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Abstract: The efficient annotation of documents in vast corpora calls for scalable methods of text classification. Rep-
resenting the documents in the form of graph vertices, rather than in the form of vectors in a bag of words
space, allows for the necessary information to be pre-computed and stored. It also fundamentally changes
the problem definition, from a content-based to a relation-based classification problem. Efficiently creating
a graph where nearby documents are likely to have the same annotation is the central task of this paper. We
compare the effectiveness of various approaches to graph construction by building graphs of 800,000 vertices
based on the Reuters corpus, showing that relation-based classification is competitive with Support Vector Ma-
chines, which can be considered as state of the art. We further show that the combination of our relation-based
approach and Support Vector Machines leads to an improvement over the methods individually.

1 INTRODUCTION

Efficiently annotating new documents coming from a
data stream is an important problem in modern data
management. Real world text mining and analysis
systems, such as news monitoring systems like ‘News
Outlets Analysis and Monitoring system’ (NOAM)
(Flaounas et al., 2011), Lydia (Lloyd et al., 2005)
and the ‘Europe Media Monitor’ (EMM) (Steinberger
et al., 2009) would benefit from an approach that can
handle annotation on a large scale while being able
to adapt to changes in the data streams. A classical
approach is to develop content-based classifiers, e.g.
Support Vector Machines (SVMs), specialised in the
detection of specific topics (Joachims, 1998). One of
the key problems in this approach is that the classifi-
cations are not affected by subsequent documents, un-
less the classifiers are retrained, and that entirely new
topics cannot be introduced unless a new classifier is
developed. We are interested in the situation where
the annotation of a corpus improves with time, that
is with receiving new labelled data. We want the ac-
curacy of existing labels to improve with more data,
where old errors in classification are possibly being
amended, and if entirely new topic labels start being
used in a data stream, the system will be able to ac-
commodate them automatically. The deployment of
such methods for real world textual streams, such as
news feeds coming from the Web where the feed is

constantly updated, requires an ability to track them
in real time, independent of the size of the corpus.
The naı̈ve approach to graph construction, comparing
all documents to all documents or building a complete
kernel matrix (Shawe-Taylor and Cristianini, 2004),
will not work in large scale systems due to high com-
putational complexity. The cost of label propagation
is also an important factor on the time needed to pro-
cess the incoming documents.

In this paper we focus on textual data and present
a method to propagate labels across documents by
creating a sparse graph representation of the data,
and then propagating labels along the edges of the
graph. There is a tendency for research to focus on the
method of propagating the labels, taking for granted
that the graph topology is given in advance (Herbster
et al., 2009; Cesa-Bianchi et al., 2010b). In reality,
unless working with webpages, textual corpora rarely
have a predefined graph structure. Graph construc-
tion alone has a worst case cost ofO (N2) when using
a naı̈ve method due to the calculation of the fullN×N
pairwise similarity matrix. Our proposed method can
be performed efficiently by using an inverted index,
and in this way the overall cost of the method has a
time complexity ofO (N logN) in the number of doc-
umentsN.

We test our approach by creating a graph of
800,000 vertices using the Reuters RCV1 corpus
(Lewis et al., 2004), and we compare the quality of the
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label annotations obtained by majority voting against
those obtained by using SVMs. We chose to com-
pare the graph-based methods to SVMs because they
are considered the state of the art for text categorisa-
tion (Sebastiani, 2002). We show that our approach
is competitive with SVMs, and that the combination
of our relation-based approach with SVMs leads to an
improvement in performance over either of the meth-
ods individually. Further to this, we show that the
combination of the approaches does not lead to a de-
crease in performance, relative to the weakest of the
approaches, i.e. the combination always gives an im-
provement over at least one of the methods on its own.
It is also important to notice that our methods can be
easily distributed to multiple machines.

This paper is organised as follows: Section 2 out-
lines graph construction, detailing methods of us-
ing an inverted index for graph construction, along
with various methods for maintaining sparsity of the
graph. Section 3 outlines the Label Propagation (LP)
method and Online Majority Voting (OMV), a natu-
ral adaption of LP for an online setting. Section 4
describes the implementation details concerning the
inverted index and edge lists, while Sect. 5 covers
our experimental comparison of our presented meth-
ods with Support Vector Machines on the Reuters cor-
pus before showing an improvement by combining
the methods. Finally, in Sect. 6 we discuss the ad-
vantages of a graph-based approach and summarise
our findings before posing some directions for future
work in the area.

1.1 Related Work

There is a growing interest in the problem of prop-
agating labels in graph structures. Previous work
by Angelova and Weikum (Angelova and Weikum,
2006) extensively studied the propagation of labels
in web graphs including a metric distance between
labels, and assigning weights to web links based
upon content similarity in the webpage documents.
Many alternative label propagation algorithms have
also been proposed over the years, with the survey
(Zhu, 2007) giving an overview of several different
approaches cast in a regularisation framework. A
common drawback of these approaches is the pro-
hibitively high cost associated with label propaga-
tion. A number of recent works on label propaga-
tion (Herbster et al., 2009; Cesa-Bianchi et al., 2010a;
Cesa-Bianchi et al., 2010b) concentrate on extracting
a tree from the graph, using a very small number of
the neighbours for each node.

While many graph-based methods do not address
the problem of the initial graph construction, assum-

ing a fully connected graph is given, or simply choos-
ing to work on data that inherently has a graph struc-
ture, there is a large number of papers dedicated to
calculating the nearest neighbours of a data point.
One such approximate method, NN-Descent (Dong
et al., 2011), shows promising results in terms of ac-
curacy and speed for constructingk-Nearest Neigh-
bour graphs, based upon the principle that ‘a neigh-
bour of a neighbour is also likely to be a neighbour’.
The All-Pairs algorithm (Bayardo et al., 2007) tack-
les the problem of computing the pairwise similar-
ity matrix often used as the input graph structure in
an efficient and exact manner, showing speed im-
provements over another inverted-list based approach,
ProbeOpt-sort (Sarawagi and Kirpal, 2004) and well-
known signature based methods such as Locality Sen-
sitive Hashing (LSH) (Gionis et al., 1999).

In this paper we take a broader overview, consid-
ering both the task of creating a graph from text docu-
ments, and then propagating labels for text categorisa-
tion simultaneously. We are interested in an approach
that can be applied to textual streams, with the previ-
ously mentioned additional benefits offered by mov-
ing away from classical content-based classifiers.

2 GRAPH CONSTRUCTION

Graph constructionX → G deals with taking a corpus
X = {x1, . . . ,xn}, and creating a graphG = (V,E,W),
whereV is the set of vertices with documentxi being
represented by the vertexvi , E is the set of edges, and
W is the edge weight matrix. There are several ways
the construction can be adapted, namely the choice of
distance metric and the method for maintaining spar-
sity.

The distance metric is used to determine the edge
weight matrixW. The weight of an edgewi j encodes
the similarity between the two verticesvi andv j . The
choice of metric used is mostly task-dependent, re-
lying on an appropriate selection being made based
upon the type of data inX . A common measure used
in text, such as cosine similarity (Tan et al., 2006),
may not be appropriate for other data types, such as
when dealing with histogram data where theχ2 dis-
tance is more meaningful (Zhang et al., 2007).

Typically, a method for maintaining sparsity is re-
quired since it is not desirable to work with fully
connected graphs for reasons of efficiency, and sus-
ceptibility to noise in the data (Jebara et al., 2009).
This can be solved by working with sparse graphs,
which are easier to process. Two popular methods
for achieving sparsity includek-nearest neighbour
(kNN) andε-neighbourhood, both utilizing the local
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Figure 1: Illustration of an example where two graphs,G1 andG2, are being constructed from graphG using the two
methods we investigate:ε-neighbourhood andk-nearest neighbour. In the example, the possible edges for vertexvi are being
considered. Theε-neighbourhood method adds all edges which connectv1 to a vertex inside the grey circle which visualises
the radiusε. Thek-nearest neighbour method ranks the closeness of the adjacent vertices with respect to a given similarity
measure, then adds edges to the closestk vertices. For this example,k= 2.

neighbourhood properties of each vertex in the graph
(Carreira-Perpinan and Zemel, 2004; Jebara et al.,
2009; Maier et al., 2009). Local neighbourhoodmeth-
ods are important for efficiency since a data point only
relies on information about other points close by, with
respect to the distance metric, to determine the neigh-
bours of a vertex. This means that no global proper-
ties of the graph need to be calculated over the entire
graph each time a new vertex is added, a considera-
tion that has implications both for the scalability and,
more generally, for parallelisation.

The first step of creating the graph usually in-
volves calculating the pairwise similarity score be-
tween all pairs of vertices in the graph using the ap-
propriately chosen distance metric. Many studies as-
sume that it is feasible to create a fullN × N dis-
tance matrix (Jebara et al., 2009) or that a graph is al-
ready given (Herbster et al., 2009; Cesa-Bianchi et al.,
2010b). This assumption can severely limit the size
of data that is managable, limited by theO (N2) time
complexity for pairwise calculation. Construction of
a full graph Laplacian kernel, as required by standard
graph labelling methods (Belkin et al., 2004; Herbster
and Pontil, 2007; Zhu et al., 2003) is already compu-
tationally challenging for graphs with 10,000 vertices
(Herbster et al., 2009). Jebara et al. (Jebara et al.,
2009) introduceβ-matching, an interesting method of
graph sparsification where each vertex has a fixed de-
greeβ and show an improved performance overk-
nearest neighbour, but at a cost to the complexity of
the solution and the assumption that a fully connected

graph is given.
We can overcome the issue ofO (N2) time com-

plexity for computing the similarity matrix by using
an alternative method, converting the corpus into an
inverted index where each term has a pointer to the
documents the term appears within. The advantage
of this approach is that the corpus is mapped into a
space based upon the number of terms, rather than
number of documents. This assumption relies on the
size of the vocabulary|t| being much smaller than the
size of the corpus. According to Heaps’ Law (Heaps,
1978), the number of terms|t| appearing in a corpus
grows asO (Nβ), whereβ is a constant between 0 and
1 dependent on the text. Some experiments (Araujo
et al., 1997; Baeza-Yates and Navarro, 2000) on En-
glish text show thatβ is between 0.4 and 0.6 in prac-
tice. The inverted index can be built inO (NLd) time
whereLd is the average number of terms in a docu-
ment, with a space complexity ofO (NLv) whereLv
is the average number of unique terms per document
(Yang et al., 2003).

Finding the neighbours of a document is also triv-
ial because of the inverted index structure. A classical
approach is to use the Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) weighting (Salton, 1989)
to calculate the cosine similarity between two docu-
ments. This can be performed inO (Ld log|t|) time for
each document by performingLd binary searches over
the inverted index. Assumingβ from Heaps’ Law is
the average value of 0.5, the time complexity for find-
ing the neighbours of a document can be rewritten as
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O (Ld
2 logN). Therefore, there is a total time complex-

ity O (N+ NLd
2 logN) for building the index and find-

ing the neighbours of all vertices in the graph. This
is equivalent toO (N logN) under the assumption that
the average document lengthLd is constant.

A further advantage of this method is that the
number of edges per vertex is limiteda priori, since
it is infeasible to return the similarity with all docu-
ments in the inverted index for every document. This
allows the construction of graphs that are already
sparse, rather than performing graph sparsification to
obtain a sparse graph from the fully connected graph,
e.g. (Jebara et al., 2009).

We investigate two popular local neighbour-
hood methods,k-nearest neighbour (kNN) and ε-
neighbourhood, for keeping the graph sparse during
the initial construction phase and also when new ver-
tices are added to the graph (Carreira-Perpinan and
Zemel, 2004; Jebara et al., 2009; Maier et al., 2009).
Figure 1 shows intuitively how each of the methods
chooses the edges to add for a given vertex. The first
method,kNN, connects each vertex to thek most sim-
ilar vertices inV, excluding itself. That is, for two
verticesvi andv j , an edge is added if and only if the
similarity betweenvi andv j is within the largestk re-
sults for vertexvi . The second method we investigate,
ε-neighbourhood, connects all vertices within a dis-
tanceε of each other, a similar approach to classical
Parzen windows in machine learning (Parzen, 1962).
This places a lower bound on the similarity between
any two neighbouring vertices, i.e. only edges with a
weight above the thresholdε are added to the graph. A
simple way of visualising this is by drawing a sphere
around each vertex with radiusε, where any vertex
falling within the sphere is a neighbour of the vertex.
While the first method fixes the degree distribution of
the network, the second does not, resulting in funda-
mentally different topologies. We will investigate the
effect of these topologies on labelling accuracy.

3 LABEL PROPAGATION

Label propagation aims to use a graphG = (V,E,W)
to propagate topic labels from labelled vertices to un-
labelled vertices. Each vertexvi can have multiple
topic labels, i.e. a document can belong to more
than one category, and each label is considered in-
dependently of the other labels assigned to a ver-
tex. The labels assigned to the set of labelled ver-
ticesY l = {y1, . . . ,yl} are used to estimate the labels
Yu = {yl+1, . . . ,yl+u} on the unlabelled set.

Carreira-Perpinan et al. (Carreira-Perpinan and
Zemel, 2004) suggest constructing graphs from en-

sembles of minimum spanning trees (MST) as part
of their label propagation algorithm, with their two
methods Perturbed MSTs (PMSTs) and Disjoint
MSTs (DMSTs), having a complexity of approxi-
mately O (TN2 logN) and O (N2(logN + t)) respec-
tively, whereN is the number of vertices,T is the
number of MSTs ensembled in PMSTs, andt is the
number of MSTs used in DMSTs, typicallyt <<

N
2 .

However, to the best of the authors’ knowledge, no
studies have performed experiments on constructed
graphs with more than several thousand vertices, with
the exception of Herbster et al. (Herbster et al., 2009)
who build a shortest path tree (SPT) and MST for a
graph with 400,000 vertices from Web pages. Herb-
ster et al. (Herbster et al., 2009) also note that con-
structing their MST and SPT trees using Prim and Di-
jkstra algorithms (Cormen et al., 1990) respectively
takesO (N logN+ |E|) time, with the general case of a
non-sparse graph having a time complexity ofΘ(N2).

In this paper we adopt Online Majority Voting
(OMV) (Cesa-Bianchi et al., 2010b), a natural adap-
tation of the Label Propagation (LP) algorithm (Zhu
et al., 2003), as our algorithm for the label propaga-
tion step due to its efficiency and simplicity. OMV is
based closely upon the locality assumption, that ver-
tices that are close to one another, with respect to a
distance or measure, should have similar labels. Each
vertex is sequentially labelled as the unweighted ma-
jority vote on all labels from the neighbouring ver-
tices. The time complexity for OMV isΘ(|E|), a no-
table reduction from theO (kN2) required for LP al-
gorithm, wherek is the neighbours per vertex. The
complexity being dependent on the number of edges
in the graph further benefits from thea priori limit we
impose upon the maximum edges per vertex, ensuring
that|E|= bN for some maximum edge limitb.

4 IMPLEMENTATION

The data structures for the implementation of the pro-
posed methods can be separated into two individual
parts. Firstly, an inverted index is built that is used for
the efficient calculation of neighbours for a document,
and secondly, an edge list is maintained in a relational
database, allowing for queries to be executed on the
graph topology.

For the experiments in this paper, the inverted in-
dex is implemented using the open source Apache
Lucene1 software. An inverted index is a data struc-
ture where, as previously described, a list of every
term in the corpus is maintained with a pointer (also

1Open source implementation of an inverted index.
Available at: http://lucene.apache.org/
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Figure 2: Illustration of the conceptual change in how the data is stored for the inverted index and edge list approach. This
example shows a corpus containing four documents (d1,d2,d3,d4) with termst1, t2, . . . , t8 being converted into an inverted
index with postings to each of the documents originally containing the term. From the inverted index, an edge list can then
be generated linking the documents (d1,d2,d3,d4) into a graph. In this example, the edge list depicts ak-Nearest Neighbour
graph wherek= 2.

known as a posting) to each document that contains
that term. The inverted index can be stored in main
memory for small corpora, significantly speeding up
the document search procedure, or on disk for larger
corpora.

The edge list generated from the inverted index is
stored in a relational database. For the experiments in
this paper MySQL is used allowing for neighbours of
a vertex to be retrieved quickly by querying the edge
list table for the relevant vertex identifier. Figure 2
illustrates the structure of an inverted index and the
edge list generated from it.

We adapted the source code of Lucene to support
cosine similarity between documents, since it is ini-
tially optimised for document retrieval, rather than
document comparison. The SVMs were deployed us-
ing the LibSVM toolbox (Chang and Lin, 2001).

5 EXPERIMENTS AND
EVALUATION

We present an experimental study of the feasibility of
our approach on a large data set, the Reuters RCV1
corpus (Lewis et al., 2004). We split the corpus into
a training and test set, where the test set is the last
seven weeks of the corpus, and the training set covers
everything else. The test set is further subdivided into
seven test weeks.

For the graph-based methods, the hyperparam-
etersk and ε require careful selection in order to
achieve comparable performance with current meth-
ods. This is the most expensive step as it often

requires a search of the parameter space for the
best value. We use Leave-One-Out Cross Validation
(LOO-CV) on the training set to tune the parame-
ters. This involves constructing graphs for a range
of values ofk andε on the training set by iterating
over all vertices, predicting the labels of the vertex
based upon the majority vote of its neighbours. The
predictions are checked against the true labels, with
the highest performing parameter value being chosen.
The performance was evaluated using the F1 Score,
which is the harmonic mean of the precision and re-
call, a widely used performance metric for classifi-
cation tasks (Steinbach et al., 2000). Formally, it is
defined as

F1 = 2 ·
precision· recall
precision+ recall

. (1)

The precision and recall on the training set were cal-
culated by summing together the contingency matri-
ces for each topic, giving an F1 Score for each pa-
rameter value across all topics. For the test sets, all
F1 Scores reported are the individual topic F1 Scores
averaged over the 50 most common topics. The
best parameters for each method were also recorded
for each topic individually, allowing for a multi-
parameter graph where each label has a different pa-
rameter value. This could be thought of as each la-
bel being able to travel a certain distance along each
edge. It was however found that the multi-parameter
approach only led to a small increase in performance
at additional cost to the complexity of the solution
since multiple graphs need to be constructed.

We trained one SVM per topic using the Cosine
kernel, which is a normalised version of the Lin-
ear kernel (Shawe-Taylor and Cristianini, 2004). For
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Figure 3: This figure shows the F1 performance averaged
across the 50 most common topics evaluated on the training
set using LOO-CV forε = {0,0.01, . . . ,1.00}. It can been
seen that there is a curve with a peak atε = 0.4.
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Figure 4: This figure shows the F1 performance for the
50 most common topics evaluated on the training set us-
ing LOO-CV for k = {1,2, . . . ,100}. It can been seen that
the line peaks relatively quickly, atk= 5.

each topic, training used a randomly selected 10,000
positive examples, and a randomly selected 10,000
negative examples picked from the training set. The
examples were first stemmed and stop words were re-
moved as for the graph-based methods. The last week
of the training corpus was used as a validation set to
empirically tune the regularisation parameterC out of
the set [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. For each
topic,C was tuned by setting it to the value achieving
the highest F1 performance on that topic in the vali-
dation set. We report the performance on the test set.

5.1 Combining Graph-based and
Content-based Classification

Further to the comparison of the graph-based meth-
ods with SVMs, an ensemble (Dietterich, 2000) of the
graph-based and content-based classification methods
was evaluated. For each vertex, a majority vote for
each class labelc is taken by counting the supporting
votes fromk votes of thekNN method, supplemented
with s votes from the SVMs for a total ofυ = k+ s

votes. That is, each vertex has thek votes from the
kNN method, but alsos votes assigned by the SVMs.
The number of votes from the SVM is chosen in the
interval s= [0,k+ 1]. This moves the combination
method from purely graph-based ats= 0 (υ = k), to
purely content-based ats= k+1 (υ = 2k+1).

Given a set ofp class labelsC = {c1,c2, . . . ,cp},
a set ofn verticesV = {v1,v2, . . . ,vn}, a graph ma-
trix A ∈ {0,1}n×n whereAi, j indicates whetherv j is
a neighbour ofvi , a label matrixY ∈ {0,1}n×p where
Yj ,c indicates if vertexv j has class labelc, an SVM as-
signed label matrixS∈ {0,1}n×p whereSi,c indicates
if class labelc has been assigned to vertexvi by the
SVMs and a regularisation parameterλ = [0,1], Ỹi,c is
the decision whether labelc is to be assigned to vertex
vi . Formally, a linear combination of the methods was
created as

Ỹi,c = θ(λ∑
j

(Ai, jYj ,c)+ (1−λ)Si,c) (2)

θ(x) =
{

1 if x> υ
2

0 otherwise (3)

Equation 2 can be reformulated so that it is easier
to interpret by settingµ= 1−λ

λ , giving

Ŷi,c = θ(∑
j

(Ai, jYj ,c)+µSi,c) (4)

whereµ represents the number of SVM votess in the
interval[0,k+1].

For our experiments, the value ofµ for combining
thekNN and SVM methods was evaluated between 0
and 6 since thekNN method usesk= 5 neighbours.

5.2 Results

We evaluate the performance of each method on the
seven test weeks, where all previous weeks have al-
ready been added to the graph, to simulate an on-
line learning environment. The F1 Scores reported are
the mean performance calculated over the seven test
weeks.

Figure 5 and Fig. 6 show a comparison of the
graph-based methods with SVMs. Out of the 50 most
common topics, SVM achieved a higher performance
than ε-Neighbourhood on 29 topics, but only beat
kNN on 19 of the topics, that iskNN performed bet-
ter than SVMs on 31 out of the 50 topics. This shows
that the graph-based methods are competitive with the
performance of SVMs.

Figure 7 shows a comparison of the graph-based
methods. Out of the 50 most common topics,kNN has
a higher performance on 46 of the possible 50 topics.
Clearly,ε-Neighbourhood is the weaker of the graph-
based methods and so is not considered further.
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Figure 5: This figure shows a comparison of the mean
F1 Score, averaged over all test set weeks, forε-
Neighbourhood against SVMs on the 50 most common top-
ics. Points below the diagonal line indicate when SVMs
achieved a higher performance thanε-Neighbourhood,
with points above the diagonal line indicating thatε-
Neighbourhood achieved a higher performance than SVMs
on that topic.
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Figure 6: This figure shows a comparison of the mean F1
Score, averaged over all test set weeks, fork-NN against
SVMs on the 50 most common topics. Points below the di-
agonal line indicate when SVMs achieved a higher perfor-
mance thankNN, with points above the diagonal line indi-
cating thatkNN achieved a higher performance than SVMs
on that topic.

Next, we consider the best value ofµ for combin-
ing thekNN methods and SVMs in a linear combi-
nation. Figure 8 shows the performance of the com-
bined method averaged over the 50 most common top-
ics for each value ofµ. Out of the 50 most common
topics, the combined method withµ= 4 provided an
improvement over the performance of both the SVM
andkNN methods for 36 of the topics. Usingµ= 1
showed an improvement over both methods for the
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Figure 7: This figure shows a comparison of the mean F1
Score, averaged over all test set weeks, for the graph-based
methods on the 50 most common topics. Points below the
diagonal line indicate whenε-Neighbourhood achieved a
higher performance thankNN, with points above the diago-
nal line indicating thatkNN achieved a higher performance
thanε-Neighbourhood on that topic.
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Figure 8: This figure shows a comparison of the mean F1
Score, averaged over all test set weeks, for the combined
method at differentµ values on the 50 most common topics.
It can be seen that the combined method offers an improve-
ment over thekNN approach (µ= 0) and the SVM approach
(µ= 6).

greatest number of topics, with 38 of the 50 topics
seeing an improvement. The mean performance of
the combined method withµ = 1 is lower than for
µ = 4 however, indicating that whenµ = 4 the im-
provements are greater on average, even if there are
slightly fewer of them.

When comparing the combined method with SVM
andkNN as seen in Fig. 9 and Fig. 10 respectively,
the performance of the combined method was higher
than SVM on 45 of the 50 topics and higher thankNN
on 41 out of the 50 topics. This shows that the com-
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Figure 9: This figure shows a comparison of the mean F1
Score, averaged over all test set weeks, for the combined
method usingµ = 4 against SVMs on the 50 most com-
mon topics. Points below the diagonal line indicate when
the combined method achieved a higher performance than
SVMs, with points above the diagonal line indicating that
SVMs achieved a higher performance than the combined
method on that topic.
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Figure 10: This figure shows a comparison of the mean
F1 Score, averaged over all test set weeks, for the com-
bined method usingµ = 4 againstkNN on the 50 most
common topics. Points below the diagonal line indicate
when the combined method achieved a higher performance
than kNN, with points above the diagonal line indicating
thatkNN achieved a higher performance than the combined
method on that topic.

bined method does not only improve on SVM and
kNN on average, but provides an improvement for
90% and 82% of the 50 most common topics respec-
tively. It should be noted that in the cases where the
combined method does not provide an improvement
on one of the methods, it does still have a higher per-
formance than the lowest performing method for that
topic. That is, there were no cases where combining

0 20 40 60 80

SVM

εN

kNN

Combined
Method

F
1
 Score

Figure 11: This figure shows a summary of the mean F1
Score, averaged over all test set weeks, for the graph-based
methods and SVMs along with the best combined method
(µ = 4) on the 50 most common topics. It can be seen
that the graph-based methods are comparable with SVMs,
with the combined method showing a further improvement.
It should be noted that the performance of the combined
method is slightly bias due to selecting for the bestµ. ε-
Neighbourhood has been abbreviated toεN.

.

the methods gives a performance below both of the
methods individually.

A summary of the overall performance of each
method can be seen in Fig. 11. Theε-Neighbourhood
method is the weaker of the two methods proposed
with a performance of 62.2%, while thekNN method
achieved a performance of 65.9%, beating the 64.5%
for SVMs. Combining thekNN and SVM meth-
ods reached the highest performance at 71.4% with
µ= 4, showing that combining the relation-based and
content-based approaches is an effective way to im-
prove performance.

6 CONCLUSIONS

There has been an increased interest in the effects
the method of graph construction plays in the overall
performance of any graph-based approach. Findings
suggest that the method of graph construction can-
not be studied independently of the subsequent algo-
rithms applied to the graph (Maier et al., 2009). Label
propagation has many advantages over the traditional
content-based approach such as SVMs. New labels
that are introduced into the system can be adopted
with relative ease, and will automatically begin to
be propagated through the graph. In contrast, a new
SVM classifier would need to be completely trained
to classify documents with the new class label. A sec-
ond advantage of label propagation is that incorrectly
annotated documents can be reclassified based upon
new documents in a self-regulating way. That is, the
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graph is continuously learning from new data and im-
proving its quality of annotation, while the SVM is
fixed in its classification after the initial training pe-
riod.

In this paper, we have investigated two different
local neighbourhood methods,ε-Neighbourhood and
k-Nearest Neighbour, for constructing graphs for text.
We have shown that sparse graphs can be constructed
from large text corpora inO (N logN) time, with the
cost of propagating labels on the graph linear in the
size of the graph, i.e.O (N). Our results show that the
graph-based methods are competitive with content-
based SVM methods. We have further shown that
combining the graph-based and content-based meth-
ods leads to an improvement in performance.

The proposed methods can easily be scaled out
into a distributed setting using currently available
open source software such as Apache Solr2, or Katta3,
allowing a user to handle millions of texts with simi-
larly effective performance.

Research into novel ways of combining the re-
lation and content based methods could lead to fur-
ther improvements in the categorisation performance
while keeping the cost of building and propagating la-
bels on the graph to a minimum.
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