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Abstract: Finding the brain tumor tissue-specific magnetic resonance spectra and their corresponding spatial 
distribution is a typical Blind Source Separation (BSS) problem. Non-negative Matrix Factorization (NMF), 
which only requires non-negativity constraints, has become popular because of its advantages compared to 
other BSS methods. A variety of algorithms based on traditional NMF have been recently proposed. This 
study focuses on the performance comparison of several NMF implementations, including some newly 
released methods, in brain glioma tissue differentiation using simulated magnetic resonance spectroscopic 
imaging (MRSI) signals. Experimental results demonstrate the possibility of finding typical tissue types and 
their distributions using NMF algorithms. The (accelerated) hierarchical alternating least squares algorithm 
was found to be the most accurate.  

1 INTRODUCTION 

Automatic tissue type differentiation in brain tumor 
patients is of utmost importance in guiding therapy 
and determining prognosis. Magnetic resonance 
spectroscopic imaging (MRSI) (Brown et al., 1982), 
which produces localized spectra, is used as a non-
invasive tool for additional clinical diagnosis of 
brain tumors; see Figure 1. Given an m n×  matrix X 
which represents the observed spectra from MRSI 
data, each column containing a spectrum from one 
voxel, previous studies (Su et al., 2008) 
demonstrated that X  can be approximately 
described as a linear combination of constituent 
specta of different tissue types. The model is 
 

                   X WH N= +                                (1) 

W  is a m r×  matrix, with each column representing 
a recovered spectrum for each tissue type. Each row 

of the r n×  matrix H contains the linear 
combination weights (interpreted here as abundances 
or concentrations) of all constituent tissue spectra. N 
stands for additive measurement noise. 

 
Figure 1: Left: anatomic image of a glioma patient’s brain 
overlaid with the MRSI grid. Right: the spectral profile 
from the blue voxel from the tumor area. 

Blind Source Separation (BSS) is one of the 
main approaches to perform such factorization. One 
of the algorithms, non-negative matrix factorization 
(NMF) (Lee et al., 1999), has attracted much 
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attention in recent years because it does not require 
the constituent spectra to be orthogonal or 
independent. The mathematical formulation of the 
basic NMF problem is 
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In this paper, we designed a simulation study 
aiming to evaluate the accuracy  of several popular 
NMF implementations in solving the brain glioma 
tissue type differentiation problem. The algorithms’ 
performance was investigated specifically in terms 
of their accuracy to estimate tissue-specific spectra 
and their spatial distribution.  

2 NMF ALGORITHMS 

In this section we describe several NMF algorithms 
that will be compared in Section 4. 

 Multiplicative update method using Euclidean 
distance measure (mu) (Lee et al., 2001):  
This algorithm is used most commonly in 
solving the NMF problem. It uses the Euclidean 
distance as a measure to construct the cost 
function 2|| ||X WH− . The cost function is 
minimized using the update rule: 
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 Alternating least squares (als) (Berry et al., 
2007): This algorithm alternately solves 
unconstrained least squares subproblems for W 
and H (see Eq. 4) and sets the negative elements 
to zero. 
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 Alternating non-negative least squares using 
projected gradients (cjlin) (Lin, 2007): In this 
implementation, non-negatively constrained least 
squares subproblems are solved alternatively for 
W and H using the projected gradient method. 
Consider the following standard form of bound-
constrained optimization problems: 
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Projected gradient methods are iterative and 
update the current solution kx  to the following 

1kx +  by the rule: 
1 [ ( )]k k k kx P x f xα+ = − ∇              (6) 

where kα  is the step size and  
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Hierarchical alternating least squares (hals) 
(Cichocki et al., 2007; Cichocki et al., 2009): 
hals sequentially estimates one column of W and/or 
one row of H while fixing all the other ones, that is: 
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where W:k, W-k, Hk:, H-k denote, respectively, the 
kth column of W, the matrix W without the kth 
column, the kth row of H, and the matrix H 
without the kth row. 

 Accelerated multiplicative update method 
(amu) and Accelerated HALS (ahals) (Gillis, 
2011): These two more efficient methods are 
developed based on the mu and hals methods. 
Computational cost is reduced by updating W 
several times before updating H (and vice versa), 
instead of updating W and H alternately. An 
inner loop stopping criterion is utilized for each 

( )lW , defined as the iterate after l updates of W 
using Eq. 3 for amu or Eq. 7 for ahals (while H 
is being kept fixed): 

( 1) ( ) (1) (0)|| || || ||l l
F FW W W Wδ+ − ≤ −      (8) 

where δ  is a small constant, equal to 0.01 in the 
implementation. 

3 EXPERIMENT & RESULTS 

3.1 Simulated Spatial Distribution 

In   order   to   construct   a    realistic    MRSI    grid 
Containing spectra  from  normal  tissue,  as  well  as  
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tumor tissue and necrosis, we simulated an MRSI 
grid in which these 3 tissue types are contained. 
Table 1 shows the simulated distribution of brain 
tissues. Each table cell represents a voxel. C, N, and 
T denote respectively control tissue type (i.e., 
normal tissue), tumor tissue and necrotic tissue. In 
the voxels at the interface between tissues, there is 
usually a mixture of different tissue types. 
Therefore, decimals are placed into the table to 
represent concentration of mixed tissues. For 
instance, 0.8C+0.2T denotes the tissue type in a 
voxel composed of approximately 80% normal and 
20% tumor tissue.  

3.2 Simulated MRSI Signals 

In our study, the simulated signals are linear 
combinations of 9 metabolite profiles (two simulated 
lipid profiles and seven metabolite profiles measured 
in vitro), i.e., creatine (Cre), glutamate (Glu), myo-
inositol (Myo), phosphocholine (PCh), N-acetyl-
aspartate (NAA), alanine (Ala), lactate (Lac), lipid at 
1.3ppm (Lip1), and lipid at 0.9ppm (Lip2). These 
components are significant biomarkers for normal 
brain tissue, tumor tissue, and necrosis tissue in 
pathology (Howe et al., 2003). To choose proper 
parameters for amplitude, damping, phase and 
frequency for the simulated signals, we rely on a 
parameter extraction procedure (Poullet et al., 2006). 

In order to emulate the variability within an 
MRSI grid, 4dB white Gaussian noise, which is in 

 agreement with our in vivo signals, is added to the 
spectrum of each voxel.  

The generated time domain signals, each having 
2048 points, are Fourier transformed into the 
frequency domain, then truncated to the frequency 
range of interest, 0.25 – 4.2 ppm.  

The simulated tissue-specific spectra with noise 
are shown in the first row of Figure 2 (in blue) and 
are compared with spectra from a clinical in vivo 
case as shown in the second row of Figure 2. The 
simulated pure spectra are in red. 

3.3 Tissue Type Differentiation using 
NMF Algorithms 

Several NMF algorithms listed in section 2 are 
applied to the simulated grid described in section 3.1; 
see Table 1. The number of brain tissue types is set 
to be 3, indicating normal tissue, tumor tissue and 
necrotic tissue. The recovered constituent spectra 
and their corresponding spatial distributions show 
the variability of tissue type differentiation using 
each of the described NMF algorithms; see Figure 3. 
After scaling and normalization, we notice that 
similar spectra with important peaks, which are 
biomarkers for discrimination of different tissue 
types (NAA, Cho, Lac/Lip), are obtained for each 
tissue type with all methods. The corresponding 
abundance maps clearly show the location of each 
tissue type. 

Table 1: Simulated tissue-specific spatial distribution. C denotes control tissue type, i.e., normal tissue. T denotes tumor 
tissue. N denotes necrotic tissue.  

C C C C C C C 0.8C 
+0.2T 

0.3C 
+0.7T T T 0.6T 

+0.4N T 

C C C C C C C 0.8C 
+0.2T 

0.3C 
+0.7T T T 0.3T 

+0.7N 
0.5T 

+0.5N 

C C C C C C C 0.8C 
+0.2T 

0.3C 
+0.7T T 0.3T 

+0.7N 
0.2T 

+0.8N 
0.3T 

+0.7N 

C C C C C C C 0.8C 
+0.2T 

0.3C 
+0.7T T 0.1T 

+0.9N N 0.3T 
+0.7N 

C C C C C C C 0.8C 
+0.2T 

0.3C 
+0.7T T 0.1T 

+0.9N N 0.4T 
+0.6N 

C C C C C C C 0.8C 
+0.2T 

0.3C 
+0.7T 

0.5C 
+0.5T T 0.5T 

+0.5N 
0.5T 

+0.5N 

C C C C C C C C 0.8C 
+0.2T 

0.8C 
+0.2T 

0.5C 
+0.5T 

0.3C 
+0.7T 

0.5C 
+0.5T 

C C C C C C C C C C 0.8C 
+0.2T 

0.8C 
+0.2T 

0.8C 
+0.2T 

C C C C C C C C C C C C C 

C C C C C C C C C C C C C 
C C C C C C C C C C C C C 
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Figure 2: Spectra with SNR of 4dB from different voxels. The first row shows simulated spectra from normal tissue, tumor 
tissue and necrotic tissue, respectively. Simulated noiseless spectra are shown with thick red lines. For comparison, the last 
row contains in vivo spectra from the three different tissue types. 

          

                          (a)                                                          (b)                                                  (c) 

          

(d)                                                          (e)                                                    (f) 

Figure 3: Simulation results of normalized recovered spectra (left column) and their corresponding spatial distribution (right 
column) averaged over successful runs among 500 runs with different initializations using several NMF algorithms: (a) mu; 
(b) cjlin; (c) als; (d) hals; (e) amu; (f) ahals. The color bars show scales for the distribution of concentration. 

3.4 Validation of Spectral Separation 
and Abundance Estimates 

In order to evaluate the accuracy of the algorithms 
listed in section 2, averaged results from 500 runs 

(results with convergence problems were excluded, 
i.e. 8 out of 500 runs for mu, 9 out of 500 runs for 
als) for each algorithm were calculated, with 
different starting values.  For every run, all the 
methods take the same initial value. Specifically, 
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correlation coefficients R between constituent 
spectra estimated by NMF and simulated spectra are 
computed. The closer R to 1, the better the similarity 
between spectra generated using NMF and the 
simulated spectra, thus the better the performance. 
Furthermore, we compute the error rate of the 
corresponding spatial distribution for each tissue 
type:  

2
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−
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∑

           (9) 

where eh  is the estimated abundance map from 

NMF and sh is the original distribution (see Table 1)  
When the value of the error is lower, the accuracy of 
the estimated spatial distribution is higher.  

Algorithms were adjusted to make sure they all 
detect convergence according to the same stopping 
criterion, namely the condition that ( 1) ( )|| ||t tW W+ −  
or ( 1) ( )|| ||t tH H+ − (i.e., the difference of recovered 
sources or the recovered abundance maps in 
subsequent iterations) drops below a certain 
tolerance level, set to 410−  for all the methods.  

Results are shown in Figure 4. Overall, hals 
gives the best result for all tissue types, especially 
the error rate calculated by hals for tumor is 
significantly lower than for other methods. Results 
of ahals were also investigated but not shown here 
since they are identical to hals. 

  
(a)                                   (b) 

Figure 4: Accuracy evaluation. (a) correlation coefficient; 
(b) error rate. 

4 DISCUSSION & CONCLUSION 

In this simulation study, we aimed at comparing the 
performance of several NMF algorithms on spectra 
with a high noise level. Spectral distortions due to, 
e.g., magnetic field inhomogeneity and the chemical 
shift displacement effect may lead to more signal 
variability and to the violation of the model in Eq.1. 
We chose not to include such non-linear factors of 
variability in the simulations because those would  

obscure the reasons for differences between 
methods. Nevertheless, in vivo signals need to be 
reprocessed and significantly distorted signals need 
to be excluded before spectral separation using 
NMF. 

Among the tested NMF implementations, Lee 
and Seung’s algorithm mu (Lee et al., 2001) was the 
most commonly used one in the past. Comparisons 
between various NMF algorithms have already been 
presented in the literature (Kim et al., 2007). But 
previous comparisons between algorithms were 
mostly focused on evaluating computational 
efficiency and divergence problems (Kim et al., 
2007; Cichocki et al., 2009), which are indicated by 
the cost function 

2|| ||FX WH− . However, the 
accuracy of estimated tissue type profiles and the 
corresponding spatial location is much more 
important in the clinical diagnosis than 
computational speed since the computing time of all 
the methods is affordable for the dimensions of the 
considered MRSI grids. Instead of evaluating the 
results only visually, we follow (Croitor Sava et al., 
2010) who calculated correlation coefficients 
between the obtained tissue sources and reference 
tissue models. Our error rate is calculated between 
the estimated spatial information and the simulated 
spatial information. In this way, the accuracy of the 
estimated spatial distribution of each tissue type can 
be evaluated. 

Overall, our results show that (a)hals gives the 
best results in the simulation study, which confirms 
the argumentation in (Gillis, 2011) that (a)hals has 
remarkable performances. Especially the error for 
tumor tissue shows a significant decrease compared 
to all other methods. It demonstrates that the very 
recent NMF algorithms hals and ahals can be 
suitable for solving brain tissue type differentiation 
problems using MRSI signals. In another study, we 
further validate the feasibility of utilizing NMF 
algorithms for brain tumor tissue differentiation 
using in vivo MRSI signals. 
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