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Abstract: Identification of voice pathologies using only the voice signal has a great advantage over the conventional 
methods, such as laryngoscopy, since they enable a non-invasive diagnosis. The first studies in this area 
were based on the analysis of sustained vowel sounds. More recently, there are studies that extend the 
analysis to continuous speech, achieving similar or better results. All these studies use of a pitch detector 
algorithm to select only the voiced parts of the acoustic signal. However, the existence of a pathology 
affecting the speaker’s vocal folds produces a more irregular vibration pattern and, consequently, a 
degradation of the voice quality with less voiced segments. Thus, by selecting only clear voiced segments 
for the classifier, useful pathological information may be disregarded. In this study we propose a new 
approach that enables the classification of voice pathology by also analyzing the unvoiced information of 
continuous speech. The signal frames are divided in turbulent/non-turbulent, instead of voice/non-voiced. 
The results show that useful information is indeed present in turbulent or near unvoiced segments. A 
comparison with systems that use the entire signal or only the non-turbulent frames shows that the unvoiced 
or highly turbulent speech segments contain useful pathological information. 

1 INTRODUCTION 

A significant part of the worldwide population 
depends on their voice as a work tool. Teachers, 
reporters, lawyers, phone assistants and professional 
singers are just some examples. Especially to this 
restricted group, voice problems have a considerably 
negative impact, interfering with their professional 
careers and their quality of life. To avoid such 
problems, they require frequent medical care by an 
otolaryngologist or other voice healthcare 
professional. The combination of knowledge in the 
area of signal processing and speech recognition has 
enabled the design of algorithms and systems capable 
of classifying and identifying speech pathologies for 
diagnostic purposes. These systems have a great 
advantage over the conventional methods, such as 
laryngoscopy, since they are non-invasive. 

The first studies in this area were based on the 
analysis of sustained vowels. The advantages of the 
analysis of this type of signal are: (i) they have a 
long duration; (ii) they do not include dynamic 
aspects of continuous speech, such as onset and 
offset effects, coarticulation, intonation, non-

linguistic events (aspiration and respiration), etc.; 
(iii) various acoustic measures have been shown to 
produce good normal/pathological discrimination 
results, when applied to these signals. 

Among the acoustic measures, the most widely 
used are jitter (changes in pitch period with time) 
and shimmer (changes in amplitude with time) 
(Deliyski, 1993), harmonic-to-noise ratio (HNR) 
(Krom, 1993), cepstral peak prominence (CPP) 
(Hillenbrand, 1996), glottal to noise excitation ratio 
(GNE) (Michaelis, 1997), normalized noise energy 
(NNE) (Kasuya, 1986), soft phonation index (SPI) 
(Deliyski, 1993), and voice turbulence index (VTI) 
(Mitev, 2000). Over the years, several systems 
combining various acoustic measures and different 
classifiers have been designed. More recently, those 
systems have reached classification accuracy rates of 
90% or above. At the same time, the 
normal/pathological discrimination according to the 
analysis of continuous speech has gained more 
attention. In (Klingholtz, 1990) the author defended 
that the long duration observed in sustained vowels 
was more characteristic of singing than speech. 
Another justification, accepted by various authors, 
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was that sustained vowels do not include dynamic 
aspects of continuous speech which could contain 
important information that influences the perceptual 
judgments of voice quality (de Krom, 1995). The 
fact that human beings communicate using 
continuous speech instead of sustained vowels, was 
another point of view addressed by (Klingholtz, 
1990). These arguments opened a new area of 
investigation, resulting in an increase of the number 
of studies published relating to the discrimination of 
acoustic signals through the analysis of continuous 
speech. All the reported works have one 
characteristic in common – the selection of only 
voiced segments for the classifiers. This is justified 
by the fact that the conventional acoustic measures 
rely on the analysis of sustained vowels and, 
consequently, are meaningful only for voiced 
speech. However, continuous speech is a mixture of 
voiced, unvoiced and regions of silence. This 
implies that a similar analysis performed on 
continuous speech involves the selection of voiced 
parts of speech and, consequently, the elimination of 
unvoiced and silent regions.  

For normal speakers, this kind of voice detection 
algorithms performs well in selecting voiced frames. 
However, for speakers with a voice pathology that 
affects the normal functioning of the glottis, the 
algorithms tend to disregard weak voiced segments. 
In fact, in many voice pathologies there is an 
increase of the exhaling force, which, consequently, 
increases the existence of turbulent noise in the 
speakers’ speech. This, allied to a more irregular 
vibration pattern, makes the quality of vowels not 
quite as good as the ones in normal speakers. Thus, 
by selecting only the clearly voiced speech 
segments, important pathological information that 
may appear in weak voiced parts is disregarded. To 
our knowledge, no one has ever tried to discriminate 
normal from pathological speech signals using 
continuous speech and, at the same time, using 
unvoiced segments. In an attempt to fill this gap, the 
aim of the present study is to provide a new point of 
view concerning the discrimination of acoustic 
signals using voiced and unvoiced parts. To obtain 
these unvoiced regions a segmentation algorithm 
based on an acoustic measure called turbulent noise 
index (TNI) (Mitev, 2000) is proposed. The 
classifier is a multilayer perceptron neural network, 
which uses temporal delays in its inputs. 

Almost all the acoustic signals used in the studies 
referred to in this paper were selected from the 
Disordered Voice Database (DVD, 1994), which is 
also the one used in this work (described in Section 
2). The rest of this paper is structured as follows. In 

Section 3 a brief description of the methodology used, 
namely, the selection of the turbulent and non-
turbulent speech segments and the training process of 
the classifiers is provided. In Section 4 the 
performance results are presented and discussed in 
light of the task described. Finally, in Section 5 the 
main conclusions of this paper are drawn. 

2 MATERIALS 

The corpus was selected from the Disordered Voice 
Database recorded at the Massachusetts Eye and Ear 
Infirmary (MEEI) Voice and Speech Lab and also at 
Kay Elemetrics Corp. (DVD, 1994) (referred to as 
KayPentax database from now on). This database 
contains recordings of about 660 patients with a 
wide variety of voice disorders, referred to as 
pathological speakers, as well as 53 speakers 
without any voice pathologies, referred to as normal 
speakers. It includes, for almost all the speakers, one 
sustained phonation of the vowel /a/ and one reading 
of the text “The Rainbow Passage”. Also included in 
the database is the diagnostic information along with 
the patient identification (age, sex, smoking status 
and more). All the speech samples were collected in 
a controlled environment with 16 bit sample 
resolution and sampling rates of 10 kHz, 25 kHz or 
50 kHz. This database has been widely used by 
researchers. 

From this database 650 signals were selected and 
divided into training (70%) and test (30%) datasets. 
This division was done randomly and the process 
was repeated three more times in order to perform a 
4-fold cross-validation statistical analysis. Table 1 
shows the distribution of normal and pathological 
files in the training and test datasets. 

Table 1: Composition of the training and test datasets.  

 Pathological Normal 
Train (no. of signals 

/ total time) 430 / 1:26:00 25 / 0:05:00 

Test (no. of signals / 
total time) 184 / 0:36:48 11 / 0:02:12 

3 METHODS 

Here, a brief description of the pre-processing 
applied to the speech data is given in order to obtain 
the feature representation. This is followed by the 
description of the two algorithms required for 
retrieval of the unvoiced information: the 
speech/non-speech (S/NS) detector, and the 
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voiced/unvoiced (V/UV) detector. Finally, the last 
section describes a classifier based on a multilayer 
perceptron network. 

3.1 Short-time Analysis 

The short-time analysis consists on dividing the 
input signal into a sequence of frames by applying a 
40ms Hamming window at a frame rate of 100 
frames/s. The Discrete Fourier Transform (DFT) is 
then applied with a number of points equal to the 
lowest power of two bigger than the window length. 
Finally, 26 features are computed for each frame: 12 
cepstral coefficients, plus the logarithm of the frame 
energy, plus the first derivatives of the previous 13 
coefficients (26 coefficients in total). This task is 
accomplished using a filter with 20 channels in the 
Mel frequency domain. A mean normalization on 
the first 12 coefficients, over the entire sentence, 
was also performed with the purpose of reducing the 
variability related to the microphone used or other 
spectral information that is invariant in time. This 
kind of coefficients are called mel-frequency 
cepstral coefficients (MFCCs) and are a widely used 
in speech recognition as well as in studies that apply 
signal processing for medical purposes. There are 
also various acoustic parameters that use the 
information of specific frequency bands to extract 
pathological information from acoustic signals, such 
as SPI and VTI (Deliyski, 1993). Therefore, the 
MFCCs seemed to be the appropriate choice to use 
as the input features of a neural network. 

3.2 Speech/ Non-speech Segmentation 

It is obvious that the non-speech segments do not 
contain any useful information that can be extracted 
to discriminate normal from pathological voices, and 
hence they should be removed. This is done with an 
algorithm that classifies each frame into speech or 
non-speech. In the present case the non-speech 
events correspond to silence or small energy 
segments in each sentence. Therefore, the frames are 
classified as speech or non-speech (silence) in 
accordance with their own logarithmic energy (the 
13th coefficient of the features vector) and a 
decision threshold. 

3.3 Turbulence Segmentation 

After having selected only the speech frames, it is  
necessary to classify them into turbulent or non-
turbulent. To provide this classification we used an 
algorithm based on a different implementation of the 
turbulent noise index (TNI) reported in (Mitev, 

2000). In the scope of this work, the aim of the TNI 
parameter was to segment the frames according to 
the degree of turbulence, not exactly into voiced and 
unvoiced. However, these two approaches are 
almost equivalent. 

Firstly, we evaluate the cross-correlation factor 
of an N samples frame, x[n] = xa[n], with the next 
neighbour samples, x[n+N] = xb[n], using the 
following expression, where N corresponds to 20ms, 
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for 1,..., 1k N N= − + − . Then the maximum peak 
value of this correlation factor is chosen over the 
computed indexes, 
 [ ]{ }maxx xk

kρ ρ∗ = . (2) 

Finally, a value of turbulence is computed for every 
frame according to ∗−= xTNI ρ1 . 

This measure is also very similar to a harmonic-
to-noise ratio in a linear scale (Boersma, 1993). In 
fact, for a perfectly periodic signal with period less 
than N samples, ρx[k] will have a maximum peak of 
one. For a pure noise signal ρx[k] will peak to a 
small value, and for a periodic signal embedded in 
noise with 0 dB SNR (signal power equal to noise 
power) ρx[k] tend to peak at 0.5. In case of speech 
signals, the peaks of ρx[k] tend to be greater than 0.5 
for voiced segments and lesser for unvoiced ones. In 
our case N corresponds to 20 ms and then any 
periodic segments above 50 Hz manifests in peaks in 
the cross-correlation function. So, this procedure 
avoids the pitch determination and the detection of 
voiced and unvoiced segments. A maximum peak of 
the correlation factor is an indication of periodicity 
and a lower peak is an indication of high noise. The 
given name (TNI) comes from the similarity of this 
measure with the one proposed in (Mitev, 2000). 

For fricative sounds or even for vowels (in the 
case of glottal excitation with pronounced 
turbulence – breathy phonation), TNI tends to be 
high. On the other hand, it tends to be low for voiced 
segments with low turbulent noise, as in normal 
phonation. Fricative sounds are not an indicator of 
vocal fold pathology; however, as pathological 
speakers tend to increase the exhaling force in 
phonation, the intensity ratio of fricative sounds to 
non-fricative ones may also be important to 
pathological detection. 

There are three main differences between this 
implementation and the original turbulence  
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formulation. Firstly, a value of TNI was 
computed for all frames, independently of the frame 
type, whereas in (Mitev, 2000) they only obtain TNI 
values for voiced frames. The second difference is 
directly related to the first one. As TNI value was 
obtained for all frames, not all of them contained 
periodic signals as glottal cycles. This means that the 
cross-correlation between two different frames (one 
voiced and another unvoiced or vice versa) or 
between two unvoiced frames should result in a low 
value and, consequently, a high TNI value.  

 
Figure 1: Overlap of the TNI signal on the power spectral 
density for the speech signal “RHG1NRL.NSP” (non-
pathological speaker). The horizontal line represents the 
threshold used in the turbulence-based decision. 

Finally, as high TNI values (in vowels) can be an 
indicator of vocal fold pathology, selecting these 
frames to detect pathological voices seems to be 
more important than using only low TNI ones. This 
can be done by specifying a fixed threshold on TNI, 
as shown in Figure 1 and Figure 2. All frames with a 
TNI value above 0.5 (this value was experimentally 
adjusted) are classified as turbulent frames and all 
the others are discarded (or taken to another 
classifier which uses low turbulent frames). 

Figure 1 and Figure 2 contain spectral and TNI 
information corresponding to the same excerpts of 
the text “The Rainbow Passage” – “When the 
sunlight strikes raindrops in the air…”. Although 
Figure 1 presents part of an acoustic signal from a 
non-pathological male speaker (DVD, 1994), Figure 
2 shows the correspondent part of an acoustic signal 
from a pathological female speaker. As can be seen, 
the fricative sounds (such as /s/), which are 
characterized by high energy at higher frequencies, 
have low cross-correlation values and, 
correspondingly, high TNI values. The voiced 
frames, characterized by visible spectral strips, have 
higher cross-correlation values, which correspond to 
lower TNI values. When comparing the two graphs 
it is possible to verify that the fricative sounds in 

Figure 2 are considerably more stressed than the 
corresponding ones in Figure 1. It is also visible that 
some of the voiced parts in Figure 1, characterized 
by well-defined formants, are not so well 
represented in Figure 2. As an example, in Figure 1 
almost all the frames between the 57th and 65th 
were classified as non-turbulent (TNI values below 
0.5), while in Figure 2, the same frames were 
considered as turbulent (TNI values above 0.5). 

 
Figure 2: Overlap of the TNI signal on the power spectral 
density for the speech signal “LXC06R.NSP” 
(pathological speaker). The horizontal line represents the 
threshold used in the turbulence-based decision. 

3.4 Classifiers 

Since the class information corresponding to each 
signal file is available, a supervised learning 
classifier, such as a multilayer perceptron (MLP) 
neural network, is suitable system. Three MLPs 
were trained with the training datasets: one with all 
the information (non-turbulent and turbulent 
frames); another one with only non-turbulent 
information; and the last one using solely turbulent 
information. Each MLP was composed of three 
layers. Each input consisted of (2Nf + 1) × Np values, 
where Nf is the number of context frames (for each 
frame we considered the influence of the Nf 
preceding frames and the influence of the Nf 
subsequent frames) and Np is the number of 
coefficients included in each feature vector (26 
coefficients). In the hidden layer 100 hidden neurons 
were used. In addition, and due to the reduced 
number of frames of the MLP trained with turbulent 
information, tests using MLPs with only 25 hidden 
neurons were also made. In all cases, each MLP 
provided one output. The transfer function for all 
units is the sigmoid. The MLPs were initialized 
randomly and the training was performed using the 
resilient backpropagation algorithm (RPROP). 
During training, the weights and biases of the network 
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were iteratively adjusted according to the default 
performance function – mean square error (MSE). 

4 RESULTS AND DISCUSSION 

The objective of this work is to distinguish between 
normal and pathological voices, so two classes must 
be used. In our case “0” represents the “normal” 
class and “1” represents the “pathological” class. 
Since there are only two possible decisions, a 
statistical hypothesis test can be used. In this 
context, the hypothesis H0, or null hypothesis, 
indicates that an acoustic sample is pathological and 
the hypothesis H1, also referred to as the alternative 
hypothesis, means that it is normal. Accepting H0 is 
equivalent to rejecting H1 and vice versa. When 
classifying a sample s, four situations can occur: i)  
we make a correct acceptance (CA); ii) we reject the 
true hypothesis, which is called wrong rejection 
(WR); iii) we make a correct rejection (CR); and iv) 
we accept a false hypothesis, which is called wrong 
acceptance (WA) also known as false alarm (FA). 

The objective of a neural network classifier is to 
learn how to characterize each output according to 
the information available on the input. In this case, 
this means that the classifier should be able to 
capture the essence of the “normal” and 
“pathological” classes and produce a corresponding 
output. Varying the threshold value τ, from its 
minimum up to its maximum, corresponds to 
varying the realizations of the four hypotheses (CA, 
WR, CR and WA) and therefore their probabilities: 
P(CA|τ), P(FR|τ), P(CR|τ) and P(FA|τ). The 
realizations of these quantities are achieved as 
follows. Given an acoustic signal, the classifier 
returns an output for each one of its frames. The 
arithmetic mean of the logit values (log(p(1-p)) of 
those frames represents a single value, usually called 
a score, that characterizes the acoustic signal and 
which can be directly compared to the threshold. If 
the score is greater than the threshold, then the 
acoustic signal is classified as “pathological”.  

The optimum threshold value, often referred to 
as optimum operation point (OOP), is found 
somewhere near where both curves of the histogram 
intersect. Another way to find the OOP is to use a 
receiver operating characteristic (ROC) curve or a 
detection error trade-off (DET) curve (Martin, et al., 
1997). The most widely used OOP consists in 
finding the point where WR equals WA and is called 
the equal error rate (EER) point. Another way to 
define a OOP is to find the point which minimizes 
the distance to the origin of the axes in the DET 

curve – using the Euclidean distance. All OOPs were 
defined in this work using the criterion based on the 
Euclidean distance. The results obtained for all 
classifiers and for the 4-fold datasets are shown in 
Table 2. The figures given represent the sum of all 
values (CA, CR, WA, WR) of the four test datasets 
specified. The percentage value in the table is 
Accuracy which is defined as 100 × (CA+CR)/ 
(CA+CR+WA+WR). 

Table 2: Classifiers’ performance in terms of CA, CR, FA, 
FR and accuracy. 

Predicted Predicted Total

All Frames 
Pathol. 734 2 736 
Normal 2 42 44 

Total 736 44 99.5%

Non-
turbulent 
Frames 

Pathol. 733 3 736 
Normal 3 41 44 

Total 736 44 99.2%

Turbulent 
Frames 

Pathol. 736 0 736 
Normal 0 44 44 

Total 736 44 100%

4.1 Discussion 

As shown in Table 2, the worst results were obtained 
for the classifier with non-turbulent frames as inputs. 
Even in this case, an accuracy of 99.2 ± 0.8% was 
achieved, which is 3% better than the results 
obtained with the voiced frames based classifier 
proposed in (Godino-Llorente, et al.,2009). This 
difference can be explained by the context included 
in the inputs of the MLPs. Instead of considering 
each input as an isolated frame, we use a set of 11 
frames each time (5 before, 5 after and the actual 
frame). So, the neural network classifiers have more 
data to learn from. Another point that can justify the 
results obtained is the relation between the selection 
of frames and the computation of the first 
derivatives of the MFCCs. Since we only select the 
frames for the different classifiers after the 
computation of the deltas, each frame includes the 
influence of its adjacent frames, independently of 
the frame type. This means, for example, that the 
deltas of a turbulent frame may have been calculated 
with the MFCCs of adjacent non-turbulent frames. 
More impressive are the results obtained with the 
turbulent frame classifier. In all the 4 tests made 
with this classifier, a 100% correct classification was 
obtained. These results are better than the ones 
obtained for the other two classifiers (which are 
similar: 99.5 ± 0.9%, for the classifier with all 
frames and 99.2 + 0.8%, for the classifier with non-
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turbulent frames). Since the algorithm for choosing 
frames is based on a TNI implementation and not on 
pitch, the frames selected as turbulent contain 
important information about the “normality” or the 
“pathology” of the speaker. While in the “normal” 
cases these frames correspond mostly to fricative 
sounds and other unvoiced consonants, in the case of 
the pathological speakers the frames also include 
vowels with low quality or even whispered (which 
does not happen in the case of the classifier with 
non-turbulent frames). The classifier with turbulent 
frames thus has more relevant data to characterize 
and distinguish between both classes and for this 
reason it can perform better than the others. 

Some tests were also performed in order to 
evaluate the influence of the number of context 
frames and the number of hidden neurons on the 
classifiers’ performance. As expected, the results 
proved that the classifiers’ performance decreased as 
the number of context frames decreased and/or the 
number of hidden neurons also decreased. In 
addition to the tests described, some others using 
similar MLPs neural networks but with two outputs 
instead of one were also performed. The results 
obtained were the same as the ones stated before, 
which confirms the choice to train classifiers with 
only one output. 

The results presented this section demonstrate 
that the combination of continuous speech along 
with turbulent information produces excellent 
normal/pathological discrimination results when 
using the KayPentax database. However, it does not 
imply that the three classifiers succeeded in 
obtaining the fundamental cues for “normality” and 
“pathology”, independently of the database or the 
text. In the literature so far produced it is not 
common to see this sort of analysis, which can show 
the true meaning of the results obtained. 

5 CONCLUSIONS 

In this work an algorithm to discriminate normal 
  

from pathological speakers based on the analysis of 
turbulent information of continuous speech is 
presented. All previous works on this subject assume 
that the unvoiced parts of the acoustic signals have 
no useful information, which justifies the selection 
of only voiced speech segments for their 
classification systems. In our opinion, these studies 
are in fact disregarding important pathological 
information that may appear in unvoiced or almost 
unvoiced segments, due to a lower quality of the 
vowels produced by speakers with pathologies. To 

select the less voiced and unvoiced regions of the 
signal we propose a segmentation algorithm based 
on an acoustic measure called turbulent noise index, 
TNI. By properly adjusting a threshold it is possible 
to use the TNI measure to select, among others, 
meaningful frames containing vowels with low 
quality or even whispered speech. Thus, relevant 
pathological information is given to the classifier. 
The tests performed in a well-known database 
resulted in very good discrimination of the 
pathological voices. This result must be emphasized 
as it shows that it is possible to correctly classify 
normal and pathological speakers according to 
turbulent information only. 
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