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Abstract: In this paper, we study optimal revenue management applied to carparks, with primary objective to maximize
revenues under a continuous-time framework. We develop a stochastic discrete-time model and propose a
rejection algorithm that makes optimal decisions (accept/reject) according to the future expected revenues
generated and on the opportunity cost that arises before each sale. For this aspect of the problem, a Monte
Carlo approach is used to derive optimal rejection policies. We then extend this approach to show that there
exists an equivalent continuous-time methodology that yields to a partial differential equation (PDE). The
nature of the PDE, as opposed to the Monte Carlo approach, generates the rejection policies quicker and causes
the optimal surfaces to be significantly smoother. However, because the solution to the PDE is considered not
to solve the ‘full’ problem, we propose an approach to generate optimal revenues using the discrete-time
model by exploiting the information coming from the PDE. We give a worked example of how to generate
near-optimal revenues with an order of magnitude decrease in computation speed.

1 INTRODUCTION ferent parking tariffs (prices). For a parking request
of a particular tariff, it is possible to know the per-
Over the last twenty years, cars have formed the main centage of the capacity remaining and the relative re-
transportation system for people worldwide, espe- quests’ revenue, as well as the percentage of all future
cially in developed countries. Since parking is essen- requests that make less relative revenue than the cur-
tial for cars, this creates an opportunity for carparking rent request; in this way, fuzzy rules are generated
owners to exploit the increased demand to maximize (for detailed information in creating fuzzy rules, the
their turnover. This can be achieved through revenuereader is referred to the work of (Wang and Mendel,
management (RM) techniques, such as those used irl992)). The problem is studied under several scenar-
the hotel industry, where customers purchase multipleios and the results show that the relative error (be-
units in one transaction. Nevertheless, in carparking, tween the proposed algorithm and the optimal upper
most research has focused upon the problem of re-bound) never exceeds 10%. The initial setup of their
ducing traffic congestion; For example, (Young et al., objective function has strong similarities to the setup
1991) argue that carparks play a major role in the of our discrete-time model; however, their algorithm
planning and management of transportation systemsis assumed to be able to “recognize” the type of the
and thus, appropriate parking pricing polices can be request and to direct it to the appropriate fuzzy rule
used to reduce traffic congestion. A sample list of re- base, in which a decision is made. Our system com-
lated work includes (Vickrey, 1969), (Vikrey, 1994), bines all booking requests from both customers sets
(Young et al., 1991), (Verhoef et al., 1995), (Teodor- in consideration, so that it makes a decision to ac-
ovit and Vukadinovi¢c, 1998), (Arnott and Rowse, cept/reject a request without knowing the booking set
1999) and (Zhao et al., 2010). Whilst the literature each request comes from.
upon carparking RM is small, there are two wor- (Onieva et al., 2011) also study revenue manage-
thy studies of mention. The first is (Teodorovic and ment being applied in carparks. They consider the
Lucic, 2006), who propose an ‘“intelligent” parking presence of a group of subscribers along with the
space inventory control system, based on fuzzy logic individual customers while the arrivals are assumed
and integer programming techniques. They study the to follow a non-homogeneous Poisson distribution.
problem of maximizing revenues when customer ar- They examine the problem under both a deterministic
rival and departure times are stochastic, assuming dif-and a stochastic environment and they develop three
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different algorithms for capacity allocation; a first- will make a decision at each time period individually;
come-first-served, distinct and nested method. Us- given a number of periods requested by a booking, the
ing these simulation techniques, profit maximization policy may deny a parking slot for some of these peri-
were investigated, although little insight into the core ods, but still collect the revenues from the periods that
dynamics of the model was supplied. Their results are accepted. Thus, the PDE is assumed not to solve
suggest that a stochastic model using nested allocathe ‘full’ problem.

tion provides revenues that are closest to the optimal
values.
Within this study we assume the following:

1. Their is a finite fixed number of spaces in a

Each approach will generate an optimal rejection
policy, based on which the revenues will be maxi-
mized. The slight difference in the manner in which
the rejection algorithms work, will generate slightly
higher revenues for the PBEHowever, the use of the

carpark. Fixed capacity means that no more rev-

enue can be generated when there are no spaceEDE is favourable as it produces much quicker and

Smoother results. Therefore, we examine the case of
using the rejection algorithm in the Monte Carlo ap-
proach but with the opportunity costs (rejection pol-
icy) being calculated from the PDE. We show under
which conditions, the use of the PDE rejection pol-
icy generates maximum revenues for the full problem
and, in the case of near optimal revenues, we explain
the adjustments that have to be implemented.

The remainder of this report is organized as fol-

2. The inventory is perishable and it can be sold in
advance or on arrival.

3. The demand for the product is time-invariant.

The main objective of our study is tlaximize
Profits by Optimally Managing the Bookings in a
Continuous-Time EnvironmentWhat makes it dis-
tinctin our carparking revenue maximization problem |\ |n section 2, we define the problem, list the
is the assumption of & continuous time framework. - set of assumptions used and develop the discrete-time

We consider a carpark operating under the abovemodel. The continuous-time PDE model is intro-
conditions and a target time for which the spaces  duced and derived in section 3 with the numerical
must be used; for this two approaches are introduced.resylts from both approaches to follow in section 4.
We begin by generating sets of bookings using a Pois- Section 5 presents our conclusions and thoughts for
son distribution. The bookings arrive continuously, fyture research in this area.
but the cars are assumed to occupy the parking slots
for discrete periods of timeAt. The bookings are
allocated a price rate per day according to their du-
ration of stay (the more the stay days, the less the
price paid per day). We develop a discrete-time model
that makes a decision (accept/reject) for each one, in2.1  The Model
the order the bookings are recorded. The decision
is based on the expected revenues generated in th&Ve begin by describing the structure of the book-
carpark and on the opportunity cost that arises beforeings. Each booking consists of three characteristics,
each sale. In particular, we develop a rejection al- the time the booking is made, the time of arrival to the
gorithm according to which, given there is capacity carpark and the time of departure from the carpark.
available, we do not sell any space for tifeat any Therefore, each bookinigcan be written as a vector,
time prior,t < T, for less money than what we expect namely

2 PROBLEM FORMULATION

to receive for it in the future. _ th
Then, a continuous-time model is introduced, B=| ta=tp+n Q)
leading to a partial differential equation (PDE); The tg=ta+¢§

methodology behind the derivation lies in the work of wherety, denotes the booking timeé the arrival time
(Gallego and van Ryzin, 1994) who proposed a deci- yith n denoting the pre-booking time anglthe de-

sion tree approach. The PDE approach aims to repli- haryyre time withE denoting the duration of stay.
cate the results of the discrete-time model widén Bookings arrive in a continuous time: each one

tends to zero. The continuous model is based on thegqyires a space in the carpark for a particular time
probability distributions used previously to generate period and, thus, the customer is required to pay an

the bookings. Instead of looking at the revenues gen- 5 qunt of money according to his/her duration of
erated within a finite time period, the model calculates stay.

the rate at which the value of the carpark changes dur- T4 achieve this any given time intertat [a, b is
ing an instant of time. Again, bookings are allowed ’ ’

to request any length of stay, but the rejection policy ~ LJustification on this is shown in section 4.
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split into K discrete time steps, each of lendth so
that

t“=a+kat. for k=0,1,....K.

Then, ifCX denotes the number of cars present in
the car park at any time during the period [t t“1),

we have ) _
ck=5 f(B',k)
2

where

1 if th <ty < thtl

)i th <ty < thtl

f(B,k) = 1 if ta<tk and tg>tkt? )

0 otherwise

Note that we discount cars departingtat t“*1 as
being present during the period.
The duration of stay for a booking is, then, the number

The time of the next booking can be calculated as

follows

=t Llog(u), (7)

whereu" is a random variable from the uniform dis-
tribution andt"* the time of the last booking. If we
know that the average time between booking and ar-
rival is n units of time and the average time between
arrival and departure i§ units of time, then we can
use Poisson processes with intensifigs= 1/n and

As = 1/€ to model the arrival and duration of stays,
respectively. Therefore, by knowing the last booking
we can generate the next booking as:

tp =t' — (1/Ap) log(u")
ta =tp— (1/A4)log(u™t?t)
tg = ta— (1/As) log(u™+?)

Bi+1 —

(8)

of periods at which this booking is presentin the car 221 Notation and Further Assumptions

park, : _
E'ZZf(B',k)- ®)

Now, suppose that the price rate per day (period) for a
bookingB' changes according to a log-linéaricing
function of the form

W(E) = Py + Yo ¥ 4)

wheref is the duration of thé" booking in days (pe-
riods) andy, Y are positive constants andis the
decaying coefficient.

Therefore, the revenue generated in kfeperiod
over all bookings is

VE=S f(BLIW(E) (5)

and the total revenuR for the carpark is

R = ZZ f(B,KW(E). (6)

2.2 Generating Bookings

The bookings are generated using a Poisson distribu-
tion with constant intensitp\p,. Thus, Ay indicates

the average number of bookings made during a day
(the standard unit of analysis in this paper). Even

though we assumed that the average number of book-
ings made in a day is known, this is a stochastic prob-

lem because their exact number is still unknown.

20ur intuition indicates that a pricing function of this
form is more common to be used in a real carpark, and it
is easy to work with. A log-linear pricing function requires
that the price rate per day (period) decreases monotoyicall
in the number of days requested but, at the same time, it
guarantees that the daily price never drops below a lower
minimum we choose.

(i) No discounting takes place, for simplicity. We
do not consider the time-value of money as the
report’s objective is to examine the performance
of the rejection algorithm.

(i) There is no marginal cost incurred after a sale.
This is valid, because one can always express
price as the increment above cost. Thus, the ex-
pressions “revenue” and “profit” will be used in-
terchangeably.

(iii) There are no cancellations; if a booking for a
particular duration is accepted, then the cus-
tomer will show up and pay with probability al-
most surely.

(iv) Two types of customers are considered - be-
cause there is no time variation, demand inten-
sities can be set to fixed values for the entire
time horizon. Each set of parameters is care-
fully chosen to distinguish between the different
customers types:

» Low-paying customers

Ap=5
Bleis~ q Aa=1/14 (9)
)\S - 1/7

These customers book early in advance to
take advantage of any discounts or promo-
tions, they require a space for long periods
and usually these represent leisure customers.

 High-paying customers

Ap = 25
Beusi~{ Aa=1/3 (10)
)\s = 1
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These customers book just before or on 2.3 Rejection Algorithm

arrival.  High-paying customers are usu-

ally business customers who are not flexible Qur rejection algorithm is based on (Gallego and van

within dates, and thus they are willing to pay Ryzin, 1994) and Littlewood's Rule ((Littlewood,

full prices for just a short period of time. 1972)), and suggests that a booking #dtwill be
These two sets of customers are combined ac-rejected if the total revenue generated is lower than

cording to the time the bookings are made, so the expected revenue of all potential future bookings
that the system makes a decision about bookingsthat the car will displace over all periods it is present

in the order they arrive and do not know which in the carpark. In other words, it makes sense to
booking set they come from. accept the booking only if the price satisfies:

2.2.2 Reection Policy and Expected Values W(EY >V(C,Q,tp;k) —V(C,Q—1,t;k)  (13)

The manager of the carpark can reject a request for
a space if they so choose. If the booking is rejected
then the customer cannot change their length of stay
to be accepted, the potential revenue for each period
of stay is lost. As such the bookings will be called
groupbookings over different days and hence differ-
ent products. All decisions must be based on current
information and without knowledge of future events,

However, the booking decision should be taken ac-
cording to the total length of stay and not for each
day period individually; so for thé&h booking made
within the period" we find it convenient to introduce
the Added Value across all periodkiring which the
car is present to be:

making it a non-anticipating policy. -We call a pol- A= Zf(B',k)[W(E')—
icy that satisfies this criteria an admissible policy, de- A n
noted byrt (V(C,Q,t" k) - V(C,Q—-1,t"k))], (14)

Thus, letV (C, Q,t;k) to denote the expected value
of the carpark of total capaci@ with Q spaces re-
maining at time until the space is used at time period Acceptif: A>0

TX. By equation (5), this is Rejectif: A<O.

with n < k. Then, the rule is

That demand is time invariant along with the no
discounting assumption enable us to calculate the ex-
pected valu®/ going backward and forwards in time

V(C,Qt;k)=E l_z f(B,kW(E)

1=I*

wherei* indicates the next booking made after atthe same time. Therefore, the expected value of the
Since t_he goal is to maximize expected revenues, Wecarpark of total capacitg with Qj spaces remaining
can write the problem as, att” for the space to be usedthtis

Maximize: V(Cv QJ 7tn; k) - V(QJ ) QJ ) 01 k— n) = Vk*n-,j .

i=1*

V(C,Q,t;k) mgx{E [.Z f(B,KW(E)

(11) The resulting 2D-matrix will then be used to deter-
mine the rejection policytin the following algorithm;

subject to:

2.3.1 Optimal Rejection Policy Algorithm
o<ck<c, vk=0,1,....K, (12)

whererte MM is any policy from the set of all admissi- 1+ €hoose a booking horizoh with K periods suf-
ble rejection policies. The capacity constraintin (12)  ficiently large to capture nearly all of bookings in
requires that the number of cars presentin any period ~ €ach setand a maximum capacity for the carpark
should never exceed the total capacity of the carpark. '

The quantity/ (C,Q,t;k) —V(C,Q—1,t;k), is the 2. Initialize the rejection matrix° = 0 so the value
opportunity cost lost, incurred when we move from a of a space is zero, wher is theqth guess at the
carpark of total capacitg with Q spaces remaining solution of the rejection algorithm
at timet to one withQ — 1 spaces left. This quantity
suggests how much tr@" unit of space is expected
to be worth at time, denoted as thExpected Added
Value of the space at time t 4. Evaluate the expected value of the carpark (of to-

tal capacityC) at timet for all time periodg* and

3. Use Monte-Carlo to generate booking sets in
within the time intervalO, T].
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Table 1: Parameters Used. These are the quantities used to generate a booking
i i set in the Monte-Carlo approach. Given these quanti-
Maximum Capacity Cmax= 100 ties, we may denote the cumulative probability that a
Time Horizon [0,T], whereT = 30 days customer arrives not more thagndays after booking
Pricing function | Y1 =5, Y =10, p=2/11 as

Pa(n) = 3 aiP (1)
all possible capacities @ Q; < C to generate the [
matrix

n
=y [ palt)
o

Vit=E [z f(B, kW)
' =1- S aean, (18)

given that for thath booking in the period" the

added value is and the cumulative probability of staying not more

A= Z f (B, k) [W(E)— thang days as
Py(8) =1- Y aje st (19)

(Vin—Vinjoa)l - @18)
. Now, let us consider the probability that a cus-
+1
5. Go'to step 3 and repeat untit® Vi <e. tomer departs from the carpark exaalyays after the
The parameters we use to derive our results arebooking has been made. If we denote thighyz) we
listed in table 1. then may write:

2.4 Probability Distributions pd(z):Zm/ozpai(t)ps(zft)dt. (20)

Previously, we described how a set of bookings can Thus,p4(2) can be found by integrating over all pos-
be characterized by intensity parameters dendied  gjpje combinations of arrival time and length of stay
Aa andAs, and assumed that the number of bookings ¢ if added together they give exactlydays. Or
made in a period of time follows a Poisson distribu- j, other words we sum over all instances where the

tion. length of stay plus the arrival time is equalzo
_ Next, den_ote the parameters that correspond to the Then, by defining the corresponding cumulative
leisure booking set and those that correspond to theprobability as

business booking set by the subscripts 1 and 2, respec-

tively. Thus, the probability that a customer arrives :
at the carpark) (=ty —t,) days after the booking Pa(2) = /pd(t)dt (21)
has been made, follows an Exponential distribution, 0
namely and using (18), it can be proved that the probability
Pa(n) =3 aipa(n) of a customer being presentiays after the booking,
| 9(z), may be written as,

_ . —Ag N P

=2 0ihae el fori=12 (16) 9(2) = Pa(2) — Pu(2) (22)
and, similarly, the probability that a customer staysin  Next, using conditional probabilities, we can show
the carpark fo (=tq —ta) days is given by that the expected distribution of stay given that the

\ _ customer booking days in advance will be present
Ps(€) = > diAse” st fori=12  (17)  andstay daysis
|

where the weight ps(E]2) = Z a Ps (&) [P (2) — Py (max{z—&,0})] '
! 9(2)
o = o (23)
> Ap, This probability is the most important function we
]

deal with, as it will tell us the distribution of which
is the probability of the next booking to be from type of customers (characterized by their length of
booking set. stay) are present on a particular day. Therefore, the
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cumulative probability of a customer staying at most booking’s length of stay nor the price he has to pay
& days given that he is presentlays after the book-  for that period.
ing, is given by Defineps(§Jt; T) as the conditional probability of
g a customer booking ato stay forg days given that he
_ is present at tim@& . Then, the instantaneous cashflow
Ps(&l2) = /ps(S|Z)dS fori=1,2.  (24)  attimet for customers present @tcan be expressed
0 as the total number of customers booking multiplied

This cumulative probability will be vital for con- ~ PY the average price paid, namely

structing the rejection policy. _ ®
dv = —f(tT)dt [ psELTIWEdE. (26)
0

3 LINKING TO THE PDE 3.1 Rejection Policy

We can now consider the continuous dynamic formu-
lation for the revenue generated in the carpark at the
instantt = T. The aim is to derive a PDE, going ; )
backwards in time, such that the Monte Carlo simula- &/l 0therT, we can use a change of variables to write
tions will converge to its solution as the time interval T=T-L . L : .

goes to zeroAt — 0. The PDE method implies that - Y/& accept a booking only if its corresponding price
the problem is solved for each period of time inde- ¥ IS greater than some optimal (minimum) price

pendently, because the states of the carpark before of* (). Because there is one-to-one correspon-
after the period in consideration do not contribute to d€Nce between price and length of stay (see equation

the decision being made. This implies that there are (4)), With the price to be monotonically decreasing in

no group bookings and, therefore, the expected addedduration of stay, we accept a booking only if its corre-
values of the spaces should be slightly higher. sponding duration of sta§ is less than some optimal

LetV = V(Q,t;T), be the instantaneous rate at (Maximum) duratioré*(Q,1). Thus, given some op-

which revenue is generated at timéor cars present t|ma_l | duratlon_ of Stai&* we may find that
over the instanT . the instantaneous booking arrival rate for customers

Assume that bookings present at tif@rrive ac- ~ °00kingt days beford to be present al is

Since in our current setting, intensities are time in-
variant and the solution &f atT is independent from

pording toa Poisson distribl_Jtion with time varying Ps(E[T)f(1). (27)
intensity derived by the functiofi(t; T). This can be o o
written as, Similarly, we can show that the resulting instanta-

neous cashflow rate is
f(t;T) = (Z)\bi> g(T —t).
I

Let Q(t;T) to express the number of carparking
then consider what happens during an infinitesimal gnq (28), to obtain
period dt (see (Gallego and van Ryzin, 1994)); we

!
f0) [ ps(elw(e) de. 29)
0

sell one spacedQ = —1) with probabilityf (t; T)dt+ v 1) f ( _ _

o(dt), we do not sell any spacelQ = 0) with prob- 5 TREMIONMQTY-VQ-11)

ability 1 — f(t;T)dt — o(dt) and we sell more than &

one spacesd@ > 1) with probabilityo(dt). Taking - f_(-[)/ps(a-[)l.p(a)da. (29)
dt — 0, we obtain thaE[dQ] = —f(t; T)dt. 5

Noting thatQ is a discrete jump process, as only o o .
entire spaces can be sold and not parts of them, weSince the objective is to maximi2é by controlling
could write that the change in the value over an instant ¢, We may write the problem as,

tis, ov =
N i rgg){Ps(E*lT) f(OV(Q-11)-V(QT))
dv = Sodt— f(ET)VQET) ~V(Q- 16T .
(25) -
Equation (25) gives us an indication on the probabil- + f(r)/ps(E|r)kP(E)dE], (30)
ity of a customer arriving but, it does not capture the 0
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with the boundary conditions the leisure set and the business set (780). This, only
occurs when capacity is more than 100. However,
V=0 when 1=0 (31)  \when capacity is less than 60, accepting only business
V=0 when Q=0. (32) customers results in greater revenue. The upper line
(‘Combined Customers after management’) presents
the expected revenues generated after imposing the
proposed rejection algorithm and making optimal de-
cisions based on expected revenues. It is clear that
our algorithm outperforms all other carparks for all
capacities.

The solution to the optimization problem in equa-
tion (30) is the optimal valu¥ (Q,T) and the values
W(&*), with&* =&*(Q, 1), that achieve the supremum
form the optimal rejection policy.

In order to check if our optimal solution is con-
sistent with that derived in the discrete-time case, we

can differentiate (30) with respect to the contbdito
obtain, 50 P ¥ 4.1 Monte Carlo Convergence

V(QT)-V(Q-11)=¥(&) (33) So far, we have considered a discrete-time model with
g the timestep being equal to a day, .= 1. In other
_words, if there was a booking request to arrive on
Wednesday at 22:00 pmand leave on Thursday morn-
ing at 08:00 am, the system would reserve a space for
the whole day of Wednesday and Thursday and re-
quire the customer to pay the daily price for two days,
even though the stay would only lasted 10 hours. In
4 NUMERICAL RESULTS the real world, however, a customer might require a
space for two and a half days, for ten hours or even
In figure 1, we illustrate the performance of our re- for thirty minutes and he would expect to pay the cor-
jection algorithm by comparing it with three different  responding price.
carparks which operate on a first-come-first-served Thus, our rejection algorithm has to decide whether
basis; for this we assume day intervalst & 1). to accept the booking, according to the availability of
Figure 1 shows the expected revenues generated inspaces for only the particular hours requested and not
the carparks with varying capacities on day- T. for the whole day period. This effect can be captured
One can see, that the revenue increases with capacitypy reducing the time interval in consideration.
Figure 2 shows the convergence of the Monte
o | - ] Carlo for dayT with varying time intervals. The
ol ST = ] maximum daily revenue seems to have converged to
e ] around 497. Nonetheless, this convergence is slow, as
T | it is of orderO(At).
The optimal rejection policy (the 2D-matrix ; —
Vij—1), WhenAt = 1/192, can be seenin figure 3. The
figure is smoothed out using 10 iterations of 2000 runs
each. There is an increasing pattern in the spaces val-
ues, as capacity remaining goes to zero; when capac-
TTh m ow e W o W owow ity is large Q > 60), spaces become worthless for all
Figure 1: Performance of the rejection algorithm after-iter t!mes, |nd|.cat|ng that bookings are accepted irrespec-
ations. tive of their length of stay. Furthermore, when there
are only few spaces remaining, spaces become more

However, as soon as demand is exhausted, no mor&/aluable with a maximum added value of around 12
revenue can be generated. In particular, a carpark thatmonetaré/ Un‘ItS. Byhrt_ad,ucmg the time intervil we h
accepts bookings only from the leisure (business) setManagedto ‘squash i more customers, meaning that

does not need more than 40 (60) spaces to meet thdve accept more bookings than before; however, such
demand. Under the particular set of parameters, when2" @PProach reduces the averaged added values of the

capacity is large enough, the revenue generated fromSPaces:

the business set (560) is significantly higher than that

from the leisure set (220). Looking at the combined 4.2 PDE Results

set we can see that, when capacity is large, the rev-

enue generated equals the sum of the revenues fromNext, we present our results from the continuous-time

Equation (33) indicates that the marginal value shoul
always be equal to the revenue generated by rejec
tion at the optimal level* = £*(Q, 1), meaning that a
booking is accepted only & < &*.

500

400 -

300 |

200 |

100 |
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Combined Customers Expected Revenue when dt=1/192
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Figure 2: Monte-Carlo Convergence. Figure 4: Expected Revenues from PDE and Monte Carlo
computations with\t = 1/192.
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Figure 3: Monte-Carlo Optimal Rejection Policy.
Figure 5: PDE Optimal Rejection Policy.

PDE model and compare them with the Monte-Carlo
discrete-time model. In figure 4 we compare the ex-
pected revenues generated from the PDE model with
those from the discrete model, for ddy When ca-
pacity is adequate to meeting the demand from both
customer sets, the Monte Carlo simulations seem to
have converged to the continuous values. However,
for carparks with less than 60 spaces, Monte Carlo ap-
proach generates slightly lower revenues. A possible
explanation to this lies on the way optimal decisions
are made using the rejection algorithm. The decision
was made depending upon the total duration of stay
(added value of all periods) and not as an individual
decision at every period. If the algorithm could treat
each period independently we would expectto be able
to reject a request and reserve the space for anothe
potentially higher-paying customer. Nevertheless, in
our group-decision algorithm it happens that a space
might be used by a booking that comes and stays for|em of dealing with group bookings.

ten time periods because the added value of the nineTherefore, whatwould we aim to do now is an attempt

periods is too mgch to miss out, that we end up filling to generate optimal revenues using the MC-Group by
up the tenth period too, even though that was not the exploiting the information coming from the PDE.
optimal decision for that period. Therefore, this prac-

tice slightly reduces the expected revenues since we4.2.1  Proposed Approach
tend to slightly accept more long-stay bookings.

The question, however, is to be able to derive opti- We present the steps to be taken, as a possible ap-
mal rejection policies for the case where group book- proach to the problem:

ings are allowed.

On the one hand, calculating the correct opti-
mal rejection policy using the Monte Carlo approach
is computationally intensive as the simulations are
based on the number of paths and iterations taken; as
a result, the value surfaces produced are not smooth
enough (see figure 3) and it takes too long to be found.
If we knew the correct value surfaces, derived by
avoiding any extensive calculations, we would be able
to run the MC-Group with hundreds of thousand paths
and based on these surfaces we could make optimal
decisions and determine the optimal revenues.

On the other hand, the nature of the continuous
PDE model, generates the values quicker and the op-
timal surfaces are much smoother (see figure 5). This
fs a fortunate outcome for us, but still we cannot just
replace the Monte Carlo approach with the PDE ap-
proach, since the latter does not solve the ‘full’ prob-
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(i) Solve the PDE and derive the vallé&Q, 1) for Ere s v e

a” Statqu, T) . 500 - MC-Groupﬂ‘Jsmggr(j:é policy -------
(i) Find the optimal rejection policy by evaluating
the quantitiey/ (Q,7) —V(Q—1,1).
(iii) Choose a value fot and use this policy in the
Monte Carlo to make decisions and to optimally
manage the group bookings.

(iv) Calculate the effect on the resulting revenues
and compare with the revenues obtained with-

300 -

Expected Revenue

200 -

0

out using the PDE policy. 0 = EI =
(v) Based onthese values, derive the new “updated” Figure 7: Effect of the PDE rejection policy on Expected
rejection policy. Revenues witi\t = 1/192.
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Figure 6: Effect of the PDE rejection policy on Expected Figure 8: Effect of using the PDE Policy on the MC Policy
Revenues withilt = 1. with At = 1/192.

Figure 6 shows the effect on the expected revenues(*MC-Group-using pde policy’) is the resulting “up-
when the PDE policy is used in the Monte Carlo with dated” rejection policy. We observe that the proposed
the time intervals to be days (i.&t = 1). The solid  approach generates a rejection policy that is signifi-
line (‘MC-Group’) shows the expected revenues us- cantly close to the original optimal one whilst achiev-
ing the MC-Group algorithm as in figure 2. These ing a reduction in the computation time; in particular,
values are the optimal ones wher- 30. Thus, the the relative difference between the policies never ex-
objective is to minimize the distance between the op- ceed 8%.
timal and the approximated lines. The dashed line Our results |mp|y that even though we have used
(‘MC-Group-using PDE policy’) shows the expected the PDE optimal policy we could still generate near-
revenues generated when the intensive simulations areyptimal revenues. This validates the use of the PDE
replaced by the procedure described above. The ex-method for deriving the optimal policy and the system
pected revenues with and without using the PDE re- could then use the Monte Carlo approach to make de-
jection policy are close to each other. In particular, cisions about the ‘group’ bookings.
we find that their difference is always less than 8%
at all capacities. However, we believe that the pro-
posed approach will work even better for sniktl] as
the PDE policy is derived using the continuous-time S5 CONCLUSIONS
model. Figure 7 shows the effect on the expected rev-
enues when the PDE policy is used in the Monte Carlo The approach followed to solve the discrete-time
with the time intervalAt = 1/192. Clearly, the ex-  model required the use of a Monte Carlo scheme. The
pected revenues generated are much closer and theyejection algorithm was developed to manage book-
are always within 4% of each other. ings according to the future expected revenues in the

Figure 8 shows how the rejection policies are carpark. Decisions were made optimally and the al-
formed, before and after using the PDE policy. The gorithm has been proven to work well, as it pro-
dashed line represents (‘MC-Group’) the optimal re- duced greater expected revenues than all unmanaged
jection policy, the solid line (‘pde’) is the PDE pol- carparks in consideration. However, the large number
icy we input in the algorithm, and the dotted line of paths and iterations used, slowed down the com-
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putation process, and produced an optimal policy that Vickrey, W. S. (1969). Congestion theory and transport in-
was not sufficiently smooth. vestment.The American Economic RevieB9(2):pp.
The fact that each state in the carpark can 291=260.
be solved without information or dependence on Vikrey, W. S. (1994). Statement to the joint committee on
any other states, has given rise to an equivalent ~ Washington, dc, metropolitan problems (with a fore-
continuous-time PDE approach. The model was de- word by richard arnott and marvin krausjournal of
. L Urban Economics36(1):42 — 65.
veloped, based on the probability distributions of the .
bookings, inter-arrival times as well as the duration of Wang: L. X. and Mendel, J. (1992). Generating fuzzy rules

o . . by learning from examplesSystems, Man and Cyber-
stay. The rejection algorithm was considered not to ngtics IEIgE Transactigns 03&2(6):1414 _1427_y

solve the ‘full pro_blem a_nd, asa r(_asult, the expected Young, W., Thompson, R. G., and Taylor, M. A. (1991). A
revenues were slightly different (higher) than the ob- review of urban car parking modelsTransport Re-

tained values using the Monte Carlo approach; how- views 11(1):63-84.

ever, a SOIUtIO.n to t.he Pmb'e'.“ could be found faster Zhao, Y., Triantis, K., Teodorovic, D., and Edara, P. (2010)

and the. resul_tmg re;ecuon policy was much smoother. A travel demand management strategy: The down-
Having this in mind, we developed an approach so town space reservation systefuropean Journal of

that the smooth rejection policy from the PDE could Operational Researct?05(3):584 — 594.

be used in the Monte Carlo approachto solve the ‘full’
problem. Our results are promising, since we man-
aged to replicate the optimal expected revenues with
a tolerance of around 8%; a possible further improve-
ment could still be achieved.

One natural extension to the model is to con-
vert it to a dynamic pricing model where demand
intensity may be uncertain; it may be time varying
(A =A(t)) or, to also depend on the pricing function
(A =A(t,¥(p))) - the idea could then be extended to
multiple carparks.

REFERENCES

Arnott, R. and Rowse, J. (1999). Modeling parkidgurnal
of Urban Economics45(1):97 — 124.

Gallego, G. and van Ryzin, G. (1994). Dynamic pricing
of inventories with stochastic demand over finite hori-
zons.Management Sciencd0(8):pp. 999-1020.

Littlewood, K. (1972). Forecasting and control of passenge
bookings.12th Sympos. Procpages 95-128.

Onieva, L., Mufiuzuri, J., Guadix, J., and Cortes, P. (2011)
An overview of revenue management in service indus-
tries: an application to car park3.he Service Indus-
tries Journa) 31(1):pp.91-105.

Teodorovi¢, D. and Lugic, P. (2006). Intelligent parin
systems.European Journal of Operational Research
175(3):1666 — 1681.

Teodorovi€, D. and Vukadinovi¢, K. (1998)Traffic con-
trol and Trasport Planning: A Fuzzy Sets and Neural
Netweorks ApproachKluwer Academic Publishers,
Boston.

Verhoef, E., Nijkamp, P., and Rietveld, P. (1995).
The economics of regulatory parking policies: The
(im)possibilities of parking policies in traffic regu-
lation. Transportation Research Part A: Policy and
Practice 29(2):141 — 156.

82



