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Abstract: Power flow studies use computational tools for the planning and operation of electrical power systems 
purposes. The deterministic model is the most commonly used load flow approach. In this model, the input 
data and the results are crisp values. Therefore, to account for uncertainties, the most common approach 
used is the definition of scenarios, which are characterized by crisp values. This is an impractical way to 
solve the problem of the uncertainty in the data. A more practical way to lead with the uncertainties is the 
use of probabilistic power flows. On such approach, the uncertainties are modelled through the use of 
probability density functions (pdf). However, that approach may be inappropriate, namely when there is no 
available historical data in order to construct the pdf. On such cases, the fuzzy power flows (FPF) is an 
interesting alternative. In this paper, a methodology named Symmetric Fuzzy Power Flow is used. That 
methodology uses optimization models to solve power flow problems considering the uncertainty treated as 
fuzzy numbers. A comparison between the proposed methodology and the classic ones is also provided. 

1 INTRODUCTION 

Power flows is one of the most used tools to support 
the planning and operation activities of the 
transmission network. There are two main classes of 
power flows considering uncertainty, the 
probabilistic power flow (PPF) (Borkowska, 1974) 
and the fuzzy power flow (FPF) (Miranda and 
Matos, 1989; Saraiva et al., 1991). In the PPF the 
variables (generation and load) are considered as 
random variables with probabilistic distributions 
(pdf). The results of PPF are also in the form of pdf, 
namely the voltages and power flows. This model 
presupposes the existence of historical data for the 
input variables that can guarantee the construction of 
a statistical distribution. However, the historical data 
may not be available, namely when we are leading 
with emergent concepts as the generation at LV 
networks and the electric mobility. Therefore, new 
tools are needed in order to solve the problem 
resulting from the inexistence of historical data. The 
FPF is an interesting alternative on such context, 
once this approach treats the uncertainty without 
requiring the existence of statistical distributions for 
the input data. The FPF, allows describe 

mathematically qualitative statements or vague 
information by using fuzzy models. The classic 
formulations of FPF present some limitations that 
may distort the results, namely: i) existence of a 
slack bus (which aggregates all uncertainty that 
comes from the all other buses of the transmission; 
ii) linearization models used at the computation. 
Saraiva el al, 2004 presented a model that includes 
data correlation. An inclusion of a corrective 
procedure for the slack bus is purposed by (Saraiva 
et al, 1991), which consists in defining limits for 
generation. In this situation, the slack bus still being 
different from the others buses since continues to 
receive the uncertainty from them.  

In this paper a symmetrical model (SFPF) 
purposed by Matos and Gouveia (2008) is used in 
order to overcome some of the limitations of the 
preceding models. In fact, the slack bus is treated as 
all other buses and non linearization procedures are 
adopted. The proposed model uses optimization 
problems to obtain symmetrical solutions for the 
power flow problem (regarding linearized and the 
complete model).  The main purpose of the paper is 
to analyse the results of the SFPF and compare those 
results with the ones of classic versions of the FPF. 
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The paper is organized in the following way:  
Section 2 - concepts of FPF and SFPF are reviewed; 
section 3 - three case studies are presented (the IEEE 
test grids with 14, 24 and 118 buses are used); 
section 4 - some conclusions are extracted. 

2 FUZZY POWER FLOW 

There are three types of fuzzy numbers generally 
used in FPF to describe input data at fuzzy power 
flow models: rectangular, triangular and trapezoidal. 
Triangular and rectangular fuzzy numbers are 
particular cases of trapezoidal fuzzy numbers. 
Triangular and rectangular fuzzy numbers are 
particular cases of trapezoidal fuzzy numbers. For 
instance, a trapezoidal fuzzy number (Figure 1) can 
be described by the set of equations (1).  
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Figure 1: Trapezoidal Fuzzy Number. 

2.1 Classical Fuzzy Power Flow 

The first formulation of Fuzzy Power Flow was 
based on a DC model for the power system. In this 
model if P~ is the fuzzy vector of injected power in 
the nodes. an approximation of the arguments, θ~ and 
branches’ flows 

BP~ , is obtained using: 

PAPB
~.~ =  (2) 

PB ~.~ 1−=θ  (3) 

At these model, crisp matrices A and B corresponds 
to the sensitivity and admittance matrices of the DC 
power flow.  

The AC model of FPF was proposed by Miranda 
et al (1990). This model uses a first-order Taylor 
series expansion of the power flow equations. To 
obtain the fuzzy voltages and angles a deterministic 
AC power flow for the central values of the fuzzy 

data is solved, using the Newton-Raphson algorithm. 
Then, the variations around this operating point are 
calculated by using the Jacobian of the last iteration 
and fuzzy arithmetic’s. For other variables like the 
power flows, a similar strategy of linearization is 
used. More details about this model can be found in 
Miranda el al (1990). 

2.2 Symmetric Fuzzy Power Flow 

The SFPF consists of solve for each α level of the 
possibility distribution (Figure 1), optimization 
problems in order to obtain the maximum and 
minimum value that fuzzy variable may take, for all 
the possible values (with degree of membership 
greater than or equal to α). Note that no slack bus is 
defined since fuzzy injections for input data are 
considered for all the buses of the transmission 
network. For the DC model of SFPF (Matos and 
Gouveia, 2008) we must solve linear programming 
problems (for each α level) to obtain the maximum 
value of the power flow in branch k. At this model 

(4), “Ref” means the reference bus and ( )αiP~  is the 
α-level interval of the nodal active injected power. If 
is desired the injected power at a specific bus, the 

objective function will be ( )αiP~ .  
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Gouveia and Matos (2008) also extend the SFPF to 
the AC case. Now the standard equations of the AC 
power flow problem are included as constraints, 
along with the α-limits for each fuzzy variable. The 
maximum α-level value for each fuzzy variable 
Z~ will be the result of following optimization 
problem (5). The analysis for the minimum is 
analogous. Variable Z may be any of the voltages in 
PQ buses, any of the voltage angles, any of the 
power flows Pik, Qik or Sik or the power losses in a 
branch or in the entire system. In (5), Gik and Bik are, 
respectively, the real and imaginary components of 
the admittance matrix elements, ( )αiP~  is the α-level 
interval of the active injected power iP~ and ( )αiQ~  is 
the α-level interval of the reactive injected power 

iQ~  
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3 CASE STUDY 

In this section we will perform the exercise of 
comparing the results obtained from SFPF with the 
ones available at the literature obtained by the 
classical FPF. 

3.1 Linear Models of FPF 

Three different models were used to solve the power 
flow problem (DC model) for the 24 Bus, 38 
branches IEEE test system: the first model of FPF 
created by Miranda and Matos (1989); the model 
with correction procedures which consider 
generations limits to the slack bus (Saraiva et al, 
1991); and the SFPF (Gouveia and Matos, 2008). 
Those models are indentified in the following 
paragraphs and figures as “First”, “Cons” and 
“Sym”. We will consider the uncertainty modelled 
as trapezoidal fuzzy numbers (triangular or 
rectangular fuzzy numbers also could be used). The 
values indicated in Table I will be considered the 
central values of the trapezoidal fuzzy numbers. For 
these data the characteristic points are assumed to be 
as shown at Table 2. For instance, applying this 
information to node 9, we’ll get a fuzzy load of 
(Figure 2). A base power of 500 MW is used and 
bus and branch data are available at (Saraiva et al, 
1991); The bus 1 is the reference bus. 
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Figure 2: Fuzzy load. 

The voltages for PV buses 1, 2 and 7 will be 1.075 
pu and for the others 1.025 pu. At the reference bus, 
depending on the model we will have different 

situations: “First”- no fuzzy description for 
generation is considered; “Cons” – were considered 
generation limits of [0-800 MW]; “Sym” is defined 
a fuzzy generation. In this fuzzy trapezoidal number 
the extreme points (a1, a2, a3, a4) will be (0, 500, 600, 
800) MW. After solving the optimization problem 
(4) twice (max and min) for α cuts between 0 and 1 
for all branches with large branch limitations we 
obtain the ranges for the Pi-k power flows. For 
instance for branch 1-2  (Table 2, Figure 3) the main 
points of interest of the possibility distribution are 
referred (α=0-, α=0.7-, α=1-, α=1+, α=0+). Figure 4 
show the same kind of results for branch 5-10. As 
can be verified formulations “First” and “Const” 
provides results with larger ranges of uncertainty for 
power flows since slack bus concentrates all 
uncertainty which comes from all other buses. 

Table 1: Characteristic points of fuzzy data. 

Bus characteristic points for generation 

1-13, 14-24 0.95 0.98 1.02 1.05 

13 1.00 1.00 1.00 1.00 

 characteristic points for loads 
1-5, 7-19, 

21-24 
0.95 0.98 1.02 1.05 

6, 20 1.00 1.00 1.00 1.00 

Table 2: Power flow fuzzy distributions, branch 1-2 
(MW). 

Branch 0 0.7 1 1 0 
1-2 (First) -68.0 11.2 45.1 196.1 309.2 

1-2 
(Const) -68.0 11.2 45.1 196.1 245.3 

1-2 (Sym) -68.0 18.9 85.2 147.2 245.3 
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Figure 3: Fuzzy load flow in branch 1-2. 
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Figure 4: Fuzzy load flow in branch 5-10. 
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3.2 Complete Models of FPF 

Now we will perform the exercise of comparing AC 
SFPF with classical AC FPF models. Considering 
the model based on FPF, the boundary load flow 
(BLF) (Dimitrovski and Tomsovic, 2004) we will 
use the IEEE 14 and 118 test systems. Data of these 
networks can be seen at (http://www.ee.washington 
.edu/research/pstca/. The BLF uses an interactive 
procedure in order to enhance the results accuracy in 
cases of considerable non linearity due to large 
uncertainty in input data. The characteristic points 
for IEEE 14 bus test system at α=0 are assumed to 
be 0.0 and 2.0 of the central values (rectangular 
fuzzy numbers). Performing the comparison with the 
exact values calculated with the SFPF shows that 
some “artificially uncertainty” is still present in the 
BLF results. Table 3 shows results for voltage 
magnitudes. The same kinds of results (not shown) 
were also obtained for active power flows. Using the 
118 bus test system also Gouveia and Matos (2008) 
found differences between the FPF, BLF (that falls 
under same philosophy of FPF) and SFPF. Those 
differences are exposed for some of the variables of 
this network (Table 4). Now the characteristic points 
for α=0 are assumed to be 0.6 and 1.4 of the central 
values.  

Table 3: Voltage values (pu) IEEE 14 bus test system. 

α=0, [0.0-2.0] 
Bus BLF SFPF AC 

4 0.978 1.045 0.992 1.045 
5 0.981 1.042 0.996 1.042 
7 1.024 1.089 1.051 1.088 
9 1.001 1.101 1.028 1.101 
10 0.997 1.096 1.020 1.096 
11 1.025 1.084 1.038 1.083 
12 1.036 1.072 1.039 1.072 
13 1.023 1.074 1.028 1.074 
14 0.972 1.089 0.992 1.088 

Table 4: Voltage and Power Flow Values (p.u.) for some 
variables of IEEE 118 test system. 

Var. FPF  BLF  Sym. FPF  
V44 0.94 1.03 0.87 1.01 0.96 1.01 

P68-69 -17.44 14.92 -21.10 13.27 -3.74 1.39 
Q68-69 0.39 1.86 0.84 9.25 1.07 1.33 

4 CONCLUSIONS 

The use of SFPF doesn’t consider a slack bus or 
linearization procedures as happens at the traditional 

formulation of FPF. At FPF the use of these 
simplifications have as a consequence a distortion of 
the results mainly due the influence of the slack bus. 
While in the deterministic power flow formulations 
the slack bus only compensate the uncertainty in loss 
estimation, at classical FPF compensates the 
uncertainty that comes from all other buses. Adding 
to this the linearization procedures used, results 
shown “excessive” uncertainty as shown in this 
paper at the several IEEE networks tested. Finally, 
the SFPF models have the drawback of requiring 
solving a great number of optimization problems but 
are completely symmetric regarding the buses. This 
is not a real problem since SFPF are addicted to 
long-term planning studies. However justify future 
work in order to improve simulation times.  
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