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Abstract: We address the problem of finding the minimal number of block interchanges required to transform a dupli-
cated linear genome into a tandem duplicated linear genome. We provide a formula for the distance as well as
a polynomial time algorithm for the sorting problem.

1 INTRODUCTION

Genomic rearrangements are known to play a central
role in the evolutionary history of the species. Several
operations act on the genome, shaping the sequence
of genes. A number of rearrangement operations to
sort a genome into another, and evaluate the evolu-
tionary distance between genomes, have been studied:
reversals, transpositions, translocations, block inter-
changes, fusions, fissions, and more recently Double-
Cut-and-Join (DCJ). In this paper, we focus on the
block interchange operation, that consists in exchang-
ing two intervals of a genome.

Block interchanges scenarios have been studied
for the first time by Christie (Christie, 1996). He pro-
posed a O(n2) time algorithm for computing the min-
imum number of block interchanges for transforming
a linear chromosome with unique gene content into
another one. Lin et al. (Lin et al., 2005) proposed
later the best algorithm to date in O(gn) where g is the
minimum number of block interchanges required for
the transformation. Yancopoulos et al. (Yancopoulos
et al., 2005) introduced the DCJ operation which con-
sist in cutting the genomes in two points and joining
the four resulting extremities in a different way. Inter-
estingly, they noticed that a block interchange can be
simulated by two consecutive DCJ operations.

Another very important feature in genome evolu-
tion is that genomes often undergo genome duplica-
tion events, both segmental and whole-genome dupli-
cations. For instance, a tandem-duplication event is
a segmental duplication that duplicates a genomic se-
quence and results in a segment made of two conse-
vutive occurrences of the genomic sequence, called a
tandem-duplicated segment, in the genome. Genome
duplication events are followed by other rearrange-
ments events which result in a scrambled genome.

The Genome Halving problem introduced by El-
Mabrouk et al. (El-Mabrouk et al., 1998) consists in
finding the sequence of rearrangement events that al-
low one to go back from the scrambled genome to the
original duplicated one.

Genome Halving has been studied under several
models: reversals (El-Mabrouk et al., 1998), translo-
cation/reversals (El-Mabrouk and Sankoff, 2003),
breakpoints (Tannier et al., 2008). Most of the re-
sults led to polynomial time algorithms. Particu-
larly, the Genome Halving by DCJ was studied in
(Warren and Sankoff, 2008; Mixtacki, 2008), and in
(Mixtacki, 2008) some useful data structures were
presented leading to a linear time algorithm for the
Genome Halving by DCJ. Following these results
on the Genome Halving by DCJ, a natural problem
to consider is the Genome Halving by block inter-
change. In this paper, we study the Genome Halving
by block interchange on a duplicated genomic seg-
ment resulting from a tandem-duplication event, fol-
lowed by block interchange events that have scram-
bled the gene content of the segment. This dupli-
cated genomic segment is represented as a linear chro-
mosome with duplicated gene content w.l.o.g, and
we search for a parsimonous scenario of block in-
terchange operations transforming the linear chromo-
some into a linear tandem-duplicated chromosome.
We answer yes to the question: Does there exist a par-
simonious sequence of block interchange operations,
such that, replacing each block interchange by two
consecutive DCJ operations yields a parsimonious se-
quence of DCJ operations ?. Based on the adequate
data structure to represent potential DCJ operations
and their overlapping relations, we derive a quadratic
time algorithm for the Genome Halving by block
interchanges. Very recently, Kováč et al. (Kovác
et al., 2010) addressed the problem of reincorporat-
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ing the temporary circular chromosomes induced by
DCJs immediately after their creation considering the
Genome Halving. This problem is obviously related
to the problem addressed in the present paper, but the
aim and results are different. We are interested in lin-
ear genomes, not in multilinear ones, and we focus
on pure block interchange scenarios that can be sim-
ulated by particular types of DCJ operations called
excisions and integrations, whereas Kováč et al. fo-
cused on general DCJ scenarios simulating reversals,
translocation, fusion, fissions along with excisions,
integrations, and block interchanges.

Section 2 gives definitions. In Section 3, we first
give a lower bound on the distance with helpful prop-
erties for the rest of the paper. In Section 4, we prove
the analytical formula for the distance. We conclude
in Section 5 with a quadratic time and space algorithm
to obtain a parsimonious scenario.

2 PRELIMINARIES:
DUPLICATED GENOMES,
REARRANGEMENT, GENOME
HALVING PROBLEMS

In this section we give the main definitions and nota-
tions used in the paper.

2.1 Duplicated Genomes

A genome is composed of genomic markers orga-
nized in linear or circular chromosomes. A linear
chromosome is represented by an ordered sequence
of unsigned integers, each standing for a marker, sur-
rounded by two abstract markers � at each end in-
dicating the telomeres. A circular chromosome is
represented by a circularly ordered sequence of un-
signed integers representing markers. For example,
(1 2 3) (� 4 5 6 7 �) is a genome constituted
of one circular and one linear chromosome. Note
that all genomes are considered unsigned in this paper
w.l.o.g, because block interchange operations do not
modify the signs of markers.
Definition 2.1. A rearranged duplicated genome is a
genome in which each marker appears twice.

In a rearranged duplicated genome, two copies of
a same marker are called paralogs. We distinguish
paralogs by denoting one marker by x and its para-
log by x. By convention x = x. For example, the
following genome is a rearranged duplicated genome:
(� 1 1 3 2 4 5 6 6 7 3 8 2 4 5 9 8 7 9 �).

An adjacency in a genome is a pair of consecutive
markers. For example, the genome (� 1 2 �) (3 4 5)

has six adjacencies, (� 1); (1 2); (2 �), and
(3 4); (4 5); (5 3). The linear or circular order
of the markers in a chromosome naturally induces an
order on the adjacencies that we denote by <. For
example in the previous genome the order induced
on the adjacencies is: (� 1) < (1 2) < (2 �), and
(3 4)< (4 5)< (5 3)< (3 4).

A double-adjacency in a genome G is an adja-
cency (a b) such that (a b) is an adjacency of G as
well. Note that a genome always has an even number
of double-adjacencies. For example, the four double-
adjacencies in the following genome are indicated by
dots :

G=(� 1 1 3 2 � 4 � 5 6 6 7 3 8 2 � 4 � 5 9 8 7 9 �)

A consecutive sequence of double-adjacencies can
be rewritten as a single marker; this process is called
reduction. For example, genome G can be reduced by
rewriting 2 � 4 � 5 and 2 � 4 � 5 as 10 and 10, yielding
the following genome:

Gr = (� 1 1 3 10 6 6 7 3 8 10 9 8 7 9 �)

Definition 2.2. A tandem-duplicated genome is a re-
arranged duplicated genome composed of a single
linear chromosome which can be reduced to a chro-
mosome of the form (� x x �).

In other words, a tandem-duplicated genome is
composed of a single linear chromosome where all
adjacencies, except the two containing the marker �
and the central adjacency, are double-adjacencies. For
example, the genome (� 1 � 2 � 3 � 4 1 � 2 � 3 � 4 �)
is a tandem-duplicated genome that can be reduced to
(� 5 5 �) by rewritting 1 � 2 � 3 � 4 and 1 � 2 � 3 � 4
as 5 and 5.

Definition 2.3. A perfectly duplicated genome is a
rearranged duplicated genome such that each adja-
cency is a double-adjacency.

For example, the genome (1 2 1 2) (� 3 4 �)
(� 3 4 �) is a perfectly duplicated genome com-
posed of one single circular chromosome and two lin-
ear chromosomes.

In other words, a tandem-duplicated genome is the
representation of a duplicated segment resulting from
a tandem-duplication of a genomic sequence, and a
perfectly duplicated genome represents the result of a
whole-genome duplication event that has duplicated
all chromosomes.

2.2 Rearrangements

A rearrangement operation on a given genome cuts a
set of adjacencies of the genome called breakpoints
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and forms new adjacencies with the exposed extremi-
ties, while altering no other adjacency. In the sequel,
the adjacencies cut by a rearrangement operation are
indicated in the genome by the symbol N.

An interval in a genome is a set of markers that
appear consecutively in the genome. Given two dif-
ferent adjacencies (a b) and (c d) in a genome G
such that (a b)< (c d), [b ; c] denotes the interval of
G beginning with marker b and ending with marker c.

In this paper, we consider two types of rearrange-
ment operations called block interchange (BI) and
double-cut-and-join (DCJ).

A block interchange (BI) on a genome G is a re-
arrangement operation that acts on four adjacencies
in G, (a b) < (c d) � (u v) < (x y) such that
the intervals [b ; c] and [v ; x] do not overlap, swap-
ping the intervals [b ; c] and [v ; x]. For example,
the following block interchange acting on adjacencies
(1 2)< (6 6)< (3 8)< (8 7) consists in swapping
the intervals [2;6] and [8;8].

(� 1 1 N 2 3 2 4 5 6 N 6 7 3 N 8 4 9 5 8 N 7 9 �)
#

(� 1 1 8 4 9 5 8 6 7 3 2 3 2 4 5 6 7 9 �)
A double-cut-and-join (DCJ) operation on a

genome G cuts two different adjacencies in G and
glues pairs of the four exposed extremities to form two
new adjacencies. Here, we focus on two types of DCJ
operations called excision and integration.

An excision is a DCJ operation acting on a single
chromosome by extracting an interval from it, mak-
ing this interval a circular chromosome, and making
the remainder a single chromosome.For example, the
following excision extracts the circular chromosome
(2 3 4):

(� 1 N 2 3 4 N 5 6 �)! (2 3 4)(�1 5 6 �)

An integration is the inverse of an excision; it is a
DCJ operation that acts on two chromosomes, one be-
ing a circular chromosome, to produce a single chro-
mosome. For example, the following operation is an
integration of the circular chromosome (2 3 4):

(2 N 3 4)(�1 5 6 N �)! (� 1 5 6 3 4 2 �)

We now give an obvious, but very useful, property
linking BI operations to DCJ operations.

Property 2.4. A single BI operation on a linear chro-
mosome is equivalent to two DCJ operations: an exci-
sion followed by an integration.

Proof. Let (� 1 U 2 V 3 �) be a genome, U and
V the two intervals that are to be swapped by a block
interchange operation, 1 2 and 3 the intervals constitut-
ing the rest of the genome (note that each of them may
be empty).

The first DCJ operation is the excision that pro-
duces the adjacency (1 V ) by extracting and circular-
izing the interval [U ; 2]:

(� 1 N U 2 N V 3 �)! (� 1 V 3 �)(U 2 )

The second DCJ operation is the integration that
produces the adjacency (U 3) by reintegrating the cir-
cular chromosome (U 2) in the appropriate way:

(� 1 V N 3 �)(U 2 N)! (� 1 V 2 U 3 �):

A rearrangement scenario between two genomes
A and B is a sequence of rearrangement operations al-
lowing one to transform A into B.

Definition 2.5. A BI (resp. DCJ) scenario is a rear-
rangement scenario composed of BI (resp. DCJ) oper-
ations.

The length of a rearrangement scenario is the num-
ber of rearrangement operations composing the sce-
nario.

Definition 2.6. The BI (resp. DCJ) distance between
two genomes A and B, denoted by dBI(A;B) (resp.
dDCJ(A;B)), is the minimal length of a BI (resp. DCJ)
scenario between A and B.

2.3 Genome Halving

We now state the genome halving problem considered
in this paper.

Definition 2.7. Given a rearranged duplicated
genome G composed of a single linear chromosome,
the BI halving problem consists in finding a tandem-
duplicated genome H such that the BI distance be-
tween G and H is minimal.

In order to solve the BI halving problem, we use
some results on the DCJ halving problem that were
stated in (Mixtacki, 2008) as a starting point. How-
ever, unlike the BI halving problem, the aim of the
DCJ halving problem is to find a perfectly duplicated
genome instead of a tandem-duplicated genome.

Definition 2.8. Given a rearranged duplicated
genome G, the DCJ genome halving problem consists
in finding a perfectly duplicated genome H such that
the DCJ distance between G and H is minimal.

The BI and DCJ genome halving problems lead to
two definitions of halving distances: the BI halving
distance (resp. DCJ halving distance) of a rearranged
duplicated genome G is the minimum BI (resp.
DCJ) distance between G and any tandem-duplicated
genome (resp. any perfectly duplicated genome) ; we
denote it by dt

BI(G) (resp. dp
DCJ(G)).
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3 LOWERBOUND FOR THE BI
HALVING DISTANCE

In this section we give a lowerbound on the BI halv-
ing distance of a rearranged duplicated genome. We
use a data structure representing the genome called the
natural graph introduced in (Mixtacki, 2008).

Definition 3.1. (Mixtacki, 2008) The natural graph of
a rearranged duplicated genome G, denoted by NG(G),
is the graph whose vertices are the adjacencies of G,
and for any marker u there is one edge between (u v)
and (u w), and one edge between (x u) and (y u).

Note that the number of edges in the natural
graph of a genome G containing n distinct mark-
ers, each one present in two copies, is always 2n.
Moreover, since every vertex has degree one or two,
then the natural graph consists only of cycles and
paths. For example, the natural graph of genome
G = (� 1 2 1 4 3 4 3 2 �) is depicted in Fig.
1.

� 1 2 1 2 �

1 2 1 4 3 4 3 2

4 3 4 3

Figure 1: The natural graph of genome G =
(� 1 2 1 4 3 4 3 2 �); it is composed of one
path and two cycles.

Definition 3.2. Given an integer k, a k�cycle (resp.
k�path) in the natural graph of a rearranged dupli-
cated genome is a cycle (resp. path) that contains k
edges. If k is even, the cycle (resp. path) is called
even, and odd otherwise.

Based on the natural graph, a formula for the DCJ
halving distance was given in (Mixtacki, 2008). Given
a rearranged duplicated genome G such that the num-
ber of even cycles and the number of odd paths in
NG(G) are respectively denoted by EC and OP, the DCJ
halving distance of G is:

dp
DCJ(G) = n�EC�

�
OP
2

�
In the case of the BI halving distance, some pecu-

liar properties of the natural graph need to be stated,

allowing one to simplify the formula of the DCJ halv-
ing distance, and leading to a lowerbound on the BI
halving distance.

In the following properties, we assume that G is
a genome composed of a single linear chromosome
containing n distinct markers, each one present in two
copies in G.

Property 3.3. The natural graph NG(G) contains only
even cycles and paths:

1. All cycles in the natural graph NG(G) are even.
2. The natural graph NG(G) contains only one path,

and this path is even.

Proof. First, if (a x) is a vertex of the graph that be-
longs to a cycle C, then there exists an edge between
(a x) and a vertex (a y). These two adjacencies are
the only two containing a copy of the marker a at the
first position. So, if we consider the set of all the first
markers in all adjacencies contained in the cycle C,
then each marker in this set is present exactly twice.
Therefore, the cycle C is an even cycle.

Secondly, the graph contains exactly two vertices
(adjacencies) containing the marker � which are both
necessarily ends of a path in NG(G). Thus there can be
only one path in the graph. Since the number of edges
in the graph is even and all cycles are even, then the
single path is also even.

We now give a lowerbound on the minimum
length of DCJ scenario transforming G into a tandem-
duplicated genome.

Lemma 3.4. Let dt
DCJ(G) be the minimum DCJ dis-

tance between G and any tandem-duplicated genome.
If NG(G) contains C cycles then a lowerbound on
dt

DCJ(G) is given by:

dt
DCJ(G)� n�C�1

Proof. First, since all cycles of NG(G) are even and
NG(G) contains no odd path, then, from the DCJ halv-
ing distance formula, the DCJ halving distance of G is
dp

DCJ(G) = n�C.
Now, since any tandem-duplicated genome can be

transformed into a perfectly duplicated genome with
one DCJ, then dt

DCJ + 1 � dp
DCJ . Therefore, we have

dt
DCJ � dp

DCJ�1� n�C�1.

We are now ready to state a lowerbound on the BI
halving distance of a rearranged duplicated genome G.

Theorem 3.5. If NG(G) contains C cycles, then a
lowerbound on the BI halving distance is given by:

dt
BI(G)�

�
n�C

2

�
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Proof. We denote by ‘(S) the length of a rearrange-
ment scenario S. Let SBI be a BI scenario transform-
ing G into a tandem-duplicated genome. From prop-
erty 2.4, we have that SBI is equivalent to a DCJ sce-
nario SDCJ such that ‘(SDCJ) = 2 � ‘(SBI). Now, sup-
pose that ‘(SBI) < b n�C

2 c, then ‘(SBI) � b n�C
2 c� 1 �

d n�C�1
2 e�1.
This implies ‘(SDCJ)� 2d n�C�1

2 e�2� n�C�2<
n�C� 1. Thus, from Lemma 3.4 we have ‘(SDCJ) <
dt

DCJ which contradicts the fact that dt
DCJ is the minimal

number of DCJ operations required to transform G into
a tandem-duplicated genome.

In conclusion, we always have dt
BI(G) � b n�C

2 c.

4 FORMULA FOR THE BI
HALVING DISTANCE

In this section, we show that the BI halving distance
of a rearranged duplicated genome G with n distinct
markers such that NG(G) contains C cycles is exactly:

dt
BI(G) =

�
n�C

2

�
In other words, we show that enforcing the con-

straint that successive couples of consecutive DCJ op-
erations have to be equivalent to BI operations does not
change the distance even though it obviously restricts
the DCJ that can be performed at each step of the sce-
nario.

In the following, G denotes a rearranged duplicated
genome G constisting in a single linear chromosome
with n distinct markers after the reduction process, and
such that NG(G) contains C cycles. We begin by recall-
ing some useful definitions and properties of the DCJ
operations that allow one to decrease the DCJ halving
distance by 1 in the resulting genome.

Definition 4.1. A DCJ operation on G producing
genome G0 is sorting if it decreases the DCJ halving
distance by 1: dp

DCJ(G
0) = dp

DCJ(G)�1 = n�C�1.

Since the number of distinct markers in G0 is n and
dp

DCJ(G
0) = n�C� 1, then NG(G0) contains C+ 1 cy-

cles. In other words, a DCJ operation is sorting if it
increases the number of cycles in NG(G) by 1.

Given (u v) an adjacency of G that is not a double-
adjacency, we denote by DCJ(u v) the DCJ operation
that cuts adjacencies (u x) and (y v) to form adjacen-
cies (u v) and (y x), making (u v) a double-adjacency.

Property 4.2. Let (u v) be an adjacency of G that is
not a double-adjacency, DCJ(u v) is a sorting DCJ
operation.

Proof. DCJ(u v) increases the number of cycles in
NG(G) by 1, by creating a new cycle composed of ad-
jacencies (u v) and (u v).

( � 2 1 2 3 1 3 � )

I(2 1) =]2 ; 1[

I(1 2) = [2 ; 1]

I(2 3) =]2 ; 3[

I(3 1) = [1 ; 3]

I(1 3) =]1 ; 3[

Figure 2: I (G) =
�
]2 ; 1[ ; [2 ; 1] ; ]2 ; 3[ ; [1 ; 3] ; ]1 ; 3[

	
,

the set of intervals of G = (� 2 1 2 3 1 3 �) depicted as
boxes. The two boxes with thick lines represent two over-
lapping intervals of I (G) inducing a BI which exchanges 2
and 3.

Definition 4.3. Let (u v), (u x), and (y v) be adjacen-
cies of G. The interval of the adjacency (u v), denoted
by I(u v) is either:

� the interval [x ; y] if (u x)< (y v). In this case, we
denote it by ]u ; v[, or

� the interval [v ; u] if (y v)< (u x).

For example, the intervals of the adjacencies in
genome (� 2 1 2 3 1 3 �) are depicted in Fig
2. Note that, given an adjacency (u v) of G, if (u v) is
a double-adjacency then the interval I(u v) is empty,
otherwise DCJ(u v) is the excision operation that ex-
tracts the interval I(u v) to make it circular, thus pro-
ducing the adjacency (u v).

Two intervals I(a b) and I(x y) are said to be over-
lapping if their intersection is non-empty, and none
of the intervals is included in the other. It is easy to
see, following Property 2.4, that given two adjacencies
(a b) and (x y) of G such that I(a b) and I(x y)
are non-empty intervals, the successive application of
DCJ(a b) and DCJ(x y) is equivalent to a BI opera-
tion if and only if I(a b) and I(x y) are overlapping.
Note that in this case neither (a b), nor (x y) can be
double-adjacencies in G since their intervals are non-
empty. Figure 2 shows an example of two overlapping
intervals.

The following property states precisely in which
case the successive application of DCJ(a b) and
DCJ(x y) decreases the DCJ halving distance by 2,
meaning that both DCJ operations are sorting.

Property 4.4. Given two adjacencies (a b) and (x y)
of G, such that I(a b) and I(x y) are overlapping,
the successive application of DCJ(a b) and DCJ(x y)
decreases the DCJ halving distance by 2 if and only if
x 6= a and y 6= b.

Proof. If x 6= a and y 6= b, then the successive applica-
tion of DCJ(a b) and DCJ(x y) increases the number
of cycles in NG(G) by 2, by creating two new 2-cycles.
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Otherwise, DCJ(a b) first creates a new cycle that is
then destroyed by DCJ(x y).

We denote by I (G), the set of intervals of all the
adjacencies of G that do not contain marker �.
Remark 4.5. Note that, if G contains n distinct mark-
ers, then there are 2n�1 adjacencies in G that do not
contain marker �, defining 2n�1 intervals in I (G).

Definition 4.6. Two intervals I(a b) and I(x y) of
I (G) are said to be compatible if they are overlapping
and x 6= a and y 6= b.

In the following, we prove the BI halving distance
formula by showing that if genome G contains more
than three distinct markers, n > 3, then there exist
two compatible intervals in I (G), and if n = 2 or n = 3
then dt

BI(G) = 1 and 2 � dp
DCJ(G) � 3. This means

that there exists a BI halving scenario S such that all
BI operations in S, possibly excluding the last one, are
equivalent to two successive sorting DCJ operations.

From now on, until the end of the section, (a b)
is an adjacency of G that is not a double-adjacency,
A is a genome consisting in a linear chromosome L
and a circular chromosome C, obtained by applying the
sorting DCJ, DCJ(a b), on G.

If there exists an interval I(x y) in I (G) compatible
with I(a b), then applying DCJ(x y) on A consists in
the integration of the circular chromosome C into the
linear chromosome L such that the adjacency (x y)
is formed. Such an integration can only be performed
by cutting an adjacency (x u) in C and an adjacency
(v y) in L (or inversely) to produce adjacencies (x y)
and (v u). This means that there must be an adjacency
(x y) in either C or L such that x is in C and y in L or
inversely. Hence, we have the following property :

Property 4.7. C cannot be reintegrated into L by ap-
plying a sorting DCJ, DCJ(x y), on A if and only if
either:

(1) for any adjacency (x y) in C (resp. L), markers x
and y are in L (resp. C), or

(2) for any adjacency (x y) in C (resp. L), markers x
and y are also in C (resp. L).

Proof. If there exists no adjacency (x y) in A such that
x is in C and y in L or inversely, then A necessarily
satisfies either (1), or (2).

Definition 4.8. An interval I(a b) in I (G) is called
interval of type 1 (resp. interval of type 2) if DCJ(a b)
produces a genome A satisfying configuration (1)
(resp. configuration (2)) described in Property 4.7.

For example, in genome (� 2 1 1 3 2 3 �),
I(1 3) is of type 1 as DCJ(1 3) produces genome
(� 2 1 3 �) (1 3 2) ; I(2 3) is of type 2 as DCJ(2 3)
produces genome (� 2 3 2 3 �) (1 1).

Now we give the maximum numbers of intervals of
type 1 and type 2 that can be contained in genome G.

Lemma 4.9. The maximum number of intervals of type
1 in I (G) is 2.

Proof. First, note that there cannot be two intervals I
and J of I (G) such that I 6= J, and both I and J are of
type 1. Now, if I is an interval of type 1, there can be
at most two different adjacencies (x y) and (u v) such
that I(x y) = I(u v) = I. In this case G necessarily has
a chromosome of the form (: : : x v : : : u y : : :) or
(: : : u y : : : x v : : :). Therefore, there are at most
two intervals of type 1 in I (G).

Lemma 4.10. The maximum number of intervals of
type 2 in I (G) is n.

Proof. First, note that for two adjacencies (x y) and
(x z) in G that do not contain marker �, if (x y) is of
type 2 then (x z) cannot be of type 2. Now, there is
only one marker u such that (u �) is an adjacency of
G. Let (u v) be the adjacency of G having u as first
marker, then at most half of the intervals in I (G)�
fI(u v)g can be of type 2. Therefore, there are at most
n intervals of type 2 in I (G).

Theorem 4.11. If NG(G) contains C cycles, then the
BI halving distance of G is given by:

dt
BI(G) =

�
n�C

2

�

Proof. Since there are 2n�1 intervals in I (G), and at
most n+2 are of type 1 or 2, then if G is a genome con-
taining more than three distinct markers n > 3, then
2n� 1 > n+ 2 and there exist two compatible inter-
vals in I (G) inducing a BI operation that decreases the
DCJ distance by 2.

Next, we show that if n = 2 or n = 3, then dt
BI(G) =

1 and 2� dp
DCJ(G)� 3.

If n = 2, then the genome can be written, either
as (� a b b a �), in which case a BI can swap a
and b to produce a tandem-duplicated genome, or as
(� a a b b �), in which case a BI can swap a and a b to
produce a tandem-duplicated genome.

If n = 3, then the genome has two double-
adjacencies to be constructed, of the form (a b), (x y),
with (a b) and (x y) being two adjacencies already
present in the genome such that b = x or b = x and a
and y are distinct markers. One can rewrite (a b) and
(x y) as single markers since they will not be split-
ted, which makes a genome with 4 markers such that
at most 2 are misplaced. Then, a single BI can produce
a tandem-duplicated genome.

Now, it is easy to see to see that if n = 2 or n = 3,
then dp

DCJ(G) = n�C � 3. Finally, if n = 2 or n = 3,
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then dp
DCJ(G)� 2, otherwise we would have dp

DCJ(G)=
1 which would imply, as G consists in a single linear
chromosome, dt

BI(G) = 0. In conclusion, if n > 3 then
there exist two compatible intervals in I (G), otherwise
if n= 2 or n= 3, then dt

BI(G) = 1 and 2� dp
DCJ(G)� 3.

Therefore dt
BI = b

dp
DCJ
2 c= b

n�C
2 c.

5 SORTING ALGORITHM

In Section 4, we showed that if a genome G contains
more than three distinct markers after reduction then
there exist two compatible intervals in I (G) inducing a
BI to perform. If G contains two or three distinct mark-
ers then the BI to perform can be trivially computed.
Thus the main concern of this section is to describe
an efficient algorithm for finding compatible intervals
when n > 3.

As in Section 4, in the following, G denotes a
genome consisting of n distinct markers after reduc-
tion. It is easy to show that the set of intervals I (G)
can be built in O(n) time and space complexity.

We now show that finding 2 compatible intervals in
I (G) can be done in O(n) time and space complexity.

Property 5.1. If n > 3 , then all the smallest inter-
vals in I (G) that are not of type 2 admit compatible
intervals.

Proof. Let J be a smallest interval that is not of type 2
in I (G). As J is not of type 2, then J has compatible
intervals if J is not of type 1.

Let us suppose that J is of type 1, then for any ad-
jacency (a b) such that markers a and b are not in J,
a and b are in J, and then I(a b) is strictly included in
J and I(a b) can’t be of type 2. Such adjacency does
exist as there are n > 3 markers not included in J.
Therefore J cannot be a smallest interval that is not of
type 2.

We are now ready to give the algorithm for sort-
ing a duplicated genome G into a tandem-duplicated
genome with b n�C

2 c BI operations.
Theorem 5.2. Algorithm 1 reconstruct a tandem-
duplicated genome with a BI scenario of length b n�C

2 c
in O(n2) time and space complexity.

Proof. Building I (G) and finding two compatible in-
tervals can be done in O(n) time and space complexity.
It follows that the while loop in the algorithm can be
computed in O(n2) time and space complexity.

Finding and performing the last BI operation when
2� n� 3 can be done in constant time and space com-
plexity.

Algorithm 1 : Reconstruction of a tandem-duplicated
genome.

1: while G contains more than 3 markers do
2: Construct I (G)
3: Pick a smallest interval I(a b) that is not of

type 2 in I (G)
4: Find an interval I(x y) in I (G) compatible with

I(a b)
5: Perform the BI equivalent to DCJ(a b) fol-

lowed by DCJ(x y)
6: Reduce G
7: end while
8: if G contains 2 or 3 markers then
9: Find the last BI operation and perform it

10: end if

Moreover, all BI operations, possibly excluding
the last one, are computed as pairs of sorting DCJ op-
erations, which ensures that the length of the scenario
is b n�C

2 c.

6 CONCLUSIONS

In this paper, we introduced the BI halving problem.
We used the DCJ model to simulate BI operations
and we showed that it is always possible to choose
two consecutive sorting DCJ operations such that they
are equivalent to a BI operation. This is an interest-
ing result as it shows that restricting the scope of al-
lowed DCJ operations under the constraint of perform-
ing only BI doesn’t affect our halving distance. We
thus provided a quadratic time and space algorithm to
obtain a most parsimonious scenario for the BI halving
problem. One direction for further studies of variants
of the BI halving problem is to consider multichro-
mosomal genomes. A further extension of these re-
sults will be a generalization to the guided BI halving
problem that consists in finding a tandem duplicated
genome that minimizes the BI distance to a given a du-
plicated genome and a given non duplicated genome.
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