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Abstract: An important neurologic process consists in a time dependent transmission of the electric signal between 
neurons. The description of such signal is the objective of this work. In this way, the Fokker-Planck 
equation with a term of control which depends on time is used. The applied force is characterized by the 
existence of a barrier that increases with time and reduces the diffusion of particles. The solution of the 
equation is obtained by an ansatz that satisfies the initial conditions of the problem. Numerical examples of 
the time evolution of the found solutions are analyzed by calculating the escape rate and the time necessary 
to across the barrier for different values of diffusion constant. 

1 INTRODUCTION 

The process related to the flux of charge in the 
region between two neurons (synapse) is 
fundamental to the function of the nervous system. 
Thus, the understanding and description of ion 
transport in the synapses have a prominent place in 
modern neuroscience. This process occurs through 
fast picks of electrical currents between neurons 
(Hille, 1992, Ramakrishnan, 2011). Studies 
involving the synapse are very important 
considering that few neurological diseases have an 
effective treatment (Fassio, 2011). This fact has 
encouraged studies in this area, aiming to develop 
techniques that can bring greater understanding of 
the biological processes involved (Joshi, 2011 
England, 2010, Guo, 2010, Fallon, 2011) and thus, 
develop more effective treatment methods for 
different types of neurological diseases. 

A quantitative description of processes involving 
stochastic components can be made by using the 
Fokker-Planck equation (FPE). This equation has 
wide application in many branches of physics, 
chemistry and biology (Coffey, 2004), such as 
protein folding (Curtis, 1997) or ion transport across 
membranes (Lee, 2002). In some cases, the Fokker-
Planck equation can be solved analytically as, for 
instance, for the linear and stationary problems 
involving one variable (Risken, 1989). 

 

The usual form of EFP is 
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where t represents the time variable and the variable 
x can be identified, for example, with the velocity 
(Reichl, 1988). The function f(x) is known as the 
external force acting on the system. However, this 
terminology is only appropriate when x represents 
the velocity. Q this is related to the diffusion 
constant, and P(x,t) is the probability distribution. 

Different methods have been proposed to 
determine and analyze the solution of the Fokker-
Planck equation (1), as the use of the numerical 
method based on finite differences (Ames, 1992), 
Adomian polynomial method (Tatari, 2007) and the 
mapping of FPE in equation type Schroedinger 
(Risken, 1989). 

In terms of synapse transmission, the potential to 
be used should reflect the transitory nature of the 
signal. Thus, it is suggested a potential which is 
initially metastable and converges to a harmonic 
potential for large value of time (Figure 1). Then, 
initially the particles in the region of minimum of 
potential can escape out this region. However, the 
system becomes confined for the stationary regime. 
The solution of the Fokker-Planck equation in this 
case is obtained through an ansatz. 

Studies involving kinetics of reaction, studied for 
more than 70 years (Hänggir, 1990), are still based 
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on the description of the system in quasi-stationary 
regime. Thus, the information related to the system 
outside that regime is lost. On the other hand, the 
solution of the Fokker-Planck equation (Risken, 
1989) makes possible the analysis of physical and 
chemical processes from the beginning, when the 
system is in the no equilibrium condition. 

In the section 2, the FPE and the probability 
distribution are presented. In section 3, the dynamic 
properties, the escape rates and a characteristic time, 
of the system are determined. In section 4, numerical 
examples are discussed. Finally, the conclusions are 
presented in Section 5. 

2 THE FOKKER-PLANCK 
EQUATION 

The potential studied in this work is: 
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where k1 is a constant and k2(t) is a time function. In 
order to describe the flux of ions through the 
synapse, the function k2(t) must go to a constant 
value for a large value of time (k2(t→∞)→constant) 
and the anharmonic term become small comparing 
the harmonic part. Thus, for large values of time, the 
barrier of potential to be overcome for occurs 
diffusion of particles from the region of minimum 
becomes very large. In this condition the system is 
governed by a quasi harmonic potential. The explicit 
form adopted for k2(t) in this work is: 
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where k2,0 is a constant. This expression attends the 
properties described above and allows an analytical 
solution for EFP (1) with the function f(x) given by 
derivative of potential (2),  
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The solution of the equation (1), for f(x) given by 
(4), can be found assuming that P(x,t) is written as 
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where λ is a constant defined from the normalization 
of probability and the function φ(t) is given by 
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The initial condition adopted is that all particles 
are initially in the region of minimum in x = 0.  
Then, in the initial time (t = 0) the distribution of 
probability has value equal 1 in the position x = 0.  

The figure 1 shows a numerical representation of 
the potential (2) in function of position for different 
values of time, with k2(t) given by (3) and the 
parameters k1 = 0.2, λ = 1 and k2,0 = 0.05. 

 

Figure 1: Curves of the potential V(x,t) defined in 
equation (2) for different values of time, k1  = 0.2, λ = 1 
and k2,0  = 0.05. 

The distribution of probabilities, equation (5), is 
showed in the figure 2 for different values of time 
and diffusion constant. The values of k1, λ and k2,0 
are the same used in the figure 1 (k1 = 0.2, λ = 1 e 
k2,0 = 0.05). 

a)  

Figure 2: Distribution of probability for different times 
with a) Q = 0.1 and b) Q = 1. 

 

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

60



 

b)  
 
 

Figure 2: Distribution of probability for different times 
with a) Q = 0.1 and b) Q = 1. (Cont.) 

3 DYNAMIC PROPERTIES 
OF THE SYSTEM 

Important results for the transmission at synapses are 
the diffusion rate (r) and or time of passage through 
the barrier (τ). In order to compute these quantities, 
one consider the initial potential metastable (2) (t = 
0), as showed in figure 3.  

 
Figure 3: Representation of a metastable potential. 

The figure 3 shows a maximum peak in xmax and 
a point of local minimum in the region I (xmin). The 
points x1 and x2 refer to a region I around the 
minimum xmin and A referes to a point in the second 
region, region II, after the barrier. The escape rate of 
particles through the barrier can be calculated from 
the relation, 

,Jr
w

=  (7) 

where J is the current probability or particle flow 
through a particular region and w represents the 
population within the region of minimum. They are 
defined, respectively, as 
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The function j(x,t) is obtained from the Fokker-
Planck equation, such that, 
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Then, the rate r can be rewritten as 
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This literal definition allows obtaining the escape 
rate in the various situations of potential.  

Another important quantity to characterize the 
diffusion through the barrier is the first passage time 
or particle escape time (τ) (Lenzi, 2001). This time 
corresponds to the inverse of the escape rate, i.e.: 
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4 NUMERICAL RESULTS 

Using the solution for the Fokker-Planck equation 
(5), the curves obtained for the escape rate of 
particles (equation (10)) for different values of 
diffusion (Q) are presented in figure 4. The constants 
values are adopted as k1  = 0.2, λ = 1 and k2,0  = 0.05. 

 

Figure 4: Curves of the rate escape (r) versus t for 
different values of Q with k1  = 0.2, λ = 1 and k2,0 = 0.05. 

Time:       t = 0.0;          t = 0.5;         t = 2.0;  

        t = 5.0 
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In the figure 4 it is showed that the rate of 
diffusion of particles decays with time until the 
value zero. This behavior is associated with the 
potential that is not constant on time. For large value 
of time, the potential presents a high and large 
barrier. The result is the confinement of the 
particles. 

This phenomenon is also observed by the first 
passage time (τ) of the particles through the barrier, 
equation (11). In the figure 5 the value of τ as a 
function of the time is plotted. Initially, the time is 
short featuring a fast passage of particles through the 
barrier, but this value increase due to the increased 
and diverges (τ → ∞) for large values of time. 

 

Figure 5:  Escape time (τ) versus t for different values of 
Q, with k1  = 0.2, λ = 1 and k2,0  = 0.05. 

From the curves in figure 5, it is possible to 
observe that for large values of the Q the diffusion 
through the barrier become more fast and effective. 
In figure 4 we note that for a time t = 4 there is a 
small diffusion of particles when Q equal to 2, but 
for a low value of the diffusion coefficient (for 
instance, Q = 0.1) the diffusion is null for this time. 
Following the same reasoning, it is observed that for 
a low value of the diffusion coefficient, the time of 
first passage (figure 5) becomes long for large Q 
values. 

5 CONCLUSIONS 

The results obtained from the solution of the Fokker-
Planck equation for the potential suggested (2) 
exhibit a behavior consistent with that expected from 
the electrical transmission at synapses. The flow of 
charge is most intense at the beginning of the signal 
and tends to vanish for large values of time. This 
result combined with the construction of the 
potential allows concluding that this approach can be 

effective to describe the dynamics of the physical 
process that occurs at synapses. 

The models proposed in literature usually 
consider the diffusion through a fixed barrier of 
energy on time and the escape rate is calculated 
using only the results of the system at the stationary 
state (rate of Kramer (Risken, 1989, Hänggir, 
1990)), which limits quite the applicability of these 
models. Then, the potential proposed here can be 
useful to build more realistic models. 
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