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Abstract: Ultrasound image reconstruction based on inverse problems has attracted attention to the ultrasonic imaging 
research community recently. Different from standard beamforming-based methods techniques, this new 
imaging method tries to solve a linear system g=Hf as a form of reconstructing the ultrasound image. In 
order to understand the behaviour of this imaging system, it is important to analyse the forward problem. In 
this paper, we analyse the effect of the noise in acquisition matrix using singular value decomposition. Also, 
the effect of regularization parameter in dealing with the noise is investigated in regularized. This analysis 
provides some interesting insights in the understanding of how the inverse reconstruction can be improve 
some aspects higher than beamforming. 

1 INTRODUCTION 

Beamforming-based methods are traditionally used 
to ultrasound imaging, which relies on Delay-And-
Sum (DAS) approach (Stergiopoulos, 2000). The 
DAS approach provides some positive benefits such 
as real-time imaging. Even though Beamforming 
(BF) has had some important improvements, such as 
adaptive BF (Synnevåg et al., 2007) it still has 
limitations on its achieved resolution. Going further 
may require new reconstruction approaches. 

Some recent research such (Lavarello et al., 
2006); (Lingvall and Olofsson, 2007); (Viola et al., 
2008), proposed an ultrasonic image reconstruction 
methods based on inverse problems (Barrett and 
Myers, 2004). In this methodology the data 
acquisition process, know as forward system, is 
utilized to relate the image of a region of interest 
(ROI) with the captured data-signal. The 
reconstructed image is obtained by solving this 
system, what is known as the inverse solution 
(Barrett and Myers, 2004). 

Inverse approaches can significantly reduce the 
point spreading, providing a sharper image with 
increased quality and resolution (Lavarello et al., 
2006); (Lingvall and Olofsson, 2007); (Viola et al., 
2008). The noise, however, may limit the potential 
of the inverse reconstruction, so a proper balance 

must be applied. The regularized reconstructions 
(RR) treat this problem by choosing an adequate 
regularization parameter (Hansen, 1998); (Vogel, 
2002). 

Several methods for optimal automatic 
determination of this parameter exist, such as GCV 
(Golub and Von Matt, 1997), L-curve and others 
(Hansen, 1998). However, automatic determination 
of the parameter highly increases the computational 
cost of the reconstruction. Other alternatives are 
prior determination of the regularization, instead of 
automatic, such as the statistical methods (Bovik, 
2000). 

This paper proposes a combination of RR and 
prior choice of the regularization parameter to 
ultrasonic imaging systems. The paper is organized 
as following: in Section 2, the forward system is 
explained, in Section 3, the RR is presented, together 
with the choice of the regularization parameter. In 
Section 4, a small brief of the Singular Value 
Decomposition (SVD), and the spectrums of the 
image and noise are presented. The analysis of the 
system for the prior choice of the regularization 
parameter is presented in Section 5, together with 
some samples of reconstructed images. Finely, in 
Section 6, a discussion of the results and the 
conclusions are drawn. 
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2 FORWARD SYSTEM FOR 
ULTRASOUND IMAGING 

The investigation acoustic pulse in the spatial 
position r, during a time t, is models as (Lingvall 
and Olofsson, 2007): 
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In (1), its considered K elements in the ultrasound 
array. The uk(t) is the electric signal applied to the kth 
array element, hk

ef(t) is the forward electro-acoustic 
impulse response of the element, while the acoustic 
spatial impulse response is denoted as hk

sf(r,t). The 
pressure p(r,t) reaching a position r react according 
to the reflectivity function f(r), which is the 
information to be imaged. This echo signal formed 
by this interaction at the position r, reaching the nth 
array element is: 

)(),()(),(),( rrrr ftpththtg eb
n

sb
nn ∗∗=  (2)

We consider that Ne elements in the array are used 
for echo recording. This returning echo is spread by 
the backward spatial impulse response hn

sb(r,t), 
reaching the sensor where it is convolved with the 
backward electro-acoustic impulse response hn

eb(t). 
Joining (1) and (2) we can express the echo from a 
particular position as: 
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Considering that the data-signal gn(r,t) from (3) is 
provided by echoes from all r positions belonging to 
the Cartesian coordinates in the 2D image grid. In 
this paper we assume that the discrete signal can be 
represented as: 
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The image size is M1×M2, being M=M1·M2 number 
of pixels. Also, ti is a discrete time sample being S 
the total time samples from an element. Putting the 
equation (5) in a matrix-vector format leads to gn= 
Hnf, where gn=[gn(t1), …, gn(tS)]T is a vector with all 
the captured samples from the nth element, while 
f=[f(1,1), …, f (M1,1), f (1,2), …, f (M1 M2)]T is a 
vector with the image pixels re-ordered. 

We can join the time samples from all elements 
in the form: 
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In (6), we have the full system. The H matrix has 
size of N×M, being N=Ne·S. The sensor response, 
pulses and signal spreading are all involved to form 
the matrix, so it contains the system behavior. The 
noise is represented by η. 

3 REGULARIZED 
RECONSTRUCTION 

The RR used in this paper is based on the Tikhonov 
regularization for least squares (Hansen, 1998), 
described as: 
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In (7), the parameter α, known as the regularization 
parameter, is real and positive (Bovik, 2000). When 
α→0, the reconstructed image is usually sharp, but 
noise is amplified due to the ill-conditioning of H. 
Increasing the regularization parameter reduces 
noise amplification, stabilizing the image. However, 
it also reduces the sharpness of the solution. 

The minimum of (7) is achieved when the 
gradient is zero, or equivalently when: 
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This gives the following solution: 
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The reconstruction in (9) requires the inversion of 
the matrix; however, this computation can be done 
off-line and then stored in the ultrasound equipment 
to reconstruction process. On the other hand, prior 
choices of α must be defined previously to the 
inverse computation. 

3.1 Choice of the Regularization 
Parameter 

Automatic parameter selection methods, such as the 
GCV (Golub and Von Matt, 1997) and the L-curve 
(Hansen, 1998), are alternatives to the balance 
between noise and image sharpness, but they cannot 
determine the parameter a priori. 

Our alternative for prior α determination requires 
previous knowledge of the noise levels. Several 
methods based on the knowledge of the noise and 
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image variances exist, such as the statistical 
Maximum a Posterior (MAP) estimation 
(Mohammad-Djafari, 1995); (Therrien, 1992). MAP 
estimation leads to a reconstruction algorithm 
similar to (7), where α= δη/δf, being δη and δf the 
noise and the image standard deviation respectively. 

In (Hansen, 1998) it is mentioned that the 
regularization is needed if the discrete Picard 
condition is not achieved. In order to clearly state 
the discrete Picard condition, we briefly mention the 
SVD and define the spectrums of the image and 
noise. 

4 THE SINGULAR VALUE 
ANALISIS 

4.1 Singular Value Decomposition 

The SVD (Barrett and Myers, 2004) is able to 
reveals the spectrum of a matrix by diagonalizing it. 
The spectrum shows the filtering effect of the 
acquisition system. This information is similar to the 
frequency response of shift invariant systems. 

Utilizing the SVD, the matrix H can be 
represented as: 
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Where U is a N×N matrix, V is a M×M matrix, and 
S is an N×M diagonal matrix with the elements σ1, 
σ2, … , σp, where p=min(N,M) in its diagonal. The 
orthonormal columns vk represent the right singular 
vectors. The orthonormal matrix VT transforms the 
image vector f to new space where the singular 
values weight this transformed image. The result is 
transformed to another space by the U matrix, 
constructed with orthonormal column vectors uk, 
which are the left singular vectors. The set {σk, uk, 
vk}, 1 ≤ k ≤ p, are the singular system of H. 

4.2 Definition of the Spectrums of the 
Image and the Noise 

Using the SVD one can observe that the operation 
Hf first transforms the image to the spectral space, 
through VTf, forming the coefficients {vk

Tf}, 1 ≤ k ≤ 
p, which is the unfiltered spectrum of image. In the 
spectrum, the image is filtered through SVTf 
generating the noiseless data spectrum (filtered 
spectrum) defined by {σk(vk

Tf)},1 ≤ k ≤ p. The same 
filtered spectrum can be obtained by UTHf, 

generating {uk
THf}, 1 ≤ k ≤ p, which is the same as 

{σk(vk
Tf)}. Also, we can observe the filtered 

spectrum with noise, resulted from g=Hf+η, by 
doing UTg=UTHf+UTη which is a composition of 
filtered image spectrum, or UTHf, and the noise 
spectrum, or UTη, also defined as {uk

Tη}, 1 ≤ k ≤ p. 
In general, the image spectrum is relatively 

arbitrary. However the filtered spectrum is more 
predictable. According to the discrete Pickard 
condition (Hansen, 1998), the absolute value of the 
filtered image spectrum, or σk|vk

Tf|, must decay, on 
average, at the same rate (or more) than the rate of 
decaying of the s.v. (Hansen, 1998); (Vogel, 2002). 
This behavior, which is stated for general systems, is 
also observed for ultrasonic systems. 

4.3 Prior Determination of the 
Regularization Parameter 

The regularization is needed because the inverse will 
strongly amplify the components related to small 
singular values. One can say those spectrum 
components on elevated k positions may has more 
noise than signal, while the lower k positions may 
has more signal the noise. 

The regularized reconstruction, expressed with 
the SVD is: 
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One can note that the RR, instead of inverting the 
s.v. directly, invert the regularized s.v., or 
sqrt(σk

2+α2). This stabilizes the inverse solution, 
avoiding excessive noise amplification, and corrects 
the filtered signal when the signal is stronger than 
noise. 

Our main contribution in this paper is the 
observation that the regularized s.v. must follow de 
average decaying of data spectrum. The data 
spectrum (noise plus filtered spectrum) follows, on 
average, the regularized s.v. line, or: 

22 ασ +≈ k
T
k ogu  (12)

Considering the weighting by a constant o, the α is 
δη/o, which is very consistent with MAP, where the 
constant o is chosen as δf. So, in order to find a 
reasonably regularization parameter a priori, one 
may use data captured from several different study 
objects, i.e. phantoms. This data can be transformed 
to the spectrum, using the SVD, and an appropriate 
scaling constant o can be found. One may simply 
adjust the curve manually so the constant o may 
provide the overlap between singular values and data 
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spectrum, especially in the lower k components. 

5 SIMULATION RESULTS 

In this section, the reconstructed images with 
regularized inversion using different parameters are 
shown. For these experiments we used signals 
generated using Field II toolbox (Jensen, 1996). For 
all experiments an ultrasonic pulse of 5 MHz, with 
80% of the bandwidth, sampled at 100MHz and 
sound speed of c=1540 m/s were considered. The 
ROI is an area of 10×10mm in which the sensor 
array is 25mm from the center of the ROI in the 
longitudinal dimension, and centered in the lateral 
dimension. The 64 elements of the sensor are spaced 
by λ=c/f. We do not use focused pulses, neither any 
non-uniform apodization. The resolution grid is 
60×60 pixels. Some sample figures are reconstructed 
with BF and RR from (9). Also, we add a white 
Gaussian noise to the signal with standard deviation 
to achieve a SNR of 10dB and 20dB. 

The Figure 1 has the results of the determination 
of the ideal α for this system. Note that average 
noise lines for both SNR of 10dB and 20dB, cross 
the singular values line. This means we need to 
regularize the system to avoid excessive noise 
amplification. The standard deviation for the noise 
and acquisition with SNR of 10 and 20dB are shown 
in Table 1. By adjusting the curves the estimated 
constant o is nearly to 3·10-2, which is close to the α 
parameter suggested by MAP estimation. The 
regularized curves are plotted in the Figure 1. 

Table 1: Standard deviation and regularization parameter. 

SNR δη·(10-11) α·(10-9) 
10dB 6.5652 2.1884 
20dB 2.0786 0.6928 

In order to compare the RR with different 
parameters for both SNR's, we utilized three α 
spanned by one order of magnitude above an one 
order of magnitude below, i.e., αbellow=0.1×α, α, and 
αabove=10×α. The results are shown in Figure 2, 
comparing with the BF reconstruction. 

Analyzing the results, it is possible to observe in 
the images reconstructed with αbellow, in figures 2(a) 
and (e), that the noise were over amplified. With the 
ideal α, the inverse results have a noise level 
between the underregularized and BF. The noise was 
not too much amplified and the spots are more 
compact, which corresponds to an improvement in 
resolution. Figures 2(c) and (g) show reconstructed 
images obtained by αabove, wich is an overregularized 

inverse approach. This result is more similar to BF, 
but it is possible to note that the spots are not so 
spread as BF. Comparing these inverse 
reconstructions with the BF, is possible to note that 
the noise was amplified, but the spreading was 
significantly reduced. 

 
Figure 1: The singular values σk, the average noise level 
δη/o, and the regularized singular values sqrt(σk

2+α2) 
adjusted for SNR of 10dB and 20dB. 

6 DISCUSSIONS AND 
CONCLUSIONS 

This analysis evidenced the importance of choice of 
regularization parameter. The higher the α, smaller 
the noise and smaller the reduction of spreading; the 
smaller the α, higher the correction of the spreading 
under the cost of increased noise amplification. With 
RR, an improvement in image resolution was 
obtained when compared with DAS BF. 

In this paper we also investigate how the noise 
affects the ultrasound forward system through de 
SVD analysis. Mainly, we use this analysis to obtain 
a better regularization parameter to regularized 
inverse approach. We observed some of advantage 
that inverse reconstruction provides when applied to 
ultrasound imaging systems. This new method, also 
investigated in recent works (Lavarello et al., 2006); 
(Lingvall and Olofsson, 2007); (Viola et al., 2008) 
has been proven its effectiveness and is able to be 
used in modern ultrasound systems. 

Some of limitations existent in BF, such as the 
lateral spreading of the spots are improved with this 
new method. The great limitation of RR is the 
computational cost and memory requirements, 
which makes it, by now, impossible to be applied for 
real-time imaging as BF. However their ability of 
improve the ultrasound image resolution makes it 
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(a) Underregularized with 

αbellow(10dB). 
(b) Regularized with α(10dB). (c) Overregularized with 

αabove(10dB). 
(d) DAS Beamforming. 

 
(e) Underregularized with 

αbellow(20dB). 
(f) Regularized with α(20dB). (g) Overregularized with 

αabove(20dB). 
(h) DAS Beamforming. 

Figure 2: Images obtained for reconstructions of the data with SNR of 10 (a-d) and 20dB (e-h), through the regularized 
inverse, obtained from different α and  DAS Beamforming. 

very attractive and researches in this area must be 
encouraged. 
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