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Abstract: The class imbalance problem has been reported as an important challenge in various fields such as Pattern
Recognition, Data Mining and Machine Learning. A less explored research area is related to how to evaluate
classifiers on imbalanced data sets. This work analyzes the behaviour of performance measures widely used on
imbalanced problems, as well as other metrics recently proposed in the literature. We perform two theoretical
analysis based on Pearson correlation and operations for a 2×2 confusion matrix with the aim to show the
strengths and weaknesses of those performance metrics in the presence of skewed distributions.

1 INTRODUCTION

A problem that has received considerable attention is
when the data sets show heavily skewed ratios of prior
probabilities between classes, what has been usually
called the imbalance problem (Sun et al., 2009). This
may affect standard learning algorithms which as-
sume that the classes of the problem share similar
prior probabilities. A two-class data set is said to be
imbalanced when the instances of a class (the major-
ity one) heavily outnumbers the instances of the other
(the minority) class. This topic is particularly impor-
tant in those applications where it is costly to misclas-
sify examples from the minority class (Kennedy et al.,
2010; Khalilia et al., 2011; Kamal et al., 2009).

Several works have shown that the use of plain
accuracy and/or error rates to evaluate the classifi-
cation in imbalanced domains might produce mis-
leading conclusions, since they do not take misclas-
sification costs into account, are strongly biased to
favor the majority class, and are sensitive to class
skews (Daskalaki et al., 2006; Fatourechi et al., 2008;
Folleco et al., 2008; Ferri et al., 2009; Gu et al., 2009;
Huang and Ling, 2005; Seliya et al., 2009).

In this paper, we review and analyse the most pop-
ular performance measures used to evaluate classifiers
on imbalanced problems, as well as recently intro-
duced but less renowned metrics. Hereafter the paper
is organized as follows. Section 2 reviews numerical
performance metrics used for the evaluation of clas-
sifiers on two-class imbalanced data sets. Section 3
shows two theoretical studies based on the computa-

tion of Pearson correlation coefficients and the assess-
ment of invariance properties with respect to changes
to a confusion matrix. Finally. Section 4 remarks the
main conclusions of this work.

2 PERFORMANCE METRICS

Traditionally, classification accuracy and/or error
rates have been the standard performance metrics
used to evaluate the performance of learning systems.
For a two-class problem, these can be easily derived
from a 2×2 confusion matrix (Table 1),Acc= (TP+
TN)/(TP+FN+TN+FP) andErr = 1−Acc.

Table 1: Confusion matrix for a two-class problem.

Predicted positive Predicted negative

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Empirical and theoretical evidences show that
these measures are strongly biased with respect to
data imbalance and proportions of correct and incor-
rect classifications. These shortcomings have moti-
vated a search for new metrics based on simple in-
dices, such as thetrue positive rate(TPr) , the true
negative rate(TNr), and the precision (or purity). The
TPr (TNr) is the percentage of positive (negative) ex-
amples correctly classified. The precision is defined
as the percentage of examples that are correctly la-
beled as positive,Prec= TP/(TP+FP).
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One of the most popular techniques for the eval-
uation of classifiers in imbalanced problems is the
Receiver Operating Characteristic (ROC) curve. A
quantitative representation of a ROC curve is the area
under it, which is known as AUC (Bradley, 1997).
When only one run is available from a classifier, the
AUC can be computed as the arithmetic mean (macro-
average) ofTPr and TNr (Sokolova et al., 2006),
AUC= (TPr+TNr)/2.

Kubat and Matwin (1997) use the geometric mean
of accuracies measured separately on each class,
Gmean=

√
TPr ·TNr. This metric is associated to

a point on the ROC curve, and the idea is to maximize
the accuracies of both classes while keeping them bal-
anced. AlthoughAUCandGmminimize the negative
influence of skewed class distributions, they cannot
distinguish between the contribution of each class to
the overall performance, nor which is the dominant
class. This means that different combinations ofTPr
andTNr may produce the same resultAUCandGm.

The F-measure (Rijsbergen, 1979) is used to in-
tegrate the true positive rate and precision into a sin-
gle metric,F = ((1+β2) · (T Pr ·Prec))/(β2 ·Prec+
TPr). The non-negative realβ is a tunable parameter
to control the influence of the true positive rate and
precision separately. Typically,β is set to 1, thus ob-
taining theF1–measure (F1 ∈ [0,+1]), which can be
viewed as a harmonic mean of the true positive rate
and precision,F1 = (2 ·TPr ·Prec)/(Prec+TPr).

The kappa statistic (κ ∈ [−1,+1]) (Cohen, 1960)
measures pairwise agreement among a set of classi-
fications, correcting for expected chance agreement,
κ = (PA−Pe)/(1−Pe). Here,PA denotes the accu-
racy andPe is the proportion of times that an agree-
ment by chance could be expected,Pe = ((Np ·Rp)+

(Nn ·Rn))/N2, Np (Nn) andRp (Rn) represent the to-
tal number of actual and predicted positive (negative)
instances respectively, andN is the total number of
instances in the data set.

Ranawana and Palade (2006) proposed a new
measure called optimized precision, which is com-
puted asOP = Acc− |TNr − TPr|/(TNr + TPr).
High OPperformances require high global accuracies
and well-balanced class accuracies. However,OPcan
be strongly affected by the bias of the global accuracy.

Cohen et al. (2006) proposed the mean class-
weighted accuracy, which is defined for a two-class
problem as weighted mean betweenTPr and TNr,
cwA= w · TPr+ (1− w) · TNr. The coefficientw
is a normalized weight assigned toTPr, such that
0≤ w≤ 1.

The weighted AUC measure (Weng and Poon,
2008) has been proposed to give more weights to the
areas close to the top of the ROC graph, which is the

region with higherTPr. The idea is to move a certain
percentage of weights from the bottom areas to the
upper areas of the ROC curve. This can be performed
by means of a recursive formula that computes the
new weight of an area using the weight of the preced-
ing area; thus forn areas to sum, the next weightw
can be computed as follows:

w(x) =







ρ x= 0
w(x−1) ·ρ+(1−ρ) 0< x< n
w(x−1)·ρ+(1−ρ)

1−ρ x= n
(1)

whereρ ∈ [0,+1] is the percentage of weight to trans-
fer to the next area towards the top of the ROC curve.
Whenρ is 0, the weighted AUC is equal to the con-
ventional AUC.w(i) represents the weight for the bot-
tom area, which is used to compute the new AUC-
based measure by adding up the successive weighted

areas,wAUC=
n
∑

i=0
area(i) ·w(i).

Batuwita and Palade (2009) showed that some
performance measures could lead to sub-optimal clas-
sification models, i.e, with a higher true positive rate
and a lower true negative rate. Thus they proposed to
combineGm, TNr and the proportion of the negative
examples (Pn) into one measure called the adjusted
geometric mean,AGm= (Gm+TNr ·Pn)/(1+Pn),
which is more sensitive to the changes inTNr than to
changes inTPr.

More recently, Garcı́a et al. (2010) proposed a new
measure called generalized index of balanced accu-
racy, which can be expressed in terms ofGm as fol-
lows: IBAα(Gm) = (1+α ·Dom) ·Gm, whereDom,
calleddominance, is defined asDom= TPr−TNr,
and it is weighted byα ≥ 0 to reduce its influence
on the result of the particular metric. The IBA func-
tion not only takes care of the overall accuracy but
also intends to favor classifiers with better results on
the positive class. In the present paper, we will use
α = 0.05.

3 ANALYSIS OF METRICS

Two theoretical comparisons are carried out to study
the behaviour of the metrics previously described in
Sect 2. These measures areTPr, TNr, Prec, Acc,
AUC, Gm, κ, F1, OP, IBA0.05(Gm), cwA, AGmand
wAUC1. The first one consists of the computation of
Pearson correlation coefficients between all pairs of
measures, considering several collections of synthetic
classifier outputs randomly drawn from different lev-
els of imbalance. This analysis focuses on how the

1With ρ = 0.10 like in Weng and Poon (2008).
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performance measures are correlated with bothTPr
andTNr when dealing with imbalance. The second
study concerns the ability of a measure to preserve its
value under a change in the confusion matrix.

3.1 Pearson Correlation Analysis

For this study, five collections of classifier output tu-
ples based on different imbalance degrees were gen-
erated as in Huang and Ling (2007). All tuples were
generated from a main ranked list where thei-th com-
ponent is the “true” probabilitypi of belonging the
instancei to the positive class. However, in contrast
to Huang and Ling (2007), this main tuple was de-
fined considering a particular imbalance level in the
assignment of true probabilities. Given an imbalance
true tuple, a perturbed tuple was generated by ran-
domly fluctuating the true probabilitiesp of negative
instances within the range[max(0, p− εn),min(1, p+
εn)], and the true probabilitiesp of positiveinstances
within the range[max(0, p− εp),min(1, p+ εp)]. The
use of two distortion terms,εn for the negative class
andεp for the positive class, allows to simulate differ-
ent scenarios of biased learning of classifiers.

The five collections of classifier output tuples used
in the analysis were respectively drawn from five dif-
ferent imbalance degrees expressed in terms of the
percentage of samples from the positive class: 5%,
10%, 15%, 20% and 25%. Each collection was com-
posed of 130 tuples distributed in 10 per each of
the 13 combinations of distortion terms ranging from
(εn = 0.6,εp = 0) to (εn = 0,εp = 0.6) with steps
(−0.05,0.05) and satisfyingεn + εp = 0.6. An in-
dependent correlation matrix between all pairs of per-
formance measures was built for each collection, re-
garding those metrics presented in this paper. From
matrix correlations, several interesting conclusion can
be drawn:

• As expected,Accshows negative correlation with
TPr but strong positive correlation withTNr. It
proves thatAcc is not appropriate for imbalanced
domains.

• AUC, Gm, IBA, wAUC and cwA show positive
correlation withTPr, which represents the classi-
fier performance on the most important class (the
minority one).cwAwith w> 0.5 presents strong
positive and negative correlation values withTPr
andTNr. Note that this metric may show a biased
behaviour whenw 6= 0.5.

• DespiteOP, κ, AGmandF1 have been proposed
as metrics especially suitable for imbalanced do-
mains, the correlation analysis indicates that they
are strongly correlated withTNr.

3.2 Invariance Properties

This second analysis deals with the assessment of in-
variance properties of the measures with respect to
five changes to the confusion matrix (Sokolova and
Lapalme, 2009; Tan et al., 2002). In general, a robust
performance measure should detect any matrix trans-
formation. We have used five invariance properties,
which can be defined as follows:

p1: invariance under the exchange ofTP with TN
andFN with FP.

p2: invariance under a change inTN, while all other
matrix entries remain the same.

p3: invariance under a change inFP, while the other
matrix entries do not change.

p4: invariance under a change inTP, while all other
matrix entries remain the same.

p5: invariance under a change inFN, while all other
matrix entries remain the same.

A straightforward analysis on each performance
measure lets us know whether or not it meets the
above invariance properties. Table 2 illustrates these
results, where ’–’ and ’+’ indicate invariance and non-
invariance, respectively.

Table 2: Invariance properties of the measures.

TPr TNr Prec Acc Gm AUC∗ F1 OP IBAα(Gm) κ AGm cwA wAUCρ

p1 + + + – – – + – + – + + +
p2 – + – + + + – + + + + + +
p3 – + + + + + + + + + + + +
p4 + – + + + + + + + + + + +
p5 + – – + + + + + + + + + +

*Valid for AUC when only one classifier run is available.

The four more sensitive measures (columns) ap-
pear to beIBA, AGm, cwA and wAUC, which give
different values for the five different changes. From
p1, which represents the inversion of class perfor-
mances, the results show thatAccdoes not distinguish
TP from TN and FN from FP. Besides, one can
observe thatGm, AUC, OP andκ, four performance
measures used in imbalanced domains, are insensitive
to this transformation, so they may not recognize the
skew of class rate. AlthoughF1 is able to detect this
transformation, it remains invariant under a change in
TN (i.e.,p2).

4 CONCLUSIONS

In this paper, we reviewed a number of performance
metrics typically used to evaluate classifiers on im-
balanced data sets. Two theoretical experiments were
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designed to analyse the behaviour and sensitivity of
these measures in imbalanced problems. The results
obtained suggest thatAUC, Gm, IBA, wAUCandcwA
are more suitable for dealing with imbalance. How-
ever, two of these metrics,AUC andGm, do not de-
tect the exchange of positive and negative values in
the confusion matrix, so they may not recognize the
asymmetry of class results. In the case ofF-measure,
which has been also proposed as a favorable metric
on imbalanced data sets, the previous analysis showed
that this measure is highly correlated with the results
on the negative class.
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