimize the frequency of misclassification on the
observed sample i.e.:

érz(f): %'ilf(Zi). (3)

Let the solution-function of be denoted bf.

We now briefly remind some notions introduced
by Vapnik. Letle = {l+: f € F} denote the set of loss
functions generated Hy. Consider the following set

{(It(z1),... .15 (zm)): f €F}. (4)

It contains all distinguishable functions ik re-
stricted to the fixed sampig, .. ., z,,. Throughoutthe
paper we shall denote (4) 8} ) 2, .. z,-
1/0,1}-valued functions.
2Alternatively also calleémpirical risk minimization
3Independent, identically distributed. This medfis
unknown but fixed.

Using a natural correspondence between indica-
tor functions and dichotomies of a set, Vapnik intro-
duces the notion ofhattering We say thatg shat-
ters a sampley,...,zy if all its dichotomies can be
generated using functions frof, equivalently this
means that the number of distinguishable functions is
#(F)z,.....2m = 2™ The Vapnik-Chervonenkis dimen-
sion forlg (or equivalently forF) is equal to the size
of some largest sample that can be shattered.

It will be helpful to remind three more quantities:

e Vapnik-Chervonenkis entropy

HF (m)

5)
which is an expectation of the logarithm of the
number of distinguishable functions;

e annealed entropy

HE (M) =In /Z HE) 2y AP (21, Zm).
(6)
which is a logarithm of expected number of dis-
tinguishable functions;

e growth function
GH(m) = sup #(IF) ..z

21,...,Zm T
which is supremum number of distinguishable
functions.

Known is the connectionH (m) < HE (m) <

InGF (m), where the first inequality is due to Jensen
inequality. Known also is the fact, that VC-dif) is
equal to such an argument@f after which it stops
growing exponentially.

As a tool, throughout the paper, we shall exten-
sively take advantage of one-sided Chernoff inequali-
ties (Hellman and Raviv, 1970; Schmidt et al., 1995),
which we now write down the following way

(7)

—Ind

P—Vm <[5, (8)
—Ind

Vm*pﬁ 2m I (9)

wherep is a probability of some event (that will be
of interest for us) andy, is its frequency observed in
mindependent trials. Each inequality holds true with
probability* at least 1- .

Also, in several places we are going to take ad-
vantage of lverson notatidg|, which returns 1 if the
statemens is true and 0 otherwise (Graham et al.,
2002).

4The 1—dis an outer probability calculated with respect

to probabilistic space defined over all random experiments
consisting ofmindependent trials.
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3 PROBABILISTIC SHATTERING think of shatterability measure in conjunction with
the growth functionG™ (m), see (7). Imagine some
In this section we introduce several new notions, method trying to discover the argumenit. .., zn, in
which can be regarded as probabilistic versions of se- P™ for which the supremum is attained. Of course for
lected notions reminded in the previous section. The strictness, we must remind that firstly the definition of
new notions are suitable for our purposes and give a G (m) is distribution-independent and secondly even
high-level intuition on algorithms we are aboutto pro- if it was distribution-dependent then the supremum

pose. could be attained on sets of measure zero. Never-
theless, the intuition that the smaligf(m) the more
3.1 Distribution Dependence — Two difficult it is to indicate the supremum represented by

G" (m) is true. In particular ifGF (m) < 2™ then cer-

Conceptual Scenarios tainly F (m) = 0.

We start with the following remark. It is the fact Definition 2. We say that a set of indicator functions

that: shattering, growth function and VC-dimension F iS an m-shatterer with respect td“F(or:F shatters
are distribution-independentotions. For our pur- ~ SOme samples of size m drawn froff) i u” (m) > 0.
poses it will be convenient though to define notions Definition 3. We say that a set of indicator functions
that are distribution-dependent, because we are goingr is not an m-shatterer with respect t§'verywhere,
to carry out probabilistic estimations. All the notions if the two conditions are met:
shall therefore refer t& or P™. Two conceptual sce-
. : 1. f(m) =0,
narios are possible here.
_ _ _ _ . 2. $z1,...,zm such that#(lg) =2m
I. In this scenario we think oP as it was originally - A= :
defined — i.e. the joint probability distribution de- Definition 4. We say that a set of indicator functions
fined overxX x Y describing the specific learning F is not an m-shatterer W_lt_h respect té“.l%tlmost ev-
problem. And therefore we should treat all new €rywhere, if the two conditions are met:
notions asdistr!bution—.dependemounterparts of 1. 3z,...,zn such that#(lg) 2m
classical Vapnik’s notions. 2. \F(m) = 0.

The complementary definitions above follow from
the arguments discussed earlier, anddineost every-
wherecondition takes into account that the case where
2™ dichotomies are feasible but for sets (samples) of
measure zero.

|Z1,....Zm

[z1,Zm =

Il. In this scenario we conceptually repla&e by
the uniform distribution By doing so we sep-
arate ourselves from the specific problem. For
this purpose, we only need to assume a bound-
edness ofX. The P will still explicitly appear
in the notions and formulas. But, we can then
agree (as a form of convention) to look at the no- S . .
tions agdistribution-independerudr at least ‘orig- 3.3 Probabilistic Estimation of
inal problem’-distribution-independent, since the VC-dimension — Sketch of Idea
uniformness does not favor any samples.

The reader can therefore treat further considera- W& Now sketch an idea according to which the algo-

tions in either context — of scenario | or II. In both Nthms to be presented later shall work.

scenarios we shall assume that we can freely and nu- Suppo_se that for given sample of SIEWE Exe-
merously redraw samples frof cute multiple times (sap times) an experiment con-

sisting of drawing a sample, ...,zy, from P™ and
checking exhaustively if all its dichotomies are fea-
sible, i.e. checking if #r);, ., =2". If for any
experiment this is true, then we can stop (befoie
reached), since certainly VCd{@) > mand we can
try to increase the sample size. If this event did not
occur in any experiment, then by means of Chernoff
inequality we have that with probability at least B:

3.2 New Notions

Definition 1. We say that fi(m) is a shatterability
measure with respect to the probability distribution
P™, and is calculated as follows

HF(m) = /Zm[#(IF)\zl,...,zm = zm]dpm(zl, e 7Zm)-
(10) —Ind
Intuitively the shatterability measureexpresses 2n

how frequently one ‘comes across’ samples drawn We write down 0 explicitly on purpose — it is the
from P™ which can be shattered. We suggest to observed frequency of the event ‘all dichotomies are

W (m) <0+

(11)
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feasible on random sample’. In that case we shall de-
crease the sample size. We would also like to intro-
duce a probabilistic precision parameter for the algo-

rithm. We name ite, 8)-precision, 0< €,6 < 1. If we
inserte := /—1Ind/(2n), it follows that the needed
number of experiments is= [—Ind/(2¢?)].

Now, by analogy to the definition 4, we introduce
the following definition.

Definition 5. We say that a set of indicator functions
F is not a(m, €, 6)-shatterer with respect to"Pif with
probability at leastl — &:

W (m) <e.

In simple words we say (with an imposed proba-
bilistic precision) that does not shatter samples of
sizem, if the probability that 2' dichotomies on a ran-
dom sample are feasible is suitably small.

Now, we define th@robabilistic VC-dimensian

Definition 6. We say that the probabilistic
(g,0)-VC-dimension for the set F equals m, we
write

VCdim 5(F) =m,

if there exists a sample of size m that can be

shattered by F and simultaneously F is not a
(m+1,¢&,06)-shatterer.

4 ALGORITHM A

The algorithmA, we are about to propose, returns the
probabilistic dimension VCdigy(F). This value is
an estimate of the true VC-dimension.

First, we present an auxiliary algorithm callBd
which will be invoked by the main algorithi in a
loop. The algorithnB works as the checker of feasi-
bility of all dichotomies given a fixed sample, accord-
ingly to the sketch from the section 3.3. The algo-

rithm returns 1 when all dichotomies are feasible and

0 otherwise.

B(F;zi,...,Zm)
1. Forall(ty,....tm) € {0, 1}™
1.1. Create a temporary training sampke =
(X1,t1), ..., (Xm,tm) and execute learning algo-
rithm L on it, which yieldsf.
1.2. Iférg(f) > 0 return 0.
2. Return 1.

Figure 1: Auxiliary algorithmB.

We now present the algorithAwhich works with
an imposedg, d)-precision, see the Fig. 2. As argu-
ments forA, apart fronF we also enlisP, with solely

such an intention that we will be able to draw multiple
samples from it, nothing more (sin&an general can
be unknown, recall scenario I).

AS.E(Fa P)
1. Setm =1, my =0, M:=m..
2. Repeat whileny —m_ > 1:
2.1. Sets:=0.
2.2. Repeah = [—Ind/(2¢?)] times:
2.2.1 Draw a sampley, ..., z, from P™,
222 If B(F;zi,...,zn) = 1 then ses:=1 and jump
out of the loop 2.
2.3 Ifmy = oo:
2.3.1 If s=1 then setn_ :=2m,
232 Else setm_ :=1/2m, m;, :

my)/2.
2.4 Else
241 If s=1thensetm :=m, m:= (m_+my)/2.
2.4.2 Else semy i=m, m:= (m_+my)/2.

3. Return|my|.

m:=m.
=m, m:=(m_+

Figure 2: AlgorithmA.

The algorithm uses an approach that could be de-
scribed agxpand or divide and conqueAt the start
we set the lower bounah_ and the current sample size
mto 1, whereas we set the upper boungd to infin-
ity. At first, as the algorithm progresses and all di-
chotomies prove feasible flag equals 1), the tested
sample sizes are doubled (stef.2.). Let us call it
the expand-phaseWhen a moment is reached such
that all dichotomies are not feasible despitérials,
the algorithm suitably setsy andmy (no longer in-
finite) and puts the next sample sizeto be tested in
the middle ofm_ andm (step 23.2.). This moment
starts thedivide-phase Since then, all next execu-
tions of the main loop (step 2) make the algorithm
enter step 2. and suitably narrow down the interval
[m_, my) until the stop condition is reached.

The form of the return valugm_| requires a short
explanation. The floor function is meant to handle
the special case when after the first iteration of the
main loop (step 3 thesflag is already equal 0. Then
halfening (step 3.2.) causesn_ to be /2, and since
the stop condition is reached we want to correct this
value to 0.

CONVERGENCE AND
COMPUTATIONAL
COMPLEXITY ANALYSIS

We will show that it is convenient to analyze con-
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vergence of the algorithr in terms of shatterability  of fixed width and height and it can be shifteahly
measures for given problem. along horizontal axes. As the figure shows there exist
samples of sizen= 1 (with positive probability mea-

5.1 Sequence of Shatterability Measures sure) for which only 1 dichotomy is feasible. Also,

— General Observations there exist such samples (also with positive proba-
bility measure) for which 2 dichotomies are feasible.
The same is true for the caserof= 2. Therefore, the
corresponding shatterability measures must be frac-
tions.

Consider the sequence of shatterability measures
along growing sample size:

W (1,17 (2),....
A moment of thought leads to the following observa-

(a)m= 1; all dichotomies feasible

tion. O‘J/
Lemma 1. The sequencefl),uF (2),... is non- e
increasing.
Proof. By. independence and Fubini's theorem we (b)m= 1: not all dichotomies feasible
have that: )

W (m+1)

= /zm+1 R )2y, 2y = 2™ HAP™ (21, Zii1)

= /Z /Zm[#('F)\Zme =2™HdP (2, .., zm)dP(zm: 1) (e)th=) 2:-all dihdtomies feasible
< [ [0 s,y = 2N . 2 AP —|j GU/ —|_OID OU
2. o i
<) [ dP(n).

O

(d) m= 2; not all dichotomies feasible
Please note that in the second equality-passzany |
can be taken outside the inner integral, not necessarily u o H
Zm+1, and the rest of the proof is still valid. o
A second obvious observation is that(m) = 0
for all m > VCdim(F). This follows from the defini-  Figyre 3: Set of functions with horizontally shifting ‘U'-
tion of VC-dimension. shaped decision boundary of fixed width. lllustration of
A more interesting fact is that there exist feasibility of all dichotomies for different samples.
sets of functiong= and distributionsP for which
the sequence complies with the following pattern: From now one, for shortness we will denote the
(1,...,1,0,...). It means the sequence consists solely sequence by, b, . ...
of starting ones and after some point zeros take place.
Consujere.g. hyperplanes on aplane. Clearly any Sin-5 5 Results Distribution and
gle point or two points can be shattered by a hyper- .
plane. Any three points can also be shattered provided Convergence for Algorithm A
that they do not lie in the same line. This is called
a “general position”, see e.g. (Anthony and Bartlett, As one may note, the result of algorithf being
2009, Theorem 3.1), (Wenocur and Dudley, 1981). VCdim; 5(F) cannot be an overestimation of the true
But even so, the situation of three points lying in the VCdim(F), but it might be its underestimation. In
same line is of probability measure zero in continuous this section we analyze how often this underestima-
spaces. Therefore the sequence for that case wouldion takes place and in effect we derive the probabil-
be(1,1,1,0,...). On the other hand it is possible to ity distribution defined over the results to whiéltan
indicate certain setE and distributiond for which converge. The analysis is carried out in terms of the
the sequence that does not consist solely of ones andsequencel, [, .. ..
zeros. As an example see the Fig. 3. Itillustrates a  Let p(h) denote the probability tha@ returns
set of functions defined over a plane with the decision VCdim, 5(F) = h and let us start by taking a closer
boundary in the shape of ‘U’ letter. Suppose ‘U’ is look at small cases. Fér= 0 we have

g
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p(0) = (1— )", (12)
since it requires that in ah = [—Ind/(2¢?)] inde-
pendent trials the event opposite to feasibility of all
dichotomies occurs (im times the algorithnB re-
turned 0). Foh =1 we have

p1)=(1-1-w)")(1-w)"  (13)
The first factor arises as a complementpid) —

Sketch of proofNote that during theexpand phase
the algorithm performglog, h| + 2 iterations (which

is q+ 2) and this is represented pih) by the product
Me—o(1— (1= p)™) (1 — ppg+2)". I this product all

but last factors must be of form-1(1 — p)", since

the algorithm discovered that some sample of slze 2
can be shattered, whereas the last factor must be of
form (1 — pye:2)", since inn trials samples of size

the algorithm discovered that for some sample of size 24+ failed to be shattered. In titdvide phasehe al-

m =1 all dichotomies were feasible, but it failed to
discover such property fan = 2, hence the second
factor. The cases df = 2,3 reveal more of thex-
pand or divide and conquepproach:

PR2)=(1-1-p)")(1-(1—p2)")(1—pa)"
(1-w)". (14)
P3) = (1~ (1=p)") (1~ (1= 4)") (1~ )"

(1-(1-w"), (15
After the algorithm failed to discover feasibility of all
dichotomies form = 4, it had to make a jump back-
wards to check the case wf= 3. We now move to a
bigger case example of= 21 which illustrates well
forward and backward jumps during tbe/ide phase
in a chronological order (see indices|9f

p21) = (1-(1—m)") (1~ (1—12)") (1~ (1~ u)")
(1—(1—pe)") (1—(1—pae)") (1 — ps2)"
(1—p2a)™ (1= (1= p20)") (1 — p2)" (1 — (1 — prn)") -
(16)
A careful analysis allows to find a regular formula for

the whole distribution. We state it as the following
theorem.

Theorem 1. Suppose {b,... is the sequence of
shatterability measures for given set of functions
F and distribution P. Let g= |log,h| and let
(hg,hg—1,...,ho)2 denote a binary representation for
each h> 0. Then, the probability distribution of re-
sults to which algorithm A may converge is:

p(o) = (1_ ul)na
p(1)=(1-(1—p)")(1— )"
q
p(h) = | (1= (1= p)™) (1~ pogen)"
¢1
: l!:L(hqfkflJr (=DMt (L= Py gg)"),

17)
for h > 2, where
1)t e 411

i(h,k) = 5( 2q+1+ 29) +

&M*

(18)

gorithm performs log(24+1 — 29) = qiterations, this

is represented by the remaining product. Trek)
function handles suitably successive indices visited
by the algorithm and it is easy to check that these in-
dices are determined by tlge- 1 least significant bits

in the binary representatiqhg,hg—1,...,ho)2. These
bits determine also whether the factor should be of
form (1 — Winy)" or 1— (1 — Hitn)"- O

The following statements are direct consequences
of p(h) distribution.

Corollary 1. Suppose that VCdifR) = h* and sup-
pose the sequence of shatterability measures for given
F and P consists solely of ones and zeros. Then dis-
tribution of results is ph*) = 1 and ph) = 0 for all
h # h*. Therefore, for any) < €,6 < 1 we have that
A€75(F, P) = h*.

This states that the algorithAalways converges
to the true Vapnik-Chervonenkis dimension if the se-
quence of shatterability measures does not contain
fractions.

Corollary 2. Suppose that VCdifR ) = h* and sup-
pose the sequence of shatterability measures contains
fractions. Then the expected resultlig 5(F,P) <

h*, where expectation is taken over infinite number of
runs of algorithm A for given problem.

This states that the algorithAunderestimates the
true Vapnik-Chervonenkis dimension if the sequence
of shatterability measures does contain fractions.

5.3 Computational Complexity

It is easy to see that the number of iterations of the
main loop in algorithnA (step 2.) is logarithmic as a
function of the true VCdirtF) = h*. The number of
iterations is at most 2loggh* + 2. Recall that there are
g+ 2 iterations needed by thexpand phasandq it-
erations by thalivide phase Unfortunately the most
heavy step is the execution of the algorittBr(step
2.2.2.), since it is an exhaustive check of feasibility of
all dichotomies. Therefore if we consider the compu-
tational complexity as a function af d,h* then the
pessimistic number of iterations
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2h*

visite;ndicesnZi = ni;2i - o(n(Zh*Jrl B 1))’ (19)

of i

which is exponential if*. This is a consequence of
the fact theB is an exact algorithm.

In the next section we propose a new algorithm
namedA.. Itis very similar toA but uses an auxiliary
algorithmB' being a softened probabilistic version of
B. This leads to a constant (at most) complexity of the
step 2.1.2. and in effect logarithmic complexity of the
whole algorithm.

6 ALGORITHM A

First, we formulate a probabilistic auxiliary algorithm
B'. For a fixed sampley, ..., zm consider the follow-
ing quantity: N~ (zy,...,zm) defined as the probabil-
ity that a random dichotomy drawn from the uniform
distribution (defined ovef0,1}™) is feasible by some
function.inF onzy,...,Zn:

n"(z1,...,2Zm) = (20)
2m_1 1
—[3 f € F realizing dichotomy
2,
(imfl,...,io)z onzl,...,zm], (21)

where(im-1,...,i0)2 is a binary representation of

We shall introduce an additiong&, d)-precision.
Suppose we would like to hawg& 5(F;z1,...,zm) =
0 if an unfeasible dichotomy occurred, and to have
B’s,5(F:Zl, ...,Zm) = 1 if with probability at least - &

N (z1,....2m) > 1—¢ (22)

holds true.
The algorithmB' is presented in the Fig. 4.

B,g,5(F;Zla---;Zm>
1. Repeal = —Ind/(2¢?) times:
1.1. Draw a random dichotomffs, ... ,tn) from a

uniform distribution.

1.2. Create a temporary training sampg =
(X1,t1), ..., (Xm,tm) and execute learning algo-
rithm L on it, which yieldsf.

1.3. Iférg(f) > O return 0.

2. Return 1.

Figure 4: Auxiliary algorithnB'.

We now present the algorith®. Since the inner
auxiliary algorithm was probabilistically softened, the

268

A/€1751782752 (F.P)
1. Setm_:=1,my ;= o, m:=m.
2. Repeat whileny —m_ > 1:
2.1. Sets:=0.
2.2. Repeanh = [—In&;/(2¢2)] times:
2.21 Draw a sampley, ..., zy from P™,
222 If B/sz,az(':?zla ...,Zm) = 1then ses:=1and
jump out of the loop 2.
2.3 Ifmy = oo:
231 If s=1thensem_ :=2m m:=m..
232 Else setm_ :=1/2m, my :=m, m:= (m_+
my)/2.
2.4 Else
241 If s=1thensetm i=m,m:=(m.+my)/2.
2.4.2 Else setmy :=m, m:= (m_+my)/2.
3. Return|m |.

Figure 5: Algorithma',

algorithmA’ requires now four precision parameters
€1,01,€2, 02, See the Fig. 5.

The result oA is quantity compliant with the fol-
lowing definition (and is an estimation of the true VC-
dimension).

Definition 7. We say that the probabilistic
(€1,01,€2,02)-VC-dimension for the set F equals m,
we write

VCdinll,&L,Sg,ﬁz(F) =m,
if there exists a sample of sizg ..., zy such that with
probability at leastl — &

nF(Zlv"'aZm>21*£2 (23)
and with probability at least — &,
W (m+1) <e. (24)

Putting it in simpler wording, the probabilistic
(€1,01,€2,02)-VC-dimension ism if we can indicate
a sample of sizen for which with high probability
all dichotomies are feasible, and simultaneously with
high probability we cannot indicate such sample of
sizem+ 1. Obviously, both probability parameters
refer strictly to quantitiegt andn, which one should
be aware of. They are related to different probabilistic
spaces. The probability-1 6, andp quantities refer
to the probabilistic space with distribution, whereas
the probability 1- & andn quantities refer to the
probabilistic space describing feasibility of random
dichotomies drawn uniformly frord0,1}™ for some
fixed samplezy, ..., zn.

Please note that, in contrast to the algorithnthe
result ofA’ can be (with small probability) both under-
estimation and overestimation of the true VCdi.
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It is worth remarking that the algorithid’ is of
constant complexit(N) whereN = —In&,/(2¢€3).
Therefore, it is easy to see that the complexity of the

A algorithm is
O ( 00, h*) .

6.1 Notes on Distribution of Results for
Algorithm A’

—Ind; —Ind,
€2 2€3

(25)

Having in mind the theorem 1 which describes the
probability distributionp(h) of results to which the
algorithm A may converge, we can try to do a sim-
ilar analysis for theA’ algorithm. The main differ-
ence now is tha#®’ can overestimate the true VC-
dimension. This happens when for some sample
drawn in the step 2.2.1. some dichotomies are not fea-
sible, butB'’ fails to discover it in itsN trials. In other
words, apart from quantities™ (m) the involvement
of nF(z1,...,zm) must be taken into account.
Consider the following expectation

+[#F) 12y, 2m < 2707 (21, 7Zm)N)
dP"(z1,...,Zm)
= (m)
L M CSTRES & | ORI
Zm
dP"(z1,...,Zm). (26)

It describes (in an average case) the probability of an
event of interest, i.e. : that either a randomly drawn
sample of sizen can be shattered (first summand) or

by two algorithmsA and A’ that we propose. The
analysis of computational complexity shows tiét
requires only logarithmic time with respect to the
true VC-dimension it tries to discover. This time
scales also with imposed precision parameters:
—Ind1/(281)%, N = —Ind,/(2¢,)?, and their scaling
influence on the time iI®(n- N).

We are aware that the presented part of research
constitutes only the theoretical part. Certainly, practi-
cal applications of the idea may still require a thor-
ough experimental research first, possibly some re-
finements in algorithms, in order to be successful.
In the future, we plan to carry out the following
experimentally-oriented studies on the idea:

1. executions oA andA’ on sets of functions with
simple geometrical bases (hyperplanes, spheres,
rectangles etc.),

. tests for linear combinations of bases,
. tests for sets of functions with regularization,
. tests on convergence and performance,

a b~ W N

. registering histograms of experimental distribu-
tions of results to see how heavy are the tails
(i.e. how often under/overestimations of the true
VC-dimension occur),

. discovering ‘good’ settings for precision parame-
ters for given conditions of experiment,

. tests for sets of functions for which the true VC-
dimension is unknown.

Results of these studies ought to form a separate pub-
lication.

it cannot be shattered, but this fact was not discoveredACKNOWLEDG EMENTS

in N trials (second summand). Therefore, to explicitly
write down the theoretical probability distribution for
results o' it is sufficient to insert into (17) quantities
a; in the place ofy.

7 SUMMARY AND FUTURE
RESEARCH

In the paper we propose a general idea for probabilis-
tic estimation of the VC-dimension for an arbitrary

set of indicator functions. The idea required suitable
definitions of several notions and quantities which can

be regarded as probabilistic counterparts of some tra-

ditional notions defined by Vapnik.
The main idea is based on an approach we call
expand or divide and conqueand is represented

This work has been financed by the Polish Govern-
ment, Ministry of Science and Higher Education from
the sources for science within years 2010-2012. Re-
search project no.: N N516 424938.
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