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Abstract: Motivated by the practical application of protein struetistructure alignment, we have studied the problem of
maximum common subgraph within the framework of parametercomplexity. We investigated the lower
bound for the exact algorithms of the problem. We proved iirikely that there is an algorithm of time
p(n, m) kM for the problem, wher@ is a polynomial functionk is a parameter of map width, andandn
are the numbers of vertices of the two graphs respectivelgohsideration of the upper bound i, m) x k™
based on the brute-force approach, our lower bound resasyisptotically tight. Although the algorithm with
the running timep(n, m) « k™ could not be significantly improved from our lower bound festis still pos-
sible to develop efficient algorithms for the practical apgtion of the protein structure-structure alignment.
We developed an efficient algorithm integrating the colaticg method and parameterized computation for
identifying the maximum common subgraph of two protein e graphs. We have applied the algorithm
to protein structure-structure alignment and conductqeeemental testing of more than 600 protein pairs.
Our parameterized approach shows improvement in struatigement efficiency and will be very useful for
structure comparisons of proteins with large sizes.

1 INTRODUCTION portant function relationship between the proteins and
imply the evolutionary relationship of the proteins.
Protein three-dimensional structure is critical for its Structure comparison and alignment software could
correct function and important roles in the living cell. @IS0 be applied to evaluate the quality of the models
For example, enzymes rely on their active sites ter- of protein tertiary stru_cture predlc'qon (Zhang et al.,
tiary structures to bind to different substrates and lig- 2005), where the predicted theoretical models and the
ands must effectively recognize and bind to their tar- KNown experimental structures are compared.
gets based on structural as well as chemical interac-  There are many structure comparison and align-
tions. There are experimenta| techniques such as X_ment algorithms and software developed in this fleld,
ray Crysta”ography and NMR Spectroscopy for pro_ Wh|Ch are based on Val’iOUS alignment mOde|S, SUCh
tein three-dimensional structure determination, which as backbone atonC{) alignment, secondary struc-
could provide protein structures at the atomic reso- ture elements alignment, sequence-based alignment,
lution. Protein structures in the current RCSB Pro- contact map and Connolly’s molecular surface align-
tein Data Bank (PDB) are typically obtained by X- Mment. Readers are referred to (Xu et al, 2007; Zhang
ray Crysta”ography or NMR spectroscopy and sub- €t al., 2005; Comin et al., 2004; Holm et al., 1993;
mitted by biologists and biochemists from around the Caprara et al., 2002; Lancia et al., 2003; Lemmen et
world. About 90% of the protein structures in the al., 2000). Still it is very challenging to conduct ef-
PDB were determined by X-ray crystallography, and fic_ient protein structure-structure alignment for pro-
10% by NMR. As of Tuesday Mar 15, 2011, there are teins of large sizes.
71794 protein structures stored in PDB. Comparing In this research, we focus on the the structure com-
protein three-dimensional structures will reveal im- parison of two proteins and work on developing of
- more efficient computational approaches and effec-
*The corresponding author: xhuang@astate.edu. tive evaluation for the structure-structure alignment of

174 Ashby C., Wang K., L. Cramer C. and Huang X..
STUDY OF PROTEIN STRUCTURE ALIGNMENT PROBLEM IN PARAMETERIZED COMPUTATION.
DOI: 10.5220/0003769701740181
In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS-2012), pages 174-181
ISBN: 978-989-8425-90-4
Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)



STUDY OF PROTEIN STRUCTURE ALIGNMENT PROBLEM IN PARAMETERIZED COMPUTATION

two proteins. Our computational approach is based onthat unless an unlikely collapse occurs in parameter-
a topological graph comparison model and integratesized complexity theory, the problem is not solvable in
the color coding methods and the idea of parameter-time f (k)n°® for anyfunctionf. Note that this lower
ized computation. We introduce a new evaluation cri- bound is asymptotically tight in the sense that the triv-
teria of core coverage for evaluating structure align- ial algorithm that enumerates all subset&otkrtices
ments based on alignments of secondary structure el-in a given graph to test the existence of a clique of size
ements. Besides the protein structure-structure align-k runs in timeO(n).

ment, many practical applications in bioinformatics
and computational biology could be modeled as the
comparison of graphs. In this paper, we first study the

parameterized complexity of the problemximMum 3 PARAMETERIZED LOWER
COMMON SUBGRAPHof two graphs. This study can BOUND FOR MAXIMUM

be extended to different variants of the problems in COMMON SUBGRAPH
different applications.

We derive the lower bounds for the exact algorithms
for the parameterized versions of theaxiMum

2 PRELIMINARIES OF COMMON SUBGRAPHproblem. We first give the for-
PARAMETERIZED mal parameterized versions of the problem.
COMPLEXITY Definition. TheMCS; problem:

Instance: Source grapt with mvertices, host graph
We first give a brief review on parameterized com- G with nvertices, and a map scheriveof map width
plexity theory and some recent progress on parame-k.
terized intractability. Aparameterized problem @ a Parameterk, s, wherek, 0 < k < n, is the map width
decision problem consisting of instances of the form ands, 0 < s < mis the size of the common subgraph.
(x,k), where the integek > 0 is called theparame- Question: is there a common subgra@h with s
ter. The parameterized proble@is fixed-parameter  vertices of graphsi andG?
tractable (Downey et al., 1999) if it can be solved
in time f(k)|x/°Y), wheref is a recursive function. In the above definition, we use the notion of map
Note that in this paper, we always assume that com-scheme introduced by Song et al. in (Song et al.,
plexity functions are “nice” with both domain and 2006).
range being non-negative integers and the values ofDefinition. A map schemé/ betweerH andG is a
the functions and their inverses can be easily com- binary relationM C V(H) x V(G). The correspond-
puted. Certain NP-hard parameterized problems, suching map set Mv) of a vertexv € V(H) is defined as
asVERTEX COVER, are fixed-parameter tractable, and {u: (vu) € M}. M is said to havenap width kif
hence can be solved practically for small parameter |[M(v)| < k for everyv € V(H). Apparentlyk < n,
values. On the other hand, the inherent computationalwheren = [V(G)|. M is calledwell-formedif for
difficulty for solving many other NP-hard parameter- every (vi,v2) € E(H), there existu; € M(v1) and
ized problems with even small parameter values hasu, € M(v2) such thafus, uy) € E(G).
motivated the theory ofixed-parameter intractabil-
ity (Downey et al., 1999). Theé/-hierarchyl J;-, W|t] The following results on the parameterized com-
has been introduced to characterize the inherent levelplexity of the parameterized problems are known:
of intractability for parameterized problems. Exam- . _
ples of W[1]-hard problems include problems such ® The MC& _pro_blem is solvable with a_brute—force
as CLIQUE and DOMINATING SET. It has become approach in timep(n, m) «k™, wherep is a poly-
commonly accepted that n&[1]-hard problem can nomial function k is the map width, andn and
be solved in timef (k)n°Y for any functionf, i.e., n are the numbers of vertices of the source graph

W([1]  FPT. W[1]-hardness has served as the hypoth-  @nd the host graph respectively .

esis for fixed-parameter intractability. ¢ The general parameterizBtC Sproblem is W[1]-
Note that investigation (Chen et al, 2006) has de- hard (Huang, 2006). For the general parameter-

rived stronger computational lower bounds for well- ized MCSproblem, there is no parameterized al-

known NP-hard parameterized problems. For exam-  gorithms of running timef (s) * (maxn,m)°(®))

ple, for thecLIQUE problem, which asks if a given for any functionf, unless there is an unlikely col-

graph ofn vertices has a clique of side it is proved lapse in parameterized complexity (Huang, 2006).
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We prove the following lower bound result for the
parameterizeICS problem.

Theorem 3.1. The MCg problem has no algorithm
of ime gn,m) «k°™ where p is a polynomial func-

Through a close study of the reduction, we can see
that this reduction is a linear fpt-reduction (Chen et al,
2006). Therefore, iIMCS 1, is subexponential-time
solvable, then 3SAT is subexponential-time solvable,

tion, k is the map width, and m and n are the numbers which indicates that ETH (exponential time hypothe-

of vertices of the source graph and the host graph re-

sis) fails. O

spectively, unless the ETH (exponential time hypothe-| emma 3.3. The 3SAT problem witH mariables and

sis) fails (i.e., all SNP problems are solvable in subex-

ponential time).

Note that the class SNP introduced by Papadim-

itriou and Yannakakis (Papadimitriou et al., 1991)
contains many well-known NP-hard problems in-
cluding, for any fixed integerq > 3, CNF Q-
SAT, g-COLORABILITY, -SET COVER andVERTEX
COVER, CLIQUE, andINDEPENDENT SET(Impagli-
azzo et al.,, 2001). It is commonly believed that
it is unlikely that all problems in SNP are solvable

n clauses can be solved in timg23(™)) if and only
if it can be solved in time @°(")),

Lemma 3.4. The 3SAT problem with mariables and
n clauses could not be solved in tim¢29™)) unless
the ETH fails (i.e., all SNP problems are solvable in
subexponential time).

By combining the above Lemma 3.2, Lemma 3.3
and Lemma 3.4, the Theorem 3.1 is proved. This
theorem shows that the algorithm for €S prob-

in subexponential time. A recent result showed the lem with running timep(n, m) «k™ based on the brute
equivalence between the statement that all SNP prob-force approach could not be significantly improved,
lems are solvable in subexponential time, and the col- wherep is a polynomial functionk is the map width,

lapse of a parameterized class calMuhi[1] to FPT
(Downey et al., 2003).

In order to prove the theorem, we will prove the
following lemma first.

Lemma 3.2. The MCg& problem has no algorithm of
time g(n,m) «k°™  where p is a polynomial function,

k is the map width, and m and n are the numbers of
vertices of the source graph and the host graph re-

spectively, unless the 3SAT problem witlvariables
and m clauses can be solved in timgZ(™)),

Proof. We prove the lemma through a reduction from
3SAT to theMCS; problem. This reduction is adapted
from the polynomial time reduction in (Song et al.,
2006). Given a Boolean formutain the conjunctive
normal form

o=(1VIZVI) AZVIEVIHA..AIT VIS VIS
we construct two graphsly, Gy and map schemé,,
as follows:H,, containnt verticesys, ..., Vyy, forming
a clique. Gy contains 81 vertices, one for every lit-
eral occurrence in formul@in which two verticess?
andu corresponding téf andl® form an edge i # t
andl?, I‘j are not complementary literals. The map
schemeMy, is defined adly = U, u5, U, r =1,...,m.

It is not difficult to verify that formulag is satisfi-
able if and only if there is a cliqgue subgraph Gy
which is isomorphic toHy and the isomorphism is
constrained by map schen, with the map width

k = 3. This reduction can be done in tinpén/, n7).
Therefore, if theMCS problem has an algorithm of
time p(n',m) « k(M) then the 3SAT problem with
n variables and clauses can be solved in time
0(2°M)). The Theorem is proved.
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andm andn are the numbers of vertices of the source
graph-and the host graph respectively. In considera-
tion of the upper bound gb(n,m) « k™ for the prob-
lem, we point out that the lower bound results for the
problem presented here is asymptotically tight.

4 EFFICIENT ALGORITHM FOR
PROTEIN STRUCTURE
ALIGNMENT

In the previous section, we have proved the asymptot-
ically tight lower bound result for th®1CS problem.
Although the algorithm with running tim@(n, m)

k™ based on the brute force approach could not be sig-
nificantly improved, it is still possible to develop ef-
ficient algorithms for practical emerging applications.
Here we develop an efficient algorithm integrating the
color coding method (Alon et al., 2002) and the idea
of parameterized computation (Downey et al., 1999)
for the problem oivAXIMUM COMMON SUBGRAPH

with applications in protein structure-structure align-
ment.

4.1 Protein Structure Graphs

There are three levels of protein structures: primary
sequence, secondary structure and tertiary structure.
We use two proteins with PDB codes 1llda (chain A
of allosteric L-lactate dehydrogenase fr@&ifidobac-
terium longumand 6ldh (M4 apo-lactate dehydroge-
nase from the spiny dogfisBgualus acanthiysfrom

the Lindahl benchmark data set (Lindahl et al., 2000)
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as examples in our study. The protein data bank web-

site (http://www.pdb.org/pdb/) provides the informa-
tion of the three levels of the two proteins.

We build mixed structure graphs for the proteins
using the PDB files supplemented with additional data
generated by DSSP (Kabsch et al., 1993). Directed

graphs and then, based on the identified common sub-
graphs, build the structure alignment of the two pro-
teins.

The following is a brief description of our MCS
algorithm based on color coding and parameterized
computation for finding the common subgraphs of the

and undirected edges and two types of vertices of thetwo protein structure graphs.

mixed structure graph are constructed as follows.

e Convert all regions that contain more than four
amino acids that form a secondary structure (an
alpha helix or beta sheet) into a vertex in the graph
that does not include the first and last amino acid
from the region. These are referred to as core re-
gions.

they appear sequentially in the protein.

Build undirected edges between core regions that
are within seven Angstroms of each other.

The construction of the mixed structure graphs are
similar to the protein structure graphs in (Song et al.,
2006). The difference is that for our graph model we
distinguish between the different types of core regions
using two different types of vertices in the graph. Re-
fer to the structure graphs in Figures 1 and 2 for pro-
teins 1lida and 6ldh.

Figure 1: Structure graph for 1llda. Alpha helix regions are

represented by circles and beta sheet cores are represented

by squares. (The maximum common subgraph is illustrated
in red).

Build directed edges between the core regions as 3

1. Preprocess the two structure graghandH us-
ing known secondary structure information. For
each vertew of G, it can align withk vertices of
H, wherek is the statistical cutoff.

2. Compare the size @ andH, choose the smaller
one as graplg, the bigger one as the graphLet

s be the size of the vertex set 8f

With the color coding method, we get a valid col-
oring of sizes of the vertices oB. Each valid
coloring of s vertices makes a subgraghof the
graphB. We compares; andSto see if they are
isomorphic to each other.

We output all these subgraphs to the pool and go
to step 5. If we cannot find a subgraph of size
that is isomorphic t&, go to step 4.

Decrease the value sfby 1. Then we get dif-
ferent subgraphs of sizefrom S with the color
coding method. Then for every subgraph, go to
step 3.

. Use the score scheme in (Xu et al., 2006) to evalu-
ate the subgraphs in the pool. Output the common
subgraph with the best score in the pool.

4,

6. Iteratively find the common subgraphs of the re-

maining parts of the two structure graphs.

When we align two structure grapksandH, we
need a mapping from the vertex setrofertices of
the graphG to the vertex set of vertices of the graph
H. The idea is to randomly pickvertices from both
vertex sets oG andH with the color coding method.
Then we compare the two corresponding subgraphs
of sizesto see if they are isomorphic to each other.

Figure 2: Structure graph for 6ldh. Alpha helix regions are gjnce in the structure graph there is a directed path to

represented by circles and beta sheet cores are represent
by squares. (The maximum common subgraph is illustrated
in red).

4.2 Structure Alignment based on
Maximum Common Subgraph

After we build the two mixed structure graphs to rep-
resent two protein structures, we design efficient al-
gorithms which incorporate the color coding method
(Alon et al., 2002) and parameterized computation
(Downey et al., 1999). We use an iterative approach
to find the common subgraphs of the two structure

efhdicate the linear order of the vertices, it is easy to

compare the directed edges. For the structure com-
parison of the two subgraphs, we need to make sure
the corresponding undirected edges match.

There are two important ideas in the color-coding
method that we have applied: random orientations
and random colorings. An easy way of achieving ran-
dom orientations is by choosing a random acyclic ori-
entation of the grap®. We can obtain it by choosing
a random permutationt the vertex se¥ — 1,...,|V|
and directing an edgéu,v) € E from u to v if and
only if T(u) < 1(v). Random colorings is to choose
a random coloring of the vertices &f with s colors.
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>Alignment of 11llda-dll1lda2.4_92_ 1 1 A struct.txt and 61ldh-dlldm 2.4_92 1 1 struct.txt

Structurel: ---TNLDSARLRFLIAQQTGVNVKNVHAYIAGEHGDSEVPLWESATIGGVPMSDWTPLPGHDPLDADKREEIHQEVKNA
Structure2: GSGCNLDSARFRYLMGERLGVHSCSCHGWVIGEHGDSVPSVWSGMNVASIKL---HPLDGTNK-DKQDWKKLHKDVVDS

Structurel: AYKIINGKGATNYAIGMSGVDIIEAVLHDTNRILPVSSMLKDFHGISDIC-MSVPTLLNRQGVNNTINTPVSDKELAAL
Structure2: AYEVIKLKGYTSWAIGLSVADLAETIMKNLCRVHPVSTMVKDFYGIKDNVFLSLPCVLNDHGISNIVKMKLKPNEEQQL

Structurel: KRSAETLKETAAQFGF-
Structure2: QKSATTLWDI--QKDLK

Figure 3: Two dimensional alignment of two protein struetuillda and 6ldh.

A path inG is said to be colorful if each vertex on it
is colored by a distinct color. A colorful path @ is
clearly simple.

For the de-randomized process, we need a list of
colorings of the vertex s&t such that for every subset
V' CV, where|V'| = s, there exists a coloring in the
list that gives each vertex i’ a distinct color. In
other words, it is a map from the vertex détof n
vertices to the_subgraph vertex setsofertices. We . Figure 4: Structure alignment of 6ldh (green) and 1llida
keep the colorings that are colorful and also there is (pjue), with a core coverage of 71.43%.

a set of color number (from 1 tg) in the increasing
order. In this way we can make sure the orientation of mark data set(Lindahl et al., 2000). Please refer to

all the directed edges are right. Figure 5 for core coverage distributions, Figure 6 for
running time distribution (of proteins with the num-

4.3 Experimental Testing for Protein ber of cores larger than 5) and Figure 7 for RMSD
Structure-Structure Alignment distribution of structure alignments for 631 protein

pairs. Figure 5 and Table 1 shows that our approach
achieves a high rate of core coverage. From Figure 6

We first illustrate our approach through the structural . . R .
irst [Hus urapp U9 structu of the running time distribution of the protein struc-

alignment of the two proteins 1llda and 6ldh. Figure

3 and 4 shows the maximum common subgraph of the}g;e tﬁ“gmgegé‘:’] ozgr?;;ngevggh 2lf(f)errentars;rglétt-:‘enrc_:ee q
two structure graphs. gins, w S use our p iz

Each pair of matched core$1,1}, {2,2}, {3,3}, approach is based on core alignments, the running

(4.4}, {6,5}, {7,9}) are aligned against each other time does not increase significantly when the protein
via pairwise alignment. The regions around them are S€duence lengths increase. This indicates that our
also aligned by pairwise alignment, keeping sequen- approach is very e_ff|C|er_1t and suitable for structL_lraI
tial flow of the two proteins in mind. These align- alignment of proteins with large numbers of amino
ments are combined into one alignment that repre- acids.

. . We compare the running time of our approach
?Eigtjr: S;)r“‘:t“ra' alignment between the two proteins .. ca st (zhy et al., 2005), which is based on pair-

This structural alignment was used as input into wise backbone aton) alignment, and MUSTANG

a MODELLER (Fiser et al., 2003) script to super- (Konagurthu et al., 2006), at a pairwise alignment

position 6ldh onto 1llda. The resulting models were level. Refer to Table_ 2 f(_)r th_e running time compari-

then visualized using PyMOL (Delano, 2002) (refer son of 10 protein pairs with different sequence Iengths

to Figure 4). Given two proteins pl, and pal and different numbers of cores. From the experimen-
. ) C

is the number of cores in pIp2. is the number of tal testm_g We can see that our MCS-based approach
cores in p2 andVCS, is the size of the common has achieved a similar eff|(_:|ency level over the other
subgraph, the core coverage is a percentage deﬁne@pproaches. Compared with FAST and MUSTANG,

by: MCS,/min(pLe, p2). The structure alignment of our approach has an improvement in efficiency for
6ldh and 1lida haga cfo.re coverage of 71.43% structure alignments of protein pairs with large num-

We test our structure alignment approach through bers of amino acids.
conducting protein structure-structure alignments of
more than 600 pairs of proteins of the Lindahl bench-
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Figure 5: Core coverage distribution of structure aligntadar 631 protein pairs from the Lindahl data set, with theeco
coverage results represented in 10% increments. Of ther68dippairs, for example, there are 182 pairs with a corecme
of 60-70%, 80 pairs with a core coverage of 80-90%, and 4 pattsa 100% core coverage.

Time (seconds)

| Lt
J‘ |N\H‘.‘| L M \‘ \HM\ MR Mh“

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Protein pairs (ordered by sequence length of protein 1)

Figure 6: Running time distribution of structure alignneefar proteins with the number of cores larger than 5, 551gimot
pairs from the Lindahl data set. Testing is conducted on & $zsler: PowerEdge 2950; Quad Core Intel Xeon X5460,
2x6MB Cache, 3.16GHz, 1333MHz FSB; 32GB 667MHz (8x4GB), R@nked DIMMs.

5 SUMMARY map width of the source grapt with m vertices and
the host graplt with n vertices. In consideration of
For protein structure alignment of two proteins, we the upper bound op(n, m) « k™ for the problem, we
applied a graph comparison model to identify the pointout that the lower bound results for the problem
maximum common subgraph of two protein struc- presented here is asymptotically tight.
ture graphs. We first studied the parameterized com-  We then developed efficient algorithms integrat-
plexity of themAXIMUM COMMON SUBGRAPH prob- ing the color coding method and parameterized com-
lem. Computational lower bounds for the parameter- putation for protein structure alignment. Testing in
ized versions of the problem were investigated. We alignment efficiency and accuracy of our algorithms
proved it is unlikely that there is an algorithm of time are conducted using large benchmark testing data sets.
p(n,m) x kM for the problemMCS;, wherek is the Our parameterized approach shows improvement in
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Protein pairs (ordered by sequence length of protein 1)

Figure 7: RMSD distribution of structure alignments for G8btein pairs from the Lindahl data set.

Table 1: Core coverage testing results of structure alignsnef ten protein pairs from the Lindahl data set.
| Protein 1 (P1)] Protein 2 (P2)[ Length of P1] Length of P2] Coresin P1] Cores in P2] Core Coveragd

lakl lospo 224 251 4 24 100.00%
1dud lduta 136 117 5 4 75.00%
1fcdc 1ldvh 80 79 5 4 75.00%
llida 6ldh 170 169 7 10 71.43%
1mai 1pls 119 113 7 7 57.14%
1lphe loxa 405 403 16 19 43.75%
1tib 3tgl 269 265 13 16 46.15%
2bnh Imiob 456 457 19 23 42.11%
3gsta 1glga 133 131 10 9 55.56%
5sgae 1p03a 181 198 9 11 55.56%

Table 2: Comparison of the running time of our MCS approadh thiose of FAST and MUSTANG on ten protein pairs from
the Lindahl data set. (Time unit: second. Testing was catedugn a 15-inch MacBook Pro with the following configuration
8GB 667MHz DDR2 SDRAM, 2.5GHz Intel Core 2 Duo).

[ Protein 1 (P1)] Protein 2 (P2)] Length of P1] Length of P2] Time (MCS) | Time (FAST) [ Time (MUSTANG) |

lakl lospo 224 251 0.014 0.560 3.433
1dud lduta 136 117 0.053 0.213 0.607
1fcdc 1ldvh 80 79 0.083 0.095 0.187
1lida 6ldh 170 169 0.225 0.308 0.902
Imai 1pls 119 113 0.493 0.142 0.436
1phe loxa 405 403 0.866 1.974 6.257
1tib 3tgl 269 265 0.810 0.875 1.914
2bnh 1miob 456 457 1.104 1.538 11.000
3gsta 1glga 133 131 0.848 0.193 0.861
5sgae 1p03a 181 198 1.099 0.423 1.153

efficiency when applied to the structure alignments of ACKNOWLEDGEMENTS

protein pairs with large sizes. For further work we

will refine the core region alignment of the protein This research is partially supported by NIH Grant #
structure graphs to improve the performance of our P20 RR-16460 from the IDeA Networks of Biomedi-
approach and design sophisticated scoring schemegal Research Excellence (INBRE) Program of the Na-
based on core coverage to evaluate the common subtional Center for Research Resources.

graphs of two protein structure graphs.
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