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Abstract: The aggregates of amyloid-β (Aβ) peptide are the primary neurotoxic species in the brains of Alzheimer’s 
patients. We study the molecular-level dynamics of this process employing chemical kinetic simulations by 
dissecting the aggregation pathway into pre-nucleation, post-nucleation and protofibril elongation stages. 
Here, we discuss how our earlier identified rate constants for protofibril elongation were incorporated into a 
simplified simulation of the complete aggregation process to understand the lag-times in the sigmoidal fibril 
growth curves of fibril formation. We also present some initial findings on the rate constants and possible 
hypotheses on the nucleation mass involved in the pre-nucleation stage. 

1 INTRODUCTION 

In Alzheimer’s disease (AD), the aggregates of a 
protein called, Aβ are strongly believed to be the 
cause for neuronal death and cognitive decline 
(Selkoe, 2003). Aβ aggregates to form large fibrillar 
deposits that follows a sigmoidal growth pattern 
involving a ‘lag-phase’ prior to fibril growth. The 
lag-phase is generated due to an initial rate-limiting 
step of nucleation (Jarrett, 1993); (Harper, 1997). 
However, the precise mechanism of nucleation and 
size of the nucleus are not known.  Accurate in vitro 
analyses of the process is difficult as the 
intermediate oligomers are difficult to isolate and 
characterize. However, one intermediate from the 
post-nucleation phase, called protofibrils were 
identified (Walsh, 1997) that show propensities to 
both elongate as well as laterally associate to grow 
into mature fibrils. However, many previous works 
on Aβ aggregation kinetics have not incorporated the 
pre-nucleation events that constitute a critical step of 
the aggregation process, more likely due to the 
difficulty in doing so for stochastic processes. 

It is important to identify the nucleation mass 
and the kinetic rate constants involved in all the 
different phases of Aβ aggregation: pre-nucleation, 
post-nucleation and fibril elongation. Various 

models on Aβ aggregation reviewed in (Morris, 
2009), use curve fitting without considering the pre-
nucleation events. Recently, (Lee, 2007) reported a 
molecular-level model of insulin aggregation that 
forms the basis for the model presented here. Earlier, 
we modelled the protofibril elongation and lateral 
association stages to report the kinetic rate constants 
involved (Ghosh, 2010). Here, our contributions are 
summarized as follows: (i) use the rate constants 
from protofibril elongation into the biophysically 
similar post-nucleation phase; (ii) create a model to 
estimate the lag-times and nucleation mass of Aβ42; 
(iii) report in vitro Aβ42 aggregation experiments 
that motivate our nucleation mass estimates; (iv) 
discuss the problems in directly comparing the 
simulated lag-times to those from experiments. 

2 A PROCESS SIMULATION 

2.1 In Vitro Results on Aβ42 
Aggregation 

We monitored Aβ42 aggregation in five different 
concentrations, 10, 25, 50, 75 and 100 M by 
thioflavin-T (ThT) fluorescence (lag-times shown in 
Fig 1). Since Aβ aggregation is nucleation-
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dependent, increase in concentration decreases the 
lag-time besides increasing the rate of aggregation. 
Hence, we observed the least lag-time for 100 M 
followed by 75, 50, 25 and 10 M concentrations 
respectively. In addition, there was an inverse linear 
correlation between the logarithm of Aβ42 
concentration and the corresponding lag-time as 
shown in Fig 1. This observation was later used to 
accurately characterize the Aβ42 nucleation mass 
based on the simulated lag-times.  

 

Figure 1: Lag-times from in vitro experiments. 

 

Figure 2: Reactions towards fibril formation. 

2.2 Modified Model on Aβ Aggregation 

Here, we adapt the insulin aggregation model in 
(Lee, 2007) for the Aβ42 system. We characterize 
the pathway using biochemical reactions, compute 
the reaction fluxes and formulate the differential 
equations for each oligomer concentration as a 
function of time. Solving the set of homogeneous 
ODEs allow us to study the temporal dynamics of 
each oligomer. Fig 2 shows the modified set of 
reactions considered in our simulation. 

Here, Ai’s denote i-mers, n is the nucleation mass 
and F is a fibril. The following assumptions were 
made: a) monomer adds to i-mers until fibril 
formation; b) nucleation involves monomer addition 
as well as a structural change in the oligomer An 
(this conformational change is implicit); c) post-
nucleation events are faster, as the forward rate 

constants for post-nucleation are much higher than 
those in pre-

nucleation (i.e., knu,n+i>>knu,i) (a ~108 fold difference  
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was reported in (Lee, 2007)); d) the reverse reaction 
rate constants are assumed to be independent of size 
i, and abbreviated as knu- and kfb-. e) since agitation 
drastically shortens the lag-times, knu,i and kfb,i are 
assumed to be diffusion-limited; using the Stokes-
Einstein equation, the diffusivity is proportional to 
the inverted cubic root of i, resulting in:  

Hence, the reaction fluxes and differential 
equations can be derived as follows:  

2.3 Integrating Protofibril Elongation 

A complete simulation of the Aβ system requires an 
estimate of the following six parameters: knu,1, kfb,1, 
knu-, kfb- , n and b, where, b is the constant that maps 
ThT fluorescence to concentration estimates. It is 
impossible to try out different values for each of 
these variables to properly match the experimental 
plots due to the huge solution space. Hence we 
dissected the sigmoidal fibril-growth curve in 
(Ghosh, 2010) into: (i) pre-nucleation stage (ii) post-
nucleation stage and (iii) protofibril elongation 
stage. The pre- and post-nucleation stages are well-
approximated by the set of reactions shown in Fig 2. 
However, protofibril elongation stage needs to 
combine reactions from both post-nucleation and 
lateral association. This requires the estimation of 
two more rate constants: the forward and backward 
rate constants for the lateral association stage 
denoted by kla and kla- respectively. In our previous 
report (Ghosh et al., 2010), we estimated the post-
nucleation rate constants (kfb,1, kfb-, kla and kla-) 
separately and verified them with in vitro 
experiments as follows: kfb,1=9.0 × 103 (h-1mM-1), kfb-

=4.5 × 102 (h-1), kla=9.0 × 10-1 (h-1mM-1), kla-=6.0 × 
10-3 (h-1). We next directly substitute the fibril 
elongation rate constants into our modified model to 
predict the lag-times. 
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3 RESULTS AND ANALYSIS 

Our model makes all possible oligomers in the pre-
nucleation stage mathematically tractable due to the 
abstraction that any post-nucleation stage aggregate 
(starting from the nucleation mass itself, i.e., An) is 
treated as a fibril (i.e., F). However, this model does 
not consider the length of the fibrils as variables and 
hence cannot match the plateaus of the ThT 
fluorescence curves generated by experiments. This 
is because the fibrils of differing length will have 
different contributions on ThT intensity which 
cannot be directly captured using this model. Indeed, 
in Fig 4, we have mapped the concentration of F to 
ThT intensity for different initial Aβ concentrations, 
and each curve saturates at the same peak. This 
problem was circumvented by assuming different 
mapping constants in (Lee, 2007) to separate the 
peaks for different Aβ initial concentrations, which 
is not a biophysically correct assumption (as 
discussed in (Ghosh, 2010)). Thus, this model 
cannot implement an entirely accurate simulation of 
the pathway. In this paper, however, our main goal 
is to study the lag times in the pathway, and hence 
predict a working range for the nucleation mass. As 
our model in Fig 2 can accurately study the pre-
nucleation stage oligomers, we will henceforth use it 
to study only the lag times in the aggregation 
pathway generated for different values of the 
nucleation mass (n).  

Table 1: Lag-times (in hrs) from our simulation for 
various estimates of nucleation mass. 

 

3.1 Lag Time Predictions 

In Table 1, we show the simulated lag times for 
different nucleation mass and initial Aβ 
concentration. In order to find the pre-nucleation 
rate constants along with the nucleation mass, we 
use the following scheme: estimate the rate constants 
that give the maximum lag times for each value of 
the nucleation mass. Note that, changing the rate 

constants further to achieve higher lag-times render 
the system of differential equations unstable. 

Interestingly, the simulation shows 4 distinctly 
different regimes of lag times corresponding to 4 
different pairs of rate constants in pre-nucleation 
(highlighted using different colors in Table 1). At 
the same time, this also characterizes four different 
regimes of nucleation masses associated with Aβ 
aggregation summarized as follows: Regime 1: 
n=7,8,9,10,11; Regime 2: n=12,13,14; Regime 3: n= 
15,16,17; Regime 4: n= 18,19,20,21.  

 The rate constants for each of these regimes are 
shown in Table 2. Note that the forward rate 
constants were fixed for each nucleation mass, while 
the backward rate constant were varied to achieve 
the highest lag times as reported in Table 1. The 
problem here is that each of the nucleation masses 
does allow us to find a pair of rate constants for the 
pre-nucleation stage. It is however, not possible to 
match the simulated lag times to that observed 
experimentally (as reported in Fig 1). We will 
discuss this problem in the next section.  

Table 2: Rate constants for prenucleation stage for various 
estimates of nucleation mass. 

 

 

Figure 3: Close to linear semi-log plots. 

However, as seen in Fig 1 (and also from other 
experiments in our lab consistently), the semi-log 
plot of the lag-times against initial concentration of 
Aβ is linear. So we used this property to figure out 
what values of nucleation mass are most feasible for 
the Aβ42 pathway. Note that n=10, 11 (in Regime 1) 
and n=12 (in Regime 2) are close to linear and 
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hence may serve as good approximations of the 
nucleation mass (Fig 3). It was also observed in 
course of the simulations that an initial concentration 
of 10 µM made the simulation erratic for a wide 
range of rate constants (because of increased 
dynamism and stochasticity in the system with lower 
molecular count of the species rendering the ODEs 
unstable). So, we generated these semi-log plots for 
the different regimes (data not shown) by removing 
the data points for 10 µM. Indeed, these curves show 
a more stable relationship between the lag times and 
the initial concentrations, and we find close to linear 
behavior for n=10,11 (in Regime 1), n=12,13 (in 
Regime 2) and n=15,16,17 (in Regime 3).  

The next question is whether 10,11,…,17 is the 
right range for the nucleation mass, or can we 
further reduce it? Fig 4 shows the concentration 
curve for F against time and different initial 
concentrations. One requirement for the rate 
constants reported above is that these curves must 
saturate to the same peak as expected 
mathematically. So we considered this to be another 
constraint that reduced the range of feasible 
nucleation masses to n=10, 11…,14. Note that n=15, 
16, 17 did not allow the concentration curves to 
saturate (data not shown), and hence were ruled out 
as possible candidates for the nucleation mass. 

 

Figure 4: Simulated fluorescence change curves for 
different initial concentrations with n=12. 

3.2 Can we Compare Simulated and 
Experimentally Observed Lag 
Times? 

The experimental ThT fluorescence plots show the 
cumulative effect of all oligomers of a certain size 
(and beyond). The results shown above plot the 
concentration of F which model the cumulative 
effect of all the nucleated oligomers in the pathway. 
However, it is assumed that all nucleated oligomers 
show up on the ThT curves (this is generally not the 
case from actual experiments). Hence, the lag times 
estimated from our model are lower than that seen 
experimentally. Also, it is not yet known what size 

of oligomers actually show up ThT positive and 
hence the experimental estimates are at best the 
maximum limits of the lag times for each initial Aβ 
concentration. To get around this problem, we varied 
the rate constants to estimate the maximum possible 
lag times for each value of the nucleation mass. This 
is still an approximation of the actual system and 
needs further study. Ideally, we need to know what 
sizes of oligomers are considered ThT positive such 
that the experimental curves can be meaningfully 
compared to the simulated plots. The present paper, 
however, gives us a feasible range of nucleation 
masses to work with in order to build a complete 
simulation of the on-pathway. The rate constants 
estimated in this exercise can serve as a guidance for 
the complete simulation where we will need a more 
detailed model (with separate parameters for each 
post-nucleation oligomer) to properly model their 
effects on the system.  

4 CONCLUSIONS 

In this paper, we have studied the lag times in the 
sigmoidal Aβ fibril formation pathway. We also 
reported that the nucleation mass can potentially be 
in the range 10,11,…, 14 mers. In order to reduce 
the complexity of the entire fibril formation 
pathway, we used the rate constants that we have 
earlier estimated for the post-nucleation stage into a 
modified model that can approximately characterize 
the complete pathway. These estimates will serve as 
the basis for implementing a complete and accurate 
simulation of the pathway wherein we have 
approximately estimated all the 6 variables involved. 
Such a simulation will pave the path to study the 
complete system dynamics of Aβ aggregation 
leading to a better understanding of AD in general. 
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