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Abstract: In creating heuristic search algorithms one has to deal with the practical problem of terminating and 
optimality testing. To solve these problems, we can use information gained from the set of the best function 
values (order statistics) provided during optimization. In this paper, we consider the application of order 
statistics to establish the optimality in heuristic optimization algorithms and to stop the Simulated Annealing 
algorithm when the confidence interval of the minimum becomes less than admissible value. The accuracy 
of the solution achieved during optimization and the termination criterion of the algorithm are introduced in 
a statistical way. We build a method for the estimation of confidence intervals of the minimum using order 
statistics, which is implemented for optimality testing and terminating in Simulated Annealing algorithm. A 
termination criterion - length of the confidence interval of the extreme value of the objective function - is 
introduced. The efficiency of this approach is discussed using the results of computer modelling. One test 
function and two semi-supervised SVMs linear classification problems illustrate the applicability of the 
method proposed.  

1 INTRODUCTION 

The termination problem is topical in stochastic and 
heuristic optimization algorithms. Note, values of 
the objective function provided during optimization 
contain important information on the optimum of the 
function and, thus, might be applied to algorithm 
termination. Mockus (Mockus, 1967), Zilinskas and 
Zhigljavsky (Zilinskas & Zhigljavsky, 1991) were 
the first who proposed statistical inferences for 
optimality testing in optimization algorithms using 
theory of order statistics. These inferences were 
studied by computer simulation (see, Bartkute et al, 
2005, Bartkute & Sakalauskas, 2009), which 
confirmed theoretical assumption about the 
distribution of order statistics with respect to 
extreme value distribution. Thus, the estimate of 
extremum value of the objective function and its 
confidence interval were proposed following to 
latter assumption. Besides, in Bartkute & 
Sakalauskas (Bartkute & Sakalauskas, 2009a) it was 
proposed to terminate the stochastic optimization 
algorithm, when the confidence interval of the 
extremum becomes less than prescribed value. Since 
theoretical analysis of the optimal decision making 

algorithm is complicated, computer modelling 
becomes an important research method that enable 
us to test and study hypotheses arising from the 
problem discussed above. Semi-supervised SVMs 
linear classification problems as an examples 
illustrate the applicability of the method proposed. 

2 METHOD FOR TESTING THE 
OPTIMALITY  

Assume, the optimization problem is (minimization) 

( ) min→xf  (1) 

where ℜ→ℜnf : is a function bounded from 

below, ( ) −∞>=⎟
⎠
⎞⎜

⎝
⎛=

ℜ∈
Axfxf

nx

*min , ∞<*x . Let 

this problem be solved by the Markov type 
algorithm providing a sample { }N , ... , 1 ηη=Η , 
whose elements are function values )( kxfk =η . 
Our approach is grounded by the assumption on the 
asymptotic distribution of order statistics according 
to the Weibull (Weibull, 1951) distribution 
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where c, A and α denote the scale, location and 
shape parameters, respectively (see for details 
Bartkute & Sakalauskas, 2009a). The Weibull 
distribution is one of the extreme-value distributions 
which is applied also in optimality testing of Markov 
type optimization algorithms. Although this limit 
distribution of extreme values is studied mostly for 
i.i.d. values, it also might be often used in the 
absence of the assumption of independence 
(Galambosh, 1984).   

To estimate confidence intervals for the 
minimum A of the objective function, it suffices to 
choose from sample H only k+1 the best function 
values NkN ,, ... ,,0 ηη , from the ordered 

sample NNNkNN ,...,,...,,1,0 ηηηη ≤≤≤≤≤ , 

where ( )Nkk = , +∞→→ N,
N
k   0

2
 (Zilinskas & 

Zhigljavsky, 1991, Bartkute & Sakalauskas, 2009a). 
Then the linear estimators for A can be as follows: 

( ) ⎟⎠
⎞⎜

⎝
⎛ −⋅−= 0,,0, ηηη NkkcNkNA  (2) 

where coefficient kc  can be estimated as 
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, α  is the shape parameter of 

distribution of the extreme values, 
β

α n
= , β  is the 

parameter of homogeneity of the function ( )xf  in 
the neighbourhood of the point of 
minimum: ( )
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Zhigljavsky, 1991, Bartkute & Sakalauskas, 2009a). 
The one-side confidence interval of the 

minimum of the objective function is as follows: 
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, γ  is 

the confidence level. 
The estimates introduced here might be used to 
create the termination criterion for the stochastic and 
heuristic optimization algorithms, namely, the 
algorithm stops, when the length of the confidence 
interval becomes less than prescribed value 0>ε .  

3 DESCRIPTION OF SIMULATED 
ANNEALING ALGORITHM  

Let us consider an application of this approach to 
continuous global optimization by the Simulated 
Annealing algorithm (SA). This is a well-known 
Markov type algorithm for random optimization. 
Simulated Annealing (SA) is widely applied in 
multiextremal problems. Conditions of global 
convergence of SA are studied by many authors 
(Granville et al., 1994, Yang, 2000, etc.). We use the 
modification of SA, developed by Yang (2000), 
where the function regulating the neighbourhood 
depth of solution is introduced together with the 
temperature regulation function. The procedure of 
the SA algorithm consists of the following steps: 

Step 1. Choose an initial point nDx ℜ⊂∈0 , an 
initial temperature value 00 >T , a kind of 
temperature-dependent generation probability 
density function, a corresponding temperature 
updating function, and a sequence }0,{ ≥ttρ  of 
monotonically decreasing positive numbers, 
describing the neighboring states. Calculate )( 0xf . 
Set 0=t . 

Step 2. Generate a random vector tz  by using 
the generation probability density function. If there 
exists i such that t

t
iz ρ< , ni ≤≤1 , where t

iz  is the 

ith component of the vector tz , repeat Step 2. 
Otherwise, generate a new trial point ty  by adding 

the random vector tz to the current iteration point 
tx ,  

ttt zxy +=  (4) 

If Dyt ∉ , repeat Step 2; otherwise, calculate 

)( tyf .  

Step 3. Use the Metropolis acceptance criterion 
to determine a new iteration point 1+tx  [10]. 
Specifically, generate a random number κ  with the 
uniform distribution over [0,1], and then calculate 
the probability ( )t

tt TxyP ,,  of accepting the trial 

point ty  as the new itteration point 1+tx , given 
tx  and tT , 
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If ( )t
tt TxyP ,,≤κ , set tt yx =+1  and 

( ) ( )tt yfxf =+1 ; otherwise, set tt xx =+1  and 

( ) ( )tt xfxf =+1 . 

Step 4. If the prescribed termination condition is 
satisfied, then stop; otherwise, update the value of 
the temperature by means of the temperature 
updating function, and then go back to Step 2. 

Thus, by applying the generation mechanism and 
the Metropolis acceptance criterion, the SA 
algorithm produces two sequences of random points. 
These are the sequence { }0, ≥tyt  of trial points 

generated by (4) and the sequence { }0, ≥txt  of 
iteration points determined by applying the 
Metropolis acceptance criterion as described in Step 
3. These two sequences of random variables are all 
dependent on the temperature sequence { }0, ≥tTt  
determined by the temperature updating function, 
the state neighbouring sequence{ }0, ≥ttρ , and the 
approach of random vector generation. 

The sequence { }0, ≥ttρ  of positive numbers 
specified in Step 1 of the above SA algorithm is 
used to impose a lower bound on the random vector, 
generated at the each iteration, for obtaining the 
random trial point. This lower bound should be 
small enough and monotonically decreasing as the 
annealing proceeds. Since the temperature-
dependent generation probability density function is 
used to generate random trial points and since only 
one trial point is generated at each temperature value 
the SA algorithm considered is characterized by a 
nonhomogeneous continuous-state Markov chain.  

The convergence conditions of the SA were 
studied by Yang (Yang, 2000) and several updating 
functions for the method parameters were given, 
which ensure convergence of the method. We 
applied the next updating functions in testing our 
approach. 

Let nr ℜ∈ , with component 
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ρρ 0  for all 1≥t , where 

{ }0, ≥ttρ  is the sequence used to impose lower 
bounds on the random vectors generated in the SA 
algorithm. Let the temperature-dependent generation 
probability density function ( )tTp ,⋅  be given by 
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Then, for any initial point Dx ∈0 , the sequence 
{ }0);( ≥txf t  of objective function values converges 

in probability to the global minimum *f , if the 
temperature sequence { }0, ≥tTt  determined by the 
temperature updating function satisfies the following 
condition: 

⎟⎟
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1

0 exp , ...,,,i 21=  

where 00 >T  is the initial temperature value and 
0>l  is a given real number (Yang, 2000). 

Typically a different form of the temperature 
updating function has to be used with respect to a 
different kind of the generation probability density 
function in order to ensure the global convergence of 
the corresponding SA algorithm. Furthermore, the 
flatter is the tail of the generation probability 
function, the faster is the decrement of the 
temperature sequence determined by the temperature 
updating function. 

4 SVM CLASSIFICATION  

Data classification is a common problem in science 
and engineering. Support Vector Machines (SVMs) 
are powerful tools for classifying data that are often 
used in data mining operations.  

In the standard binary classification problem, a 
set of training data ( )ii y,u , … , ( )mm y,u  is 
observed, where the input set of points is 

ni Uu ℜ⊂∈ , the iy  is either +1 or −1, indicating 

the class to which the point iu  belongs, 

{ }11 −+∈ ,yi . The learning task is to create the 
classification rule { }11 −+→ ,U:f  that will be 
used to predict the labels for new inputs. The basic 
idea of SVMs classification is to find a maximal 
margin separating hyperplane between two classes. 
It was first described by Cortes and Vapnik (Cortes 
& Vapnik, 1995). The standard binary SVM 
classification problem is shown visually in Figure 1. 
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Figure 1: Linear separating hyperplanes for a separable 
case. 

4.1 Semi-supervised Linear SVMs  

There are a lot of classification problems where data 
labeling is hard or expensive, while unlabeled data is 
often abundant and cheap to collect. The typical 
areas where this happens is the speech processing, 
text categorization, webpage classification, business 
risk identification, credit scoring and, finally, a 
bioinformatics area where it is usually both 
expensive and slow to label huge number of data 
produced. When data points consist of exactly two 
sets: one set that has been labeled by a decision 
maker and the other that is not classified, but 
belongs to one known category we have a traditional 
semi-supervised classification problem (Bennett & 
Demiriz (1999), Huang & Kecman (2004)). The goal 
of semi-supervised classification is to use unlabeled 
data to improve the performance of standard 
supervised learning algorithms. In semi-supervised 

learning the data set { }niiuU 1==  can be divided into 
two parts: the training set consists of p labelled 
examples ( ){ }p

i
ii y,u 1= , 1±=iy , and of m unlabeled 

examples { }n pi
iu 1+= , with mpn += . The learning 

task is to create the classification rule 
{ }11 −+→ ,U:f  that will be used to predict the 

labels for new inputs. To solve that problem we may 
rewrite standard binary classification problem 
(Cortes & Vapnik, 1995) in the following 
unconstrained form (Astorino & Fuduli, 2007, 
Bartkute-Norkuniene, 2009b): 

( )bwf
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w and b are both the hyperplane parameters, 
( ) ( )t,maxtL −= 10 , ( ) ( )t,maxtL −= 10  are the loss 

functions, 021 ≥≥ CC  are certain penalty 
coefficients, p is the size of training set, and m is the 
size of testing set. The first two terms in the 
objective function ( )b,wf  define the standard SVM, 
and the third one incorporates unlabelled (testing) 
data. The error over labelled and unlabelled 
examples is weighted by two parameters C1 and C2. 
This form seems advantageous especially when the 
input dataset is very large. 

5 COMPUTER MODELLING  

The empirical evidence of our approach, using two 
test functions, synthetic and real datasets, is 
provided and discussed in this Section. To evaluate 
the performance of our proposed algorithm in 
practice, we analyze two machine learning datasets. 

Example 1: test function (Zhigljavsky & 
Zilinskas, 2007) 

( )( )

( )( )
( )( )

( )( )

( )
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ −

∈−

⎥⎦
⎤

⎢⎣
⎡ −−−

∈⎟
⎠
⎞

⎜
⎝
⎛

−
−

⎥⎦
⎤

⎢⎣
⎡ −−

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−

=

1,1sin
2
11

1,11
1

sin1

11,0
11

sin
2
11

2

2

2

,

l
lxforxl

l
l

sl
lsxfor

l
xls

sl
lsxfor

ls
xls

xf ls

π

π

π  

For all integer 2, ≥ls , the functions ( ) ( )xf ls,  

are continuously differentiable in the set [ ]1,0  and 
have three local minima. These local minima are 
achieved at the points:  

( )( ) ( )( )
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Global minimum is at the point 2x  and equal to 
0. Despite the fact that the functions ( ) ( )xf ls,  are 

continuously differentiable, the problem of finding 
the minimum point is very difficult when k is large. 

Example 2: The Rastrigin function 

( ) ( )( )∑
=

⋅−+=
n

i
ii xxnxf

1

2 2cos1010 π , search domain 

is 2,12.512.5 =≤≤− nxi , the minimum is 0. 
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Figure 2: Confidence bounds of the minimum (Example 1, 
s=12, l=5). 

 
Figure 3: Confidence bounds of the minimum (Example 
2). 

Test functions were minimized, with the number 
of iterations N =10000 and the number of trials 
M=500, starting from points randomly distributed in 
the search domain. Results of the estimate (2) of the 
test functions minimum value kNA ,  and the estimate 
(3) of the confidence interval are presented in Table 
1 and Figures 2 and 3. These results show that the 
proposed estimates approximate the confidence 
interval of the objective function minimum value 
rather well, and that the length of the confidence 
interval decreases when the number of iterations 
increases. 

 

 
Figure 4: Linear separating hyperplanes of training data. 

Example 3: linear example (V. Bartkute-
Norkuniene (2009). The linear separating 
hyperplanes of training data are demonstrated in 
Figure 4. Figure 5 illustrates that the SA classifier 
for training and testing datasets is close to an 
optimal decision boundary. 

 
Figure 5: Linear separating hyperplanes of the training and 
testing data. 

 
Figure 6: Linear separating hyperplanes for two 
dimensional Iris Plant data, b= 2.1830, w1=-0.5625, 
w2= -0.2741. 

Example 4: dataset of Iris Plants (Asuncion & 
Newman, 2007). The dataset contains 3 classes of 50 
instances each, where each class refers to a type of 
iris plant. One class is linearly separable from the 
other two, the latter are not linearly separable from 
each other.  In our approach for the binary 
classification we use only two classes of iris plant: 
iris Setosa (the class +1) and iris Virginica (the class 
-1).  

Linear separating hyperplanes for two-
dimensional Iris Plant data are illustrated in Figure 
6. These results illustrate the applicability of SA 
algorithm for Semi-supervised SVM classification. 

In Figure 7, we can see histograms of the number 
of iterations after termination of the SA algorithm 
depending on the length of the confidence interval. 
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Table 1: Computer modelling results of the minimum value and the confidence interval. 

 
kNA ,  

Confidence interval 
p 

Confidence interval of the hitting 
probability p 

Confidence 
probability 

Lower bound Upper bound Lower bound Upper bound 

Example 1 

9.0=δ  -0.0000000307 -0.000000483 0.0000002275 0.91 0.8614377 0.94498488 

95.0=δ  0.0000000005 -0.00000002 0.0000000072 0.95 0.89763031 0.98009752 

975.0=δ  -0.000000031  -0.00000151 0.0000002275 0.98 0.92955759 0.9975685 

99.0=δ  -0.000000031  -0.00000239 0.0000002275 0.98 0.91852038 0.99850762 

Example 2 

9.0=δ  0.0000478328  -0.00077633 0.000620020 0.886 0.90384692 0.86549069 

95.0=δ  0.0000478328  -0.00122913 0.000620020 0.948 0.92806921 0.96283961 

975.0=δ  0.0000478328  -0.00169791 0.000620020 0.97 0.95099096 0.98311659 

99.0=δ  0.0000478328  -0.00234306 0.000620020 0.984 0.96551508 0.99416328 

 

  

Figure 7: The number of iterations after termination of the algorithm (two dimensional Iris Plant data). 

6 CONCLUSIONS 

A linear estimator and confidence bounds for the 
minimum value of the function have been proposed, 
using order statistics of the function values provided 
by SA algorithm, which were studied in an 
experimental way. These estimators are simple and 
depend only on the parameter of the extreme value 
distribution α. The latter parameter α is easily 
estimated, using the parameter of homogeneity of 
the objective function or in a statistical way. 
Theoretical considerations and computer examples 
have shown that the confidence interval of the 
function minimum can be estimated with an 
admissible accuracy, when the number of iterations 
is increased. Empirical study of the statistical 
hypothesis on order statistics have shown that 
function values lead us to a conclusion that the 

estimates proposed can be applied in optimality 
testing and termination of the SA algorithm. The 
estimates introduced here can be used to create the 
termination criterion for SA algorithm, namely, the 
algorithm stops, when the length of the confidence 
interval becomes smaller than prescribed value 

0>ε . 
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