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Abstract: Two contexts may be considered, in which it is of interest to reduce the dimension of a data set. One of these
arises when the intention is to mitigate the curse of dimensionality, when the data set will be used for training
a data mining algorithm with a heavy computational load. The other is when one wishes to identify the data
set attributes that have a stronger relation with either the class, if dealing with a classification problem, or
the value to be predicted, if dealing with a regression problem. Recently, various linear regression projection
models have been proposed that attempt to conserve those directions that show the highest correlation with
the value to be predicted: Localized Slices Inverse Regression, Weighted Principal Component Analysis and
Linear Discriminant Analysis for regression. However, the papers that have presented these methods use
only a small number of data sets to validate their smooth functioning. In this research, a more exhaustive
study is conducted using 30 data sets. Moreover, by applying the ideas behind these methods, a further three
new methods are also presented and included in the comparative study; one of which is competitive with the
methods recently proposed.

1 INTRODUCTION

Very frequently, the intrinsic dimension of a data set
—the number of variables or characteristics needed
to represent it— is lower or even much lower than the
real dimension shown by the data set. One perfect
illustration of this is the example provided by (Tenen-
baum et al., 2000), in which a data set consisting of
photographs of hands may be characterized by two
variables (intrinsic dimension 2) —wrist rotation and
the angle of finger extension— despite its dimension
being 4096 (given that there are 64�64 pixel images).
In other words, maintaining a constant distance and
similar lighting conditions for the photograph, all the
images of the hands taken with the same rotation and
finger extension will be approximately equal, such
that the value of 4096 pixels may be determined fairly
easily, knowing only those two values.

�This work was supported by the projects
MAGNO2008-1028-CENIT, TIN2008-03151 and
TIN2011-24046 of the Spanish Ministry of Science
and Innovation.

In the field of data mining, there is great interest
in the study of methods that will identify the intrin-
sic dimension of data sets. This has given rise to the
area of manifold learning (Tenenbaum et al., 2000;
Roweis and Saul, 2000; Lee and Verleysen, 2007),
which is usually centred on the determination of non-
linear relations, and methods for feature selection and
extraction (Guyon and Elisseeff, 2003; Liu and Yu,
2005), in which the linear relations are usually more
interesting, as they are easier to interpret.

Interest in discovering the intrinsic dimension is
twofold. On the one hand, reducing the dimension of
the data set mitigates the effects of the curse of dimen-
sionality, a term coined by Richard Bellman to de-
scribe the fact that some problems become intractable
as the number of variables increase. As regards data
mining problems, this is related to the fact that the
number of necessary instances to solve a learning
problem grows exponentially with the number of vari-
ables. On the other hand, to possess knowledge of
the variables, on which the values to be predicted are
more directly dependent, is in itself very valuable for
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the data analyst.
A very simple way of reducing the dimension of

a set is to find a projection matrix that projects the
data set onto a lower dimensional space. In other
words, there are lower numbers of variables in the
new data set that represent a linear combination of
those in the initial data set. The difficulty resides
in finding a projection that retains some interesting
characteristics of the initial data set. In this work,
our interest lies in these types of linear projection
methods. Among the non-supervised methods in this
category, the most widely used is without a doubt
Principal Component Analysis (PCA) (Jolliffe, 1986),
which attempts to preserve the variance of the data
set. The most well known among the supervised
classification-based methods are Linear Discriminant
Analysis (LDA) (Fisher et al., 1936) and Nonpara-
metric Discriminant Analysis (NDA) (Fukunaga and
Mantock, 1983), both of which try to achieve a pro-
jection that maximizes the separation between classes
and minimizes the dispersion of the instances within
their own class. A third supervised method with
the same objective is Hybrid Discriminant Analysis
(HDA) (Tian et al., 2005), which is proposed as a
mixed method that combines PCA and LDA. Finally,
supervised methods also exist, oriented towards re-
gression, that attempt to find the linear relation that
has the strongest correlation with the dependent vari-
able. Among these, it is worth noting Sliced Inverse
Regression (SIR) (Li, 1991) and Principal Hessian
Directions (PHD) (Li, 1992), and the most recent, Lo-
calized SIR (LSIR) (Wu et al., 2008), LDA for regres-
sion (LDAr) and Weighted PCA (WPCA) (Kwak and
Lee, 2010).

Our work here is centred on linear projection
methods for regression. An experimental study of
LSIR, LDAr and WPCA is completed, given that the
articles in which these methods were presented only
used two real data sets in the case of LSIR, and three
data sets for the two final methods. Furthermore, us-
ing the ideas in these methods, new methods are also
presented that are included in the comparative study.

The rest of the article is structured as follows. Sec-
tion 2 presents the details of the methods, as well as
a unifying conceptual framework. Section 3 presents
the new methods. Section 4 explains the details of
how the study was made and presents the results. Fi-
nally, section 5 summarises the conclusions.

2 REVIEW OF BACKGROUND

Consider a set of n data and values fxi;yign
i=1 with

xi 2R d�1 and yi 2R (in a more general context, they

would be considered pairs fxi;yigwith yi 2R t�1, but
only the data sets for which t = 1 are considered in
this article). The question is how to find a linear com-
bination of attributes f j = wT

j x that will give rise to
the characteristics f j that best explain the value, y,
that is to be predicted.

All of the following methods that are presented
may be proposed as an optimization problem, in
which the function to maximize is of the form:

J(W ) =
jW T AW j
jW T BW j

(1)

in which, the columns of the optimum solution, W ,
may be obtained by solving the following generalized
eigenvalue problems:

Awk = lkBwk;l1 � l2 � �� � � ld (2)
It may be solved as B�1Awk = lkwk, a classic eigen-
value problem that can be sensitive to poor condition-
ing of B (when the determinant is close to zero).

What changes from one method to the other is the
way in which matrices A and B, which appear as nu-
merator and denominator, are calculated.

2.1 Unsupervised Linear Projection
(PCA)

In the case of PCA (Jolliffe, 1986), matrix B in
equation 2 is nothing other than the identity matrix.
Matrix A is the covariance matrix:

A = Sx =
1
n

n

å
i=1

(xi�x)(xi�x)T

B = I (identity matrix)
where, x = (1=n)å

n
i=1 xi is the average of the xi.

Equation 2 is therefore reduced to a classic eigenvalue
problem:

Sxwk = lkwk;l1 � l2 � �� � � ld

2.2 Methods of Supervised Linear
Projection for Classification

2.2.1 Linear Discriminant Analysis

In LDA (Fisher et al., 1936), the numerator matrix
is known as the between-covariance matrix and that
of the denominator the within-covariance matrix
defined as:

A = Sb =
1
n

Nc

å
c=1

nc(xc�x)(xc�x)T

B = Sw =
1
n

Nc

å
c=1

å
i2class c

(xi�xc)(xi�xc)
T
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where, Nc is the number of classes, nc the number
of instances in class c, and xc = (1=nc)åi2class c xi is
the mean of the instances of class c. Matrix Sw may
be considered as the weighted sum of the covariance
matrices for each class.

2.2.2 Non-parametric Discriminant Analysis

In NDA (Fukunaga and Mantock, 1983), the LDA
matrices Sb and Sw are replaced by the following
ones:

A=SNDA
b =

Nc

å
c=1

Pc

Nc

å
d=1
d 6=c

å
i2class c

w(c;d)
i
nc

Dd(x
(c)
i )�Dd(x

(c)
i )T

B=SNDA
w =

Nc

å
c=1

Pc å
i2class c

w(c;c)
i
nc

Dc(x
(c)
i ) �Dc(x

(c)
i )T

where, Nc is the number of classes, nc is the number
of instances in class c, Pc is the a priori probability of
class c, Dd(x

(c)
i ) = x(c)i �Mk

d(x
(c)
i ) the difference be-

tween instance x(c)i and Mk
d(x

(c)
i ) = (1=k)å

k
t=1 x(d)tNN,

the mean of the nearest neighbours k in class d to the
instance x(c)i in class c, its “k-NN local mean”, and the
weighting factor w(c;d)

i , which depends on a control
parameter r (with a value of between 0 and infinite),
is defined as:

w(c;d)
i =

min
n

dist(x(c)i ;x(c)kNN)
r;dist(x(c)i ;x(d)kNN)

r

o
dist(x(c)i ;x(c)kNN)

r +dist(x(c)i ;x(d)kNN)
r

where, dist(x(c)i ;x(d)kNN) is the distance of x(c)i in class
c to its k-nth nearest neighbour in class d.

2.2.3 Hybrid Discriminant Analysis

This method is presented in (Tian et al., 2005) as a
combination of PCA and LDA. The numerator and
denominator matrices of equation 1 are obtained by
a linear combination of the corresponding PCA and
LDA matrices:

A = (1�l)Sb +lSx

B = (1�h)Sw +hI

where, I is the identity matrix. For l = 1 and h = 1,
HDA is reduced to PCA, for l = 0 and h = 0, HDA
corresponds entirely to LDA, we can obtain projec-
tions for other values with intermediary characteris-
tics between both methods. In addition, we obtain a
simple regularization of B from h > 0.

2.3 Supervised Linear Projection
Methods for Regression

2.3.1 Sliced Inverse Regression

In SIR (Li, 1991), the data set is at first ordered in
accordance with the values of y and divided into L
slices2. The matrices A and B are then defined as:

A = Sh =
1
n

L

å
l=1

nl(xl�x)(xl�x)T

B = Sx (covariance matrix)
where, nl is the number of instances in the slice l and
xl = (1=nl)åi2slice c xi is the mean for each slice. If
Sh is calculated on the basis of the data set once it is
sphered3, the solution to equation 2 could be treated
as a classic eigenvalue problem:

Shwk = lkwk;l1 � l2 � �� � � ld

2.3.2 Localized SIR

In this variant of SIR (Wu et al., 2008), the means of
the slices are replaced by local means.

A = Sloc
h =

1
n

n

å
i=1

(xi;loc�x)(xi;loc�x)T

B = Sx (covariance matrix)
where, xi;loc = (1=k)å j2Ii x j, in which Ii is the set of
indices of the nearest k neighbours of xi in its same
slice, such that the method now depends on two pa-
rameters: the number of slices, L, and the number of
nearest neighbours, k.

2.3.3 Principal Hessian Directions

This method (Li, 1992; Li, 2000) is based on re-
solving a problem of eigenvalues for which it is
necessary to calculate the Hessian matrix mean H,
which is related to the weighted covariance matrix
Syxx = Ef(Y � y)(x� x)(x� x)Tg through equality
H = S�1

x SyxxS�1
x . From the point of view of the uni-

fied approach that we propose, this method could be
likened to solving the generalized eigenvalue problem
of equation 2 in which matrices A and B would be:

A = Syxx =
1
n

n

å
i=1

(yi� y)(xi�x)(xi�x)T

2Note that this process may be seen as a discretization
of the values of y.

3In other words, after projecting it onto the principal
components and dividing each variable by the square root
of the corresponding eigenvalue.
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B = Sx (covariance matrix)

As in the case of SIR, if the data set is sphered before
calculation of Syxx, the solution could also be obtained
by solving the eigenvalue problem:

Syxxwk = lkwk;l1 � l2 � �� � � ld

2.3.4 Weighted PCA

In the weighted PCA (Kwak and Lee, 2010), as in
other methods, matrix B is the covariance matrix, Sx.
Matrix A is defined as:

A=Syx=
2

n(n�1)

n�1

å
i=1

n

å
j=i+1

g(yi�y j)(xi�x j)(xi�x j)
T

where, g(�) is a positive and symmetric function the
value of which does not decrease when the absolute
value of its argument increases. Two possible
examples would be g(x) = jxj and g(x) =

p
jxj,

which can be generalized as a function g(x) = jxjp,
in which p would be a parameter of the method, and
the earlier ones would be special cases for p = 1 y
p = 0:5. Moreover, when p = 0, matrix Syx would be
equivalent to Sx

2.3.5 Linear Discriminant Analysis for
Regression (LDAr)

This method (Kwak and Lee, 2010) based on LDA,
uses the following variants of matrices Sb y Sw:

A = Sbr =
1
nb

å
(i; j)2Ibr

f (yi� y j)(xi�x j)(xi�x j)
T

B = Swr =
1

nw
å

(i; j)2Iwr

f (yi� y j)(xi�x j)(xi�x j)
T

where, the sets of pairs of indices Ibr and Iwr are
defined as:

Ibr = f(i; j) : jyi� y jj � t; i < jg
Iwr = f(i; j) : jyi� y jj< t; i < jg

nb and nw are the cardinalities of these sets, and the
function f (�) could be any of the following f (x) =
jjxj� tj or f (x) =

p
jjxj� tj; as in WPCA, it can be

generalized as a function f (x) = jjxj � tjp, in which
p would be a parameter of the method, and the earlier
ones would be special cases for p = 1 and p = 0:5.

3 PROPOSALS FOR NEW
METHODS

In this section, new supervised projection methods are
proposed to approach regression problems, by adapt-
ing some of the ideas of the earlier methods.

3.1 Localized Principal Hessian
Directions

This method is proposed as an extension of PHD, as
in Local SIR, the local information is used at each
instance. The new matrix for A would be:

A = Sloc
yxx =

1
n

n

å
i=1

(yi;loc� y)(xi;loc�x)(xi;loc�x)T

3.2 Hybrid Discriminant Analysis for
Regression

This method proposes to use the same idea as in HDA,
but using the matrices WPCA and LDAr,

A = (1�l)Sbr +lSyx

B = (1�h)Swr +hI

in which, I is the identity matrix. Thus, for l = 1
and h = 1, HDAr is reduced to WPCA, for l = 0 y
h = 0, HDA corresponds entirely to LDAr, for other
values we can obtain projections with intermediate
characteristics between both methods. In addition,
with h > 0 a simple regularization of B is obtained.

3.3 Sliced Nonparametric Discriminant

This proposal consists in using NDA, but after com-
pleting the discretization of the values of the depen-
dent variable, as was done for SIR. After discretiza-
tion, the instances that belong to the slices may be
considered classes, which allows classic NDA to be
applied.

4 COMPARATIVE STUDY

4.1 Validity of the New Methods

In the first place, the validity of the new proposals
will be tested by using a pair of artificial data sets,
the structures of which are known, for which reason
it is easy to validate whether the methods identify the
structure. The same artificial data sets of (Kwak and
Lee, 2010) were used, both having 1000 instances
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Table 1: Absolute value of the cosine of the angle between
the optimum direction and that found by the supervised pro-
jection methods for regression.

Method
linear
problem

non-linear
problem

SIR 0.9999332 0.9863278
LSIR 0.9997051 0.9953802
WPCA 0.9999590 0.9520269
LDAr 0.9999995 0.9912704
PHD 0.3764493 0.8009470
LPHD 0.4467953 0.3439180
HDAr55 0.9997744 0.9139320
HDAr83 0.9999450 0.9486312
HDAr38 0.9984839 0.8658341
SNDA 0.9999735 0.9979509

and 5 dimensions that follow a normal distribution of
mean 0 and variance 1. In one of them, the output
variable is linearly dependent on two of the attributes
y = 2x1 +3x3, such that the direction of optimal pro-
jection would be w1 = (2;0;3;0;0)T ; in the other, the
relation with the ouput is not linear y = sin(x2 +2x4),
and the optimal projection is w1 = (0;1;0;2;0)T .

As a reference, the results were also calculated for
the other methods. The number of slices was 12 (for
SIR, LSIR and SNDA). The number of neighbours
for the localized methods (LSIR and LPHD) was 5.
A value of 0.5 for parameter p was used in WPCA,
LDAr and HDAr. The value of t was 0.3 in LDAr and
HDAr. Three configurations —(l = 0:5;h = 0:5),
(l = 0:8;h = 0:3), and (l = 0:3;h = 0:8)— were
tested for the HDAr method, labelled in the table as
HDAr55, HDAr83 and HDAr38, respectively.

In Table 1, the absolute value of the cosine of the
angle between the optimum directions and the direc-
tion found by each different method is shown. It can
be seen that both SNDA as well as the various con-
figurations of HDAr achieve good approximations to
the optimum, both in the linear as well as the non-
linear case. In the linear case, the best approximation
is given by LDAr, followed closely by SNDA. In ad-
dition, the local version of PHD is able to slightly im-
prove PHD in the linear case, although its results are
very bad in the non-linear case. The best approxima-
tion in the non-linear problem is given by SNDA.

4.2 Experimental Comparison

The regression data sets shown in Table 2 were used
(all are available in the arff Weka format4), the major-
ity of which are taken from the UCI machine learning
respository (Frank and Asuncion, 2010) and from the

4http://www.cs.waikato.ac.nz/ml/weka/index_datasets.
html

collection of Luis Torgo5.
The results of the prediction were obtained with

the same regressor used in (Kwak and Lee, 2010),
a weighted nearest neighbour regressor, which nor-
malizes the attributes in the range [0;1] and uses the
weighting function q(x;xi) = 1=(1+

p
jjx�xijj) and

5 neighbours.
The effect of projecting onto dimensions 1, 2, 3,

0.5d, 0.75d and d has been tested, where d is the
dimension of the data set and the non integer values
were rounded to the nearest integer.

In the experiments, each data set was randomly
divided into 90% for training and 10% for test, and
this was repeated 10 times, calculating the mean error
of each repetition, which was measured as the square
root of the mean quadratic error.

For each of the dimensions, the methods were or-
ganized in accordance with the regressor results, as-
signing range 1 to the best, range 2 to the following
and so on, successively (Demšar, 2006). The ranges
obtained for all the data sets were used to calculate the
average ranges, which are those shown in Table 3 (a).
One of the proposed methods, SNDA, was the best
method when used to project the data set without re-
ducing its dimension and when used to reduce the di-
mension to 75% of its original size. It also remains
among the first three in another three cases. More-
over, it may be seen that the HDAr proposal is not a
very good idea, given that in no case was it able to
outperform WPCA and LDAr, simultaneously. Nei-
ther does the localization of PHD appear to contribute
much, even though it outperformed PHD in two cases,
results were worse in the others. From among the two
best methods, WPCA appears to be the best method
for all the dimensions, at all times better than LDAr,
which contradicts the conclusions of the designers
of this method, who established in (Kwak and Lee,
2010) that LDAr was better than WPCA, although
they used only three data sets.

Finally, the ranges of the 66 combinations of
methods and possible dimensions were also globally
calculated (6 different projection dimensions � 11
methods) together with the result of applying the base
regressor directly to the data set (denoted in the tables
as ORI). These results are shown in Table 3 (b). A
surprising result occurred here, as the majority of the
methods were unable to improve on the results of ap-
plying the base regressor directly to the initial data set
without an associated reduction in dimensionality.

5http://www.liaad.up.pt/�ltorgo/Regression/DataSets.
html

ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

202



Table 2: Data sets used in the experiments.
#N: Numerical attributes, #D: Discrete attributes, #I: Instances.

Dataset #N #D #I
abalone 7 1 4177
auto93 16 6 93
auto-horse 17 8 205
auto-mpg 4 3 398
auto-price 15 0 159
bodyfat 14 0 256
breast-tumor 1 8 286
cholesterol 6 7 303
cleveland 6 7 303
cloud 4 2 108
cpu 6 1 209
cpu-small 12 0 8192
delta-ailerons 5 0 7129
echo-months 6 3 130
fishcatch 5 2 158

Dataset #N #D #I
housing 12 1 506
hungarian 6 7 294
lowbwt 2 7 189
machine-cpu 6 0 209
meta 19 2 528
pbc 10 8 418
pharynx 1 10 195
pw-linear 10 0 200
sensory 0 11 576
servo 0 4 167
stock 9 0 950
strike 5 1 625
triazines 60 0 186
veteran 3 4 137
wisconsin 32 0 194

Table 3: Ranking of the methods.
1 2 3 .5d .75d d

WPCA (4.27) SIR (4.33) WPCA (3.80) WPCA (4.30) SNDA (4.80) SNDA (4.70)
SIR (4.53) WPCA (4.47) SIR (5.27) SNDA (4.73) WPCA (4.87) WPCA (5.07)

SNDA (5.37) SNDA (4.90) LSIR (5.27) LDAR (4.97) SIR (4.97) HDAr83 (5.60)
LDAR (5.47) LDAR (5.17) LDAR (5.30) LSIR (5.07) LSIR (5.10) SIR (5.70)

HDAr55 (5.80) HDAr83 (5.57) SNDA (5.40) SIR (5.10) LDAR (5.60) LDAR (5.73)
HDAr83 (5.83) HDAr55 (6.13) HDAr83 (5.60) HDAr83 (6.40) HDAr83 (5.73) LSIR (6.00)

LSIR (6.33) LSIR (6.67) HDAr55 (6.27) PCA (6.47) HDAr55 (6.37) PCA (6.07)
HDAr38 (6.40) HDAr38 (6.67) HDAr38 (6.57) HDAr55 (6.60) PCA (6.57) HDAr55 (6.20)

PHD (7.17) PCA (6.67) PCA (7.03) PHD (7.37) HDAr38 (7.23) HDAr38 (6.37)
PCA (7.37) PHD (7.63) LPHD (7.73) LPHD (7.37) LPHD (7.33) PHD (7.17)

LPHD (7.47) LPHD (7.80) PHD (7.77) HDAr38 (7.63) PHD (7.43) LPHD (7.40)
(a) Ranking for each one of the dimensions under consideration.

3WPCA (20.77) :5d WPCA (22.27) :75d SNDA (23.07) :75d WPCA (23.43)

d SNDA (23.53) ORI (24.00) d WPCA (24.47) :5d SNDA (24.90)

:75d LSIR (25.57) :5d SIR (25.73) :75d SIR (25.97) :5d LDAR (26.13)

:5d LSIR (26.37) d SIR (27.03) 2WPCA (27.40) d LDAR (27.43)

3SIR (27.73) d HDAr83 (27.77) :75d LDAR (28.00) 2SIR (28.33)

3SNDA (28.63) d LSIR (28.70) d PCA (28.77) 3LDAR (28.97)

2SNDA (29.27) 3LSIR (29.60) d HDAr55 (30.30) :75d HDAr83 (30.37)

d HDAr38 (31.07) 3HDAr83 (31.83) 2LDAR (31.90) :5d HDAr83 (32.60)

:75d HDAr55 (32.67) :75d PCA (33.07) :5d PCA (33.63) :5d HDAr55 (33.73)

3HDAr55 (33.77) 2HDAr83 (34.30) d PHD (35.63) 1SIR (35.67)

:75d HDAr38 (36.00) 3HDAr38 (36.17) d LPHD (36.30) :75d PHD (36.47)

2HDAr55 (36.67) 1WPCA (36.87) :75d LPHD (37.13) 1SNDA (37.57)

3PCA (38.47) :5d HDAr38 (38.50) 2LSIR (38.67) :5d LPHD (38.83)

2HDAr38 (39.40) :5d PHD (39.50) 2PCA (39.80) 1LDAR (40.37)

1HDAr55 (43.00) 3PHD (43.30) 1HDAr83 (44.10) 3LPHD (44.67)

1LSIR (46.47) 1HDAr38 (46.63) 2PHD (47.13) 2LPHD (50.07)

1PCA (53.10) 1PHD (53.60) 1LPHD (54.87)
(b) Global ranking.

5 CONCLUSIONS

This article has described some of the classic methods
of obtaining supervised linear projections for regres-
sion problems, together with some new proposals, by
using the common conceptual framework of solving

generalized eigenvalue problems.
After testing the validity of the new proposals on

a pair of artificial data sets with a well known struc-
ture, an experimental study was conducted of all the
methods using 30 data sets. The most surprising con-
clusion of this study was that many of the projection
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methods are unable to improve on the regression re-
sults of the regressor used as the basis for the study; a
weighted nearest neighbour regressor.

SNDA, one of the new methods proposed in the
article, has a performance comparable to WPCA for
low dimensions, and it shown to perform better at
higher dimensions. It is also worth noting that WPCA
performs better than LDAr, which contradicts the re-
sults of (Kwak and Lee, 2010), in which LDAr out-
performed WPCA.

Possible future work could determine whether the
conclusions obtained here might extend to cases in
which other regressors are used, as well as consid-
ering the effect of the parameters of the methods. An-
other interesting line of work would be to use these
methods as inductors of diversity in the algorithms
for building ensemble of regressors. This would be
motivated by the results obtained for Rotation For-
est using PCA (Rodríguez et al., 2006), or Nonlinear
Boosting Projection using NDA (García-Pedrajas and
García-Osorio, 2011). It is tempting to think that the
substitution of PCA and NDA in regression problems
for some of the proposed methods in this article could
improve the results.
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