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Abstract: Subgradient methods for training support vector machines have been quite successful for solving large-scale
and online learning problems. However, they have been restricted to linear kernels and strongly convex for-
mulations. This paper describes efficient subgradient approaches without such limitations, making use of
randomized low-dimensional approximations to nonlinear kernels, and minimization of a reduced primal for-
mulation using an algorithm based on robust stochastic approximation, which do not require strong convexity.

1 INTRODUCTION

The algorithms for training the support vector ma-
chines (SVMs) can be broadly categorized into (i)de-
composition methodssuch as SVM-Light (Joachims,
1999) and LASVM (Bordes et al., 2005), (ii)
cutting-plane methodsfor linear kernels (SVM-
Perf (Joachims, 2006) and OCAS (Franc and
Sonnenburg, 2008)) and for nonlinear kernels (
CPNY (Joachims et al., 2009) and CPSP (Joachims
and Yu, 2009)), and (iii)subgradient methodsfor lin-
ear kernels including Pegasos (Shalev-Shwartz et al.,
2007) and SGD (Bottou, 2005). Subgradient methods
are of particular interest, since they are well suited to
large-scale and online learning problems.

This paper aims to provide practical subgradient
algorithms for training SVMs with nonlinear kernels,
overcoming the weakness of the updated Pegasos al-
gorithm (Shalev-Shwartz et al., 2011) which uses ex-
act kernel information and requires a dual variable for
each training example in the worst case. Our approach
uses a primal formulation with low-dimensional ap-
proximations to feature mappings. Such approxima-
tions are obtained either by approximating the Gram
matrix or by constructing subspaces with random
bases approximating the feature spaces induced by
kernels. These approximations can be computed and
applied to data points iteratively, and thus are suited
to an online context. Further, we suggest an efficient
way to make predictions for test points using the ap-
proximate feature mappings, without recovering the
potentially large number of support vectors.

Unlike Pegasos, we use Vapnik’s original SVM
formulation without modifying the objective to
be strongly convex. Our main algorithm takes
steplengths of sizeO(1/

√
t) (associated with robust

stochastic approximation methods (Nemirovski et al.,
2009; Nemirovski and Yudin, 1983) and online con-
vex programming (Zinkevich, 2003)), rather than the
O(1/t) steplength scheme in Pegasos. We see lit-
tle practical difference betweenO(1/

√
t) steplengths

andO(1/t) steps.

2 NONLINEAR SVMS IN PRIMAL

We discuss the primal SVM formulation in a low-
dimensional space induced by kernel approximation.

2.1 Structure of the Formulation

Let us consider the training point and label pairs
{(t i ,yi)}m

i=1 for t i ∈ R
n and yi ∈ R, and a feature

mappingφ : Rn → R
d. Given a convex loss function

ℓ(·) : R→ R∪{∞} andλ > 0, the primal SVM prob-
lem (for classification) can be stated as follows :

(P1) min
w∈Rd,b∈R

λ
2

wTw+
1
m

m

∑
i=1

ℓ(yi(wTφ(t i)+b)).

By substituting the following into (P1):

w =
m

∑
i=1

αiφ(t i), (1)

223
Lee S. and Wright S. (2012).
ASSET: APPROXIMATE STOCHASTIC SUBGRADIENT ESTIMATION TRAINING FOR SUPPORT VECTOR MACHINES.
In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, pages 223-228
DOI: 10.5220/0003786202230228
Copyright c SciTePress



we obtain

(P2) min
α∈Rm,b∈R

λ
2

αTΨα+
1
m

m

∑
i=1

ℓ(yi(Ψi·α+b)) ,

whereΨ ∈ R
m×m is defined byΨi j := φ(t i)

Tφ(t j) for
i, j = 1,2, . . . ,m, andΨi· denotes thei-th row of Ψ.
Optimality conditions for (P2) are as follows:

λΨα+
1
m

m

∑
i=1

βiyiΨT
i· = 0,

1
m

m

∑
i=1

βiyi = 0, (2)

for someβi ∈ ∂ℓ(yi(Ψi·α+b)) , i = 1,2, . . . ,m.

Then we can derive the following result via convex
analysis (see Lee and Wright (2011) for details).

Proposition 1. Let (α,b) ∈ R
m×R be a solution of

(P2). Then if we definew by (1), (w,b) ∈ R
d ×R is a

solution of (P1).

Without loss of generality, (2) suggests that we
can constrainα to have the form

αi =− yi

λm
βi.

These results clarify the connection between the ex-
pansion coefficientα and the dual variableβ, which
is introduced in Chapelle (2007) but not fully expli-
cated there.

2.2 Reformulation with Approximations

Consider the feature mappingφ◦ : Rn → H to a
Hilbert spaceH induced by a kernelk◦ :Rn×R

n →R

satisfying Mercer’s Theorem. Suppose that we have
an approximationφ : Rn → R

d of φ◦ for which

k◦(s, t)≈ φ(s)T φ(t), (3)

for all inputs s and t of interest. If we construct a
matrixV ∈ R

m×d by defining itsi-th row as

Vi· = φ(t i)
T , i = 1,2, . . . ,m, then we have (4)

Ψ :=VVT ≈ Ψ◦ := [k◦(t i , t j)]i, j=1,2,...,m. (5)

Ψ is a positive semidefinite rank-d approximation to
Ψ◦. SubstitutingΨ=VVT andγ :=VT α in (P2) leads
to the equivalent formulation

(PL) min
γ∈Rd,b∈R

λ
2

γTγ+
1
m

m

∑
i=1

ℓ(yi(Vi·γ+b)).

This problem can be regarded as alinear SVM with
transformed feature vectorsVT

i· ∈ R
d, i = 1,2, . . . ,m.

2.3 Approximating the Kernel

We discuss two techniques to obtainV satisfying (5).

2.3.1 Kernel Matrix Approximation

For some integerd ands such that 0< d ≤ s< m,
we chooses elements at random from the index set
{1,2, . . . ,m} to form a subsetS . We then find the best
rank-d approximationWS ,d to (Ψ◦)SS , and its pseudo-
inverseW+

S ,d. We chooseV so that

VVT = (Ψ◦)·SW+
S ,d(Ψ

◦)T
·S , (6)

where (Ψ◦)·S denotes the column submatrix ofΨ◦

corresponding toS . Whens is sufficiently large, this
approximation approaches thebest rank-d approxi-
mation in expectation (Drineas and Mahoney, 2005).

To obtainWS ,d, we form the eigen-decomposition
(Ψ◦)SS = QDQT (Q∈ R

s×s orthogonal,D diagonal).
Taking d̄ ≤ d to be the number of positive elements
in D, we haveWS ,d = Q·,1..d̄D1..d̄,1..d̄QT

·,1..d̄ (Q·,1..d̄ de-

notes the firstd̄ columns ofQ, and so on). The
pseudo-inverse is thusW+

S ,d = Q·,1..d̄D−1
1..d̄,1..d̄

QT
·,1..d̄,

andV satisfying (6) is therefore

V = (Ψ◦)·S Q·,1..d̄D−1/2
1..d̄,1..d̄

. (7)

In practice, rather than definingd a priori, we can
choose a threshold 0< εd ≪ 1, then choose the largest
integerd ≤ ssuch thatDdd ≥ εd. (Therefored̄ = d.)

For each sample setS , this approach requires
O(ns2+ s3) operations for the creation and factoriza-
tion of (Ψ◦)SS , assuming that the evaluation of each
kernel entry takesO(n) time. Since our algorithm
only requires a single row ofV in each iteration, the
computation cost of (7) can be amortized over itera-
tions: the cost isO(sd) per iteration if the correspond-
ing row ofΨ◦ is available;O(ns+ sd) otherwise.

2.3.2 Feature Mapping Approximation

The second approach finds a mappingφ : Rn → R
d

that satisfies〈φ◦(s),φ◦(t)〉 = E [〈φ(s),φ(t)〉] , where
the expectation is over the random variables that de-
termineφ. Such mapping can be constructed explic-
itly by random projections (Rahimi and Recht, 2008),

φ(t) =
√

2
d

[

cos(νT
1 t +ω1), · · · ,cos(νT

d t +ωd)
]T

(8)

whereν1, . . . ,νd ∈ R
n are i.i.d. samples from a distri-

bution with densityp(ν), andω1, . . . ,ωd ∈R are from
the uniform distribution on[0,2π]. The density func-
tion p(ν) is determined by the types of kernels. For
the Gaussian kernelk◦(s, t) = exp(−σ‖s− t‖2

2), we

havep(ν) = 1
(4πσ)d/2 exp

(

− ||ν||22
4σ

)

, from the Fourier

transformation ofk◦.
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This approximation method is less expensive than
the previous approach, requiring onlyO(nd) opera-
tions for each data point (assuming that sampling of
each vectorνi ∈ R

n takesO(n) time).

2.4 Efficient Prediction

Given the solution(γ,b) of (PL), the prediction of a
new data pointt ∈ R

n can be made efficiently with-
out recovering the support vector coefficientα in (P2),
with cost as low asd/(no. support vectors) of the cost
of an exact-kernel approach.

For the feature mapping approximation, we can
simply use the decision functionf (t) = wTφ(t)+ b.
Using the definitions (1), (4), andγ :=VT α, we obtain

f (t) = φ(t)T
m

∑
i=1

αiφ(t i)+b= φ(t)Tγ+b.

The time complexity in this case isO(nd).
For the kernel matrix approximation approach, we

do not knowφ(t), but from (3) we have

φ(t)Tw+b=
m

∑
i=1

αiφ(t)T φ(t i)+b≈
m

∑
i=1

αik
◦(t i , t)+b.

To evaluate this, we setαi = 0 for all compo-
nents i /∈ S and s = d = d̄. Denoting the nonzero
subvector ofα by αS , we haveVTα = VT

S ·αS =

γ. So from (7) and(Ψ◦)SS = QDQT we obtain

γ =
[

(Ψ◦)SS Q·,1..d̄D−1/2
1..d̄,1..d̄

]T
αS = D1/2

1..d̄,1..d̄
QT
·,1..d̄αS .

That is,αS =Q·,1..d̄D−1/2
1..d̄,1..d̄

γ, which can be computed

in O(d2) time. Therefore, prediction of a test point in
this approach will takeO(d2 +nd), including kernel
evaluation time.

3 THE ASSET ALGORITHM

Consider the general convex optimization problem

min
x∈X

f (x), DX := max
x∈X

||x||2

where f is a convex function andX ⊂ R
d is a com-

pact convex set with the radiusDX. We assume that
at anyx ∈ X, we have availableG(x;ξ), a stochas-
tic subgradient estimate depending on random vari-
ableξ ∈ Ξ ⊂ R

p that satisfiesE[G(x;ξ)] ∈ ∂ f (x). The
norm deviation of the stochastic subgradients is mea-
sured byDG defined as follows:

E[‖G(x;ξ)‖2
2]≤ D2

G, ∀x∈ X,ξ ∈ Ξ.

Iterate Update. We update iterates as follows:

x j = ΠX(x
j−1−η jG(x j−1;ξ j)), j = 1,2, . . . ,

Algorithm 1: ASSET Algorithm.

1: Set(γ0,b0) = (0,0), (γ̃, b̃) = (0,0), η̃ = 0;
2: for j = 1,2, . . . ,N do
3: η j =

DX
DG

√
j .

4: Chooseξ j ∈ {1, . . . ,m} at random.

5: Vξ j · =

{

Vξ j · for V as in (7), or
φ(tξ j ) for φ(·) as in (8) .

6: ComputeG

([

γ j−1

b j−1

]

;ξ j

)

following Table 1.

7:

[

γ j

b j

]

= ΠX

([

γ j−1

b j−1

]

−η jG

([

γ j−1

b j−1

]

;ξ j

))

.

8: if j ≥ N̄ then

9:

[

γ̃
b̃

]

=
η̃

η̃+η j

[

γ̃
b̃

]

+
η j

η̃+η j

[

γ j

b j

]

.

η̃ = η̃+η j .
10: end if
11: end for
12: Defineγ̃N̄,N := γ̃ andb̃N̄,N := b̃.

where{ξ j} j≥1 is an i.i.d. random sequence,ΠX is
the Euclidean projection ontoX, andη j > 0 is a step
length. For our problem (PL), we havex j = (γ j ,b j),
andξ j is selected to be one of the indices{1,2, . . . ,m}
with equal probability, and the subgradient estimate is
constructed as shown in Table 1.

Feasible Sets. For classification, we setX =
{[γ,b]T ∈ R

d+1 : ||γ||2 ≤ 1/
√

λ, |b| ≤ B} for suffi-
ciently largeB. (The bound on‖γ‖ is from Shalev-
Shwartz et al. (2011, Theorem 1).) For regression
with ε-insensitive loss where 0≤ ε < ‖y‖∞ andy :=
(y1,y2, . . . ,ym)

T , we have a similar bound:‖γ‖2 ≤
√

2(‖y‖∞−ε)
λ (Lee and Wright, 2011, Theorem 1).

Estimation of DG. UsingM samples indexed byξ(l),
l = 1,2, . . . ,M, at the first iterate(γ0,b0), we estimate
D2

G as 1
M ∑M

l=1d2
l (||Vξ(l )·||22+1).

Our algorithm ASSET is summarized in Algo-
rithm 1. Convergence requires the later iterates to be
averaged; this begins at iteratēN > 0.

3.1 Convergence

The analysis of robust stochastic approximation (Ne-
mirovski et al., 2009) provides theoretical support.

Theorem 1. Given the output̃xN̄,N = (γ̃N̄,N, b̃N̄,N)T of
Algorithm 1 and the optimal objective f(x∗), we have

E[ f (x̃N̄,N)− f (x∗)]≤C(ρ)
DXDG√

N

where C(ρ) depends onρ ∈ (0,1) whereN̄ = ⌈ρN⌉.
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Table 1: Loss functions and their corresponding subgradients for classification and regression tasks.

Task Loss Function,ℓ Subgradient Estimate,G

([

γ j−1

b j−1

]

;ξ j

)

Classification max{1− y(wTφ(t)+b),0}
[

λγ j−1+d jVT
ξ j ·

d j

]

, d j =

{

−yξ j if yξ j (Vξ j ·γ j−1+b j−1)< 1
0 otherwise

Regression max{|y− (wTφ(t)+b)|− ε,0}
[

λγ j−1+d jVT
ξ j ·

d j

]

, d j =











−1 if yξ j >Vξ j ·γ j−1+b j−1+ ε,
1 if yξ j <Vξ j ·γ j−1+b j−1− ε,
0 otherwise.

When we omit the interceptb in (PL), f (x) be-
comes strongly convex. We can then use steplength
η j = 1/(λ j), and omit the averaging, to achieve faster
convergence in theory. We refer to the resulting algo-
rithm after modification as ASSET∗. When λ ≈ 0,
convergence of ASSET∗ can be quite slow unless we
haveDG ≈ 0 as well.

Theorem 2. Given the output xN and f(x∗), ASSET∗

with η j = 1/(λ j) satisfies

E[ f (xN)− f (x∗)]≤ max

{

(

DG

λ

)2

, D2
X

}

/N.

4 COMPUTATIONAL RESULTS

We implemented Algorithm 1 based on the open-
source Pegasos code (ours is available athttp://
pages.cs.wisc.edu/ ˜ sklee/asset/ .) The ver-
sions of our algorithms that use kernel matrix approx-
imation are referred to as ASSETM and ASSET∗M,
while those with feature mapping approximation are
called ASSETF and ASSET∗F . For direct comparisons
with other codes, we do not include intercept terms,
since some of the other codes do not allow such terms
to be used without penalization. All experiments with
randomness are repeated 50 times.

Table 2 summarizes the six binary classifica-
tion tasks we use, indicating the values of param-
etersλ and σ selected using SVM-Light to maxi-
mize the classification accuracy on each validation
set. (ForMNIST-E, we use the same parameters as
in MNIST.) For the first five moderate-size tasks, we
compare all of our algorithms against four publicly
available codes: two cutting-plane methods CPNY
and CPSP, and the other two are SVM-Light and
LASVM. The original SVM-Perf (Joachims, 2006)
and OCAS (Franc and Sonnenburg, 2008) are not in-
cluded because they cannot handle nonlinear kernels.
For MNIST-E, we compare our algorithms using fea-
ture mapping approximation to LASVM.

For our algorithms, the averaging parameter is set
to N̄ = m−100 for all cases (averaging is performed

for the final 100 iterates). The test error values are
computed using the efficient schemes of Section 2.4.

4.1 Effect of Approximation Dimension

To investigate the effect of kernel approximation di-
mension on prediction accuracy, we vary the dimen-
sion parameters in Section 2.3 in the range[2,1024],
with the eigenvalue thresholdεd = 10−16. Note thats
is an upper bound on the actual approximation dimen-
sion d for ASSETM, but is equal tod for ASSETF .
The codes CPSP and CPNY have a parameter similar
to s (as an upper bound ofd). For purposes of com-
parison, we set that parameter tos. For the first five

2 4 6 8 10
0.15

0.2

0.25

log
2
(s)

T
es

t e
rr

or
 r

at
e

 

 

ASSET
ASSET

on

CPSP
CPNY
SVM−Light

(a) ADULT.

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

(b) MNIST.

2 4 6 8 10
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0.1

0.2

0.3
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(c) CCAT.

2 4 6 8 10
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0.1
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2 4 6 8 10

0.1
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(e) COVTYPE.

Figure 1: The effect of the approximation dimension to the
test error. The x-axis shows the values ofs in log scale.
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Table 2: Data sets and training parameters.ahttp://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/,bhttp://leon.bottou.org/
papers/loosli-canu-bottou-2006/.

Name m (train) valid/test n (density) λ σ Note
ADULT 32561 8140/8141 123 (11.2%) 3.07e-08 0.001UCI Repository.
MNIST 58100 5950/5950 784 (19.1%) 1.72e-07 0.01Digits 0-4 vs. 5-9.
CCAT 78127 11575/11574 47237 (1.6%) 1.28e-06 1.0RCV1-v2 collection.
IJCNN 113352 14170/14169 22 (56.5%) 8.82e-08 1.0IJCNN 2001 Challengea.
COVTYPE 464809 58102/58101 54 (21.7%) 7.17e-07 1.0Forest cover type 1 vs. rest.
MNIST-E 1000000 20000/20000 784 (25.6%) 1.00e-08 0.01An extended MNIST setb.

Table 3: Training CPU time (in seconds, h:hours) and test error rate (%) in parentheses. Kernel approximation dimensionis
varied by settings= 512 ands= 1024 for ASSETM, ASSET∗M, CPSP and CPNY. Decomposition methods do not depend on
s, so their results are the same in both tables.

Subgradient Methods Cutting-plane Decomposition
s= 512 ASSETM ASSET∗M CPSP CPNY LASVM SVM-Light
ADULT 23(15.1±0.06) 24(15.1±0.06) 3020(15.2) 8.2h(15.1) 1011(18.0) 857(15.1)
MNIST 97 (4.0±0.05) 101 (4.0±0.04) 550 (2.7) 348 (4.1) 588 (1.4) 1323 (1.2)
CCAT 95 (8.2±0.08) 99 (8.3±0.06) 800 (5.2) 62 (8.3) 2616 (4.7) 3423 (4.7)
IJCNN 87 (1.1±0.02) 89 (1.1±0.02) 727 (0.8) 320 (1.1) 288 (0.8) 1331 (0.7)
COVTYPE 697(18.2±0.06) 586(18.2±0.07) 1.8h(17.7) 1842(18.2) 38.3h(13.5) 52.7h(13.8)
s= 1024 ASSETM ASSET∗M CPSP CPNY LASVM SVM-Light
ADULT 78(15.1±0.05) 83(15.1±0.04) 3399(15.2) 7.5h(15.2) 1011(18.0) 857(15.1)
MNIST 275 (2.7±0.03) 275 (2.7±0.02) 1273 (2.0) 515 (2.7) 588 (1.4) 1323 (1.2)
CCAT 265 (7.1±0.05) 278 (7.1±0.04) 2950 (5.2) 123 (7.2) 2616 (4.7) 3423 (4.7)
IJCNN 307 (0.8±0.02) 297 (0.8±0.01) 1649 (0.8) 598 (0.8) 288 (0.8) 1331 (0.7)
COVTYPE 2259(16.5±0.04) 2064(16.5±0.06) 4.1h(16.6) 3598(16.5) 38.3h(13.5) 52.7h(13.8)

moderate-size tasks, we ran our algorithms for 1000
epochs (1000m iterations). The baseline performance
values were obtained by SVM-Light.

Figure 1 shows the results. Since ASSETM and
ASSET∗M yield very similar results in all experiments,
we do not plot ASSET∗M. (For the same reason we
show ASSETF but not ASSET∗F .) For smallσ values,
as in Figure 1(a), all codes achieve good classifica-
tion performance with small dimension. In other data
sets, the chosen values ofσ are larger and the intrin-
sic rank of the kernel matrix is higher, so performance
continues to improve ass increases.

CPSP generally requires lower dimension than the
others to achieve the same prediction performance.
CPSP spends extra time to construct optimal ba-
sis functions, whereas the other methods depend on
random sampling. However, all approximate-kernel
methods including CPSP suffer considerably from the
restriction in dimension forCOVTYPE.

4.2 Speed Comparison

Here we ran all algorithms other than ours with their
default stopping criteria. For ASSETM and ASSET∗M,
we checked the classification error on the test sets ten

times per epoch, terminating when the error matched
the performance of CPNY. (Since this code uses a
similar Nyström approximation of kernel, it is the one
most directly comparable with ours in terms of classi-
fication accuracy.) The test error was measured using
the iterate averaged over the 100 iterations immedi-
ately preceding each checkpoint.

Results are shown in Table 3 fors = 512 and
s= 1024. (LASVM and SVM-Light do not depend
on s and so their results are the same in both tables.)
Our methods are the fastest in most cases. Although
the best classification errors among the approximate
codes are obtained by CPSP, the runtimes of CPSP
are considerably longer than for our methods. In
fact, if we compare the performance of ASSETM with
s= 1024 and CPSP withs= 512, ASSETM achieves
similar test accuracy to CPSP (except forCCAT) but is
faster by a factor between two and forty.

It is noteworthy that ASSETM shows similar per-
formance to ASSET∗M despite the less impressive the-
oretical convergence rate of the former. This is be-
cause the values of optimal parameterλ were near
zero, and thus the objective function lost the strong
convexity condition required for ASSET∗M to work.
We observed similar slowdown of Pegasos and SGD
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Figure 2: Progress of ASSETF and ASSET∗F to their com-
pletion (MNIST-E), in terms of test error rate.

whenλ approaches zero for linear SVMs.

4.3 Large-scale Performance

We take the final data setMNIST-E and compare the
performance of ASSETF and ASSET∗F to the online
SVM code LASVM. For a fair comparison, we fed the
training samples to the algorithms in the same order.

Figure 2 shows the progress on a single run of
our algorithms, with various approximation dimen-
sionsd (which is equal tos in this case) in the range
[1024,16384]. Vertical bars in the graphs indicate
the completion of training. ASSETF tends to con-
verge faster and shows smaller test error values than
ASSET∗F , despite the theoretical slower convergence
rate of the former. Withd = 16384, ASSETF and
ASSET∗F required 7.2 hours to finish with a solu-
tion of 2.7% and 3.5% test error rate, respectively.
LASVM produced a better solution with only 0.2%
test error rate, but it required 4.3 days of computation
to complete a single pass through the same data.

5 CONCLUSIONS

We have proposed a stochastic gradient framework for
training large-scale and online SVMs using efficient
approximations to nonlinear kernels, which can be ex-
tended easily to other kernel-based learning problems.
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