
TEMPORAL ASPECTS-BASED REPLACEMENT
IN MEDIA OBJECT CACHES

Hagen Höpfner, Andreas Thenn and Maximilian Schirmer
Mobile Media Group, Bauhaus-Universität Weimar, Bauhausstr. 11, 99423 Weimar, Germany

Keywords: Caching, Cache Replacement, Temporal Aspects.

Abstract: Caching is an appropriate and well-known approach for reducing data transmissions in distributed information
systems by creating and maintaining redundant data. As cache memory is limited and cached data might get
outdated, it is impossible to store everything forever. If a cache is full, a replacement strategy decides on the
cache entry that needs to be replaced by new data. There exist various strategies utilising different indicators
for making this decision. Almost all of them do not take the content and the context of the systems’ users
into account. In this paper, we present two novel cache replacement strategies called TA and aTA that utilize
temporal aspects included in media objects such as websites, specified by the user, or learnt from her or his
behaviour. Our evaluation results show that, in the used application scenario, TA and aTA outperform classical
replacement schemes like LRU.

1 INTRODUCTION AND
MOTIVATION

Data transmissions are the most cost-intensive and
time-consuming subtasks in most distributed infor-
mation systems. Since wireless networks get more
and more important, energy requirements also justify
the need for reducing the number of unnecessarily re-
peated transmissions. Besides replication and hoard-
ing, caching is an appropriate and widely-used ap-
proach for this purpose (Höpfner et al., 2009). The
basic idea is to implicitly store received data as close
as possible to the data processing subsystem. Well-
known examples are caches in Web-based systems
(Wang, 1999). Web browsers, e.g., cache Web ob-
jects such as images, videos, or HTML documents
in the file system of the device running the browser.
The browser reuses this locally available data if the
user requests the same Web object again. Hence, a re-
peated transmission is not necessary. Certain research
questions result from this simple idea:

(1) Which data should be or needs to be cached?

(2) What happens if cached data gets outdated?

(3) How to reuse cached data?

(4) What happens if the cache is full?

Although all questions are important in this paper, we
only address the fourth one. For focussing purposes,

we assume as “answers” to the other three questions
that (1) all received objects are cached, (2) there are
no updates on cached data, and (3) cache entries are
identified by an identifier and reused in an atomic
manner. Question four results from the fact that cache
memory is limited. In case of a full cache, the system
has to decide on removing or replacing, respectively,
cached data. This decision is made by a cache re-
placement strategy. Various approaches have been re-
searched in the past. In general, they differ in the pa-
rameters they factor into the decision. FIFO (first-in-
first-out) (Tanenbaum, 2007), e.g., replaces the oldest
cache entry, while LRU (Bennett and Kruskal, 1975)
replaces the least recently used one. Hence, time or
recency of accesses are taken into account. Almost
all strategies published until today ignore the con-
tents of cached data. This, of course, is necessary if a
strategy aims for being as general as possible. How-
ever, in user-centered information systems, generic
approaches might thwart the users’ expectations, as
the subjective importance of a cached object for the
user might change over time. For example, informa-
tion about a meeting taking place tomorrow is very
important before and right after the meeting. There-
fore, it should stay in cache. If one uses the system
the day after the meeting, the subjective importance
decreased and the data might be replaced.

In this paper, we analyse various temporal aspects
of a user-based access to media objects. This includes

73Höpfner H., Thenn A. and Schirmer M..
TEMPORAL ASPECTS-BASED REPLACEMENT IN MEDIA OBJECT CACHES.
DOI: 10.5220/0003799700730082
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 73-82
ISBN: 978-989-8565-08-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



temporal aspects within media objects, as well as user
preferences (e.g. prefer information for weekends)
and user behaviour. Based on these temporal aspects,
we developed two novel cache replacement strategies,
called TA (temporal aspects-based replacement) and
aTA (adaptive TA). Both were implemented and suc-
cessfully evaluated.

The remainder of this paper is structured as fol-
lows: Section 2 presents an application scenario that
motivates the research. Section 3 discusses the related
work. Section 4 introduces and classifies the temporal
aspect considered in our work. Section 5 describes the
novel replacement strategies. Section 6 presents the
evaluation scenario and the evaluation results. Sec-
tion 7 summarizes the paper with a conclusion and
outlines future research directions.

2 APPLICATION SCENARIO

Today is Monday, August 29, 2011. Anna and Irene
utilise smartphones for organising their spare time ac-
tivities. Both installed the WeIS app, which accesses
the WeIS Web service. WeIS is the so called “Weimar
Information System”. It collects and integrates infor-
mation about events (e.g., cinema schedules, concert
information) from various Web sources. The WeIS
app caches received data on the smartphone. As Anna
and Irene have different interests, they browse the
WeIS content in a different manner. Anna prefers
to go to the cinema on weekends and therefore fre-
quently reads movie descriptions and watches trailers
of movies that will be shown on the next weekend.
She did this a week ago, too. Hence, Annas cache
contains movie information and trailers that were rel-
evant for August 27 and August 28 as well as those
that are relevant for September 3 and September 4.
Obviously, upcoming events are more important than
passed ones. She also had a short look at the cin-
ema schedule for next Wednesday. As Anna specified
a “weekend data caching”, the Wednesday informa-
tion is not cached. However, in case of a full cache,
if Anna reads the cinema schedule for the week after
this week, the information about last week’s movies
is replaced rather than this week’s information. If she
uses the app again on September 5, the August in-
formation became less important, and so on. Irene
is more keen on going to concerts, no matter if they
take place on weekends or not. Hence, all data (band
biographies, audio files, etc.) accessed by Irene is
cached on her smartphone. Furthermore, she fre-
quently reads the newsletters of her favourite artists
using WeIS. If the cache is full, the importance of the
cache entries depends on the event date in relation to

the current date. Outdated events are less important
than recent ones, and recent events are more impor-
tant than future ones. Hence, Irene’s app replaces
the less important concert information. As shown
by both examples, the importance of cached data de-
pends on the temporal aspects of the cached informa-
tion as well as on the current date. Furthermore, im-
portance changes over time.

3 RELATED WORK

As already briefly mentioned in Section 1, our re-
search falls into the area of distributed information
systems (dIS) in general. More precisely, our work
is related to redundant data management approaches
in dIS. According to the classification presented in
(Höpfner et al., 2009), there exist three categories: (1)
replication, (2) hoarding, and (3) caching. They differ
in their approach to specifying the chosen data, their
possibility of using redundant data without having a
connection to the master copy, their required software
components, the potential dynamics of the data, and
their handling of updates to the redundant data. For
details on (1) and (2), we refer to (Höpfner et al.,
2009). The basic idea of caching is to reuse implicitly
received data. If a user requests data for the first time,
the client keeps processed data locally. This copy is
used later on for answering new requests on the same
information. There are various cache related issues
to be considered. In this paper, we introduce new
replacement strategies that are necessary to shrink a
cache if cache memory is full. The literature intro-
duced many different approaches to decide about the
cached data items that are replaced by new incoming
data (Wang, 1999; Podlipnig and Böszörmenyi, 2003;
Romano and ElAarag, 2008). Almost all of them try
to replace data that will most likely be useless in the
future, taking one of the following indicators into ac-
count: time point ti of the last access to data item i, the
time Ti since the last access, and the access frequency
fi. Other indicators are the size si of a data item, the
costs ci of retransmitting it, or the access latency li.

There are only a few approaches that use the se-
mantics of the cached data or the context of the sys-
tem’s usage. The LSR strategy (Calsavara, 2003) re-
places the least semantically related object but does
not take temporal aspects into account. Even more en-
hanced caching strategies like location-aware seman-
tic caches (Ren and Dunham, 2000) and their replace-
ment strategies (i.e., FAR) do not analyse cached data
in this regard. In contrast to this, the cache replace-
ment strategies introduced in this paper take the tem-
poral relevancy of and within data items into account.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

74



4 TEMPORAL ASPECTS

The term “media object” used in our work extends
the definition of “Web objects” given in (Podlipnig
and Böszörmenyi, 2003). The term “Web object”
subsumes “all possible objects (HTML pages, im-
ages, videos, etc.) that can be stored in a proxy
cache.” Media objects are Web objects plus other
remotely accessible documents like emails, calendar
items, etc. Temporal aspects of a media object result
from explicit meta information specifications (e.g.,
well-defined date information of an event) or from the
contents of the object (e.g., a date mentioned in the
text of an HTML page). In the following we, refer to
explicit temporal aspects as external. There are vari-
ous approaches for harvesting temporal aspects from
the contents of a media object (Lienhart, 1999; Sa-
quete and Martı́nez-Barco, 2000; Morita et al., 2000;
Martı́nez-Barco et al., 2002). They are also built into
common desktop applications. Apples Mail.app, e.g.,
analyses emails and allows to create a calendar entry
if a date is found in the text of the email. However,
these information retrieval approaches are out of the
scope of this paper. We assume, that there is a proper
way to harvest such internal temporal aspects.

As the importance of a media object is a subjective
measure, we have to take the user into account. He
or she might use an explicit definition of the impor-
tance, e.g., a certain user might be more interested in
events taking place on weekends. In addition, one can
analyse the user’s access behaviour to cached media
objects. If he or she reuses media objects that have a
temporal relevancy within a week, the system should
keep such objects in cache. We call such temporal as-
pects implicit. Please note, that implicit temporal as-
pects are not comparable to the access statistic used,
e.g., for LRU. It changes over time an does not refer
to a single media object, while standard LRU analyses
accesses per object.

temporal aspects

media object

external internal

user

explicit implicit

Figure 1: Taxonomy of caching relevant temporal aspects.

Figure 1 illustrates a taxonomy of the considered
temporal aspects. The application scenario (cf. Sec-
tion 2) contains all of them:

External: The temporal aspect of a movie trailer is
not explicitly given by the movie file itself. How-
ever, it results from the cinema schedule that is
easily wrapped from the well-structured website

of the cinema.

Internal: Artists might inform their fans on upcom-
ing concerts in their newsletters. As newsletters
are mostly unstructured, this information needs to
be retrieved from the plain text.

Explicit: Anne configured her WeIS app in a way
that it caches only those data relevant for week-
ends.

Implicit: Irenes WeIS app analyses her access be-
haviour and “recognises” that she most frequently
accesses information that becomes relevant one
month after the access date.

For the rest of the paper, we assume that each
cached media object has a defined validity date.

5 REPLACEMENT STRATEGIES

The temporal aspect-based replacement strategies
presented in this paper are, to a certain degree, subjec-
tive. We assume that outdated media objects (validity
date is a thing of the past) are less important then cur-
rent media objects and those with a validity date in
the near future. Furthermore, we assume that media
objects becoming obsolete later in future are less im-
portant than those that become obsolete in near future.
However, all of them are more important than already
outdated media objects.

-

6

time

importance

past now! future

���
��

���
�

XXXXXXXXX

Figure 2: Validity date based importance of media objects.

5.1 TA Replacement

As illustrated in Figure 2, the importance of a cached
media object depends on the current point in time
and therefore changes over time. Let M be the set
of all media objects in the cache. The expiration
date of an object m 2 M is given as exp(m) and
the importance of m is given as imp(m). At a cer-
tain point in time (now) the set MP � M contains
all outdated media objects (8m 2MPjexp(m)< now)
and the set MF � M contains all not outdated me-
dia objects (8m 2MF jexp(m)� now). Consequently,

TEMPORAL�ASPECTS-BASED�REPLACEMENT�IN�MEDIA�OBJECT�CACHES

75



MP\MF = /0 and MP[MF = M must hold. Hence,
a correct importance-based order of the cached media
objects is given if
� 8m;n 2 MP((imp(m) < imp(n)) $ (exp(m) <

exp(n)))_jMPj< 1,
� 8m;n 2 MF((imp(m) � imp(n)) $ (exp(m) >

exp(n)))_jMF j< 1, and
� 8m 2MP8n 2MF(imp(m)< imp(n))

hold. We are not interested in absolute importance
values, but rather in sorting the replacement queue of
the media objects according to the relative importance
among cached objects. Similar to the well-known
LRU queue, the least important media object repre-
sents the head of the queue and would be removed if
a replacement is required. The queue is ordered ac-
cording to the importance defined above. The closer
a media object is placed at the tail of the queue, the
more important it is. However, in contrast to the LRU
queue, our TA queue also changes over time, even if
no objects are referenced in between. Hence, mate-
rialising the TA queue would be inefficient as time
passes by and reordering would become a frequent
task even if no new media objects appear. Therefore,
we decided to realize the TA queue as a virtual queue
that is evaluated only if a replacement is required (cf.
Figure 31).

object reference expiration date imp.
MP C 6.2.2011 1

A 10.2.2011 2
MF D 8.2.2011 3

B 8.2.2011 4
Figure 3: Virtual TA queue on February 7th, 2011.

Media objects are simply stored in the file system.
The virtual TA queue is a table that maintains object
references (absolute file names) and expiration dates.
For illustration purposes, we added an importance
value in Figure 3. At this, object C is least important
(imp(C) = 1), as it is already outdated. If the cache
would have to store a new media object on February
7th, 2011, C would be replaced. If more space would
be required, TA would replace A that is not outdated,
but refers to the most future point in time (cf. Fig-
ure 2). Figure 4 illustrates the virtual TA queue two
days later. C is still outdated. However, now B and
D are outdated, too, and/or would be replaced rather
than A.

Algorithm 1 implements the TA cache replace-
ment strategy. It is triggered by new incoming media

1For illustration purposes, we use dates as temporal val-
ues throughout the paper. However, the implementation and
the evaluation also take time values into account.

object reference expiration date imp.
C 6.2.2011 1

MP D 8.2.2011 2
B 8.2.2011 3

MF A 10.2.2011 4
Figure 4: Virtual TA queue on February 9th, 2011.

objects in case of a full cache. As shown in Fig-
ure 3 and Figure 4, the virtual TA queue is a table.
Formally it is the set TAQ = f(re f (m);exp(m))jm 2
M g of tuples of the form (re f (m);exp(m)). At this,
re f (m) is a reference to the media object m 2M and
exp(m) is the aforementioned expiration date. Fur-
thermore, size(m) returns the memory space required
for caching media object m (i.e., m’s file size).

Algorithm 1: TA cache replacement.

Precond.: // new object would fit into cache
Input: TAQ // virtual TA queue

n // new media object
now // current date/time
rm // required memory

Output: R // set of discarded objects’ references
01 def TA replacement(TAQ, n, now, rm):
02 R = /0 // reset replacement set
03 f s = rm�FCM // initiate loop variable
04 nmo = FALSE // flag to avoid useless scans
05 while f s > 0 do:
06 date = now; cand = NULL
07 if nmo == FALSE
08 for each (x;y) 2 TAQ do:
09 if y < date^ x =2 R then:
10 date = y; cand = x fi
11 done
12 fi
13 if cand 6= NULL then:
14 R = R[fcandg
15 f s = f s� size(cand)
16 else // no more outdated objects
17 nmo = T RUE
18 for each (x;y) 2 TAQ do:
19 if y� date^ x =2 R then:
20 date = y; cand = x fi
21 done
22 R = R[fcandg
23 f s = f s� size(cand)
24 fi
25 done
26 return(R)

Algorithm 1 returns the set R = fre f (m)jm 2 M g
of references to those media objects that shall be

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

76



replaced. In a subsequent step, the respective media
objects are removed from cache and queue, and the
new object is cached and added to the queue. The
precondition is checked by comparing size(n) to the
guaranteed (predefined) cache memory space. If a
media object is bigger than the cache, the object is
not cached at all. The basic principle of the algorithm
is as follows: We first calculate the memory required
for caching the new object n by subtracting the
amount of free cache memory FCM from the amount
of required memory rm (Line 3) that is determined
using size(n) in the function call. Then we loop
through the TA queue and first try to collect enough
memory by marking outdated objects for replacement
(Lines 07-15). If no more outdated objects can
be found and if we need more free space, we start
selecting those objects that expire in the future (Lines
16-24). The algorithm is guaranteed to terminate and
does not require file access to the cached objects.

Example and Threats to Validity. The following
example (cf. Figure 5) extends the Figure 3 by show-
ing the file sizes. We assume, that cache memory is
limited to 20MB.

object reference expiration date size
C 6.2.2011 4MB
A 10.2.2011 8MB
D 8.2.2011 3MB
B 8.2.2011 1MB

Figure 5: Example TA replacement on February 7th, 2011.

Anna accesses a 10MB video file (E) that expires
on March 1st, 2011. Obviously, 10MB is less than
20MB. Hence, the precondition is fulfilled. The cache
uses 4 + 8 + 3 + 1 = 16MB. 4MB are free that are
not sufficient for caching the new file. We have to
free 10� 4 = 6MB. The TA algorithm first selects
outdated objects for replacement. On February 7th,
2011 only C is outdated. Removing C would free
4MB, which is not sufficient either (4MB from C plus
4MB free space sum up to 8MB while 10MB are re-
quired). Hence, TA replacement now selects A for
replacement and, as enough memory was collected,
returns R = fC;Ag. Both objects are removed from
cache and queue and E is added. Figure 6 illustrates
the resulting virtual TA queue.

object reference expiration date size
D 8.2.2011 3MB
B 8.2.2011 1MB
E 1.3.2011 10MB

Figure 6: Example TA replacement result on February 7th,
2011.

If Irene would have accessed E two days later (cf.
Figure 4) then either C, B, and D or C and D would
have been removed (depending on the order “within”
TAQ). This issue results from the fact that our naive
algorithm does not intelligently differentiate between
cached objects with the same expiration date. In order
to overcome this issue, we experimented with two dif-
ferent approaches (cf. Section 6). As basic behaviour,
we extended Algorithm 1 in a way that all “candi-
dates” are removed. For this example this means that
C, B, and D are always selected. The second vari-
ant utilises the idea of LRU. If two objects have the
same expiration date, then we first select the one that
was least recently used. The LRU counter was simply
added to the TA queue.

Another issue illustrated by the example is the fact
that the new object expires later than the at latest ex-
piring cached object. Actually, this conflicts with our
definition of importance. However, as Irene intention-
ally accessed this new object and as time-based im-
portance is strongly subjective, anyway, we decided
to insert objects independent of their expiration date
into the cache.

5.2 aTA Replacement

The TA replacement considers only external and in-
ternal temporal aspects. Section 4 also introduced ex-
plicit and implicit temporal aspects that result from
users preferences and behaviour. Irene (cf. Sec-
tion 2) might be interested in concerts that take place
within a week from now earliest, while Anna might
be more interested in this week’s cinema information.
Hence, TA cache replacement would reflect Anna’s
behaviour but not Irene’s. The aTA replacement strat-
egy also considers such implicit temporal aspects.
The basic idea is to analyse access time frames, so
called “zones”.

As shown in Figure 7, accesses to objects are
grouped, based on their expiration date in relation to
the current time t. In our experiments, we decided to
use six zones, three historical zones and three future
zones. However, the number of zones as well as their
definition is subject to future research.

During the runtime of the system object accesses
are analysed and counted. The zones in Figure 7 cor-
respond to the following access behaviour:

Zone 1: access to objects expired earlier than one
week before now.

Zone 2: access to objects expired one week but not
earlier than 24 hours before now.

Zone 3: access to objects expired within 24 hours be-
fore now.

TEMPORAL�ASPECTS-BASED�REPLACEMENT�IN�MEDIA�OBJECT�CACHES

77



1 2 3 t 4 5 6
0

10

20

30

zone i

nu
m

be
ro

fa
cc

es
se

s
N

i
pe

rz
on

e

Figure 7: Example access distribution for 6 zones.

Zone 4: access to objects that will expire within 24
hours from now.

Zone 5: access to objects that will expire in one week
but not earlier than 24 hours from now.

Zone 6: access to objects that will expire later than
one week from now.

Using this approach allows to define an importance
function that reflects the user’s behaviour rather than
the static definition illustrated in Figure 2. However,
objects of the same zone are ordered according to the
TA importance function. The example data shown in
Figure 7, that results from our experiments, illustrates
that this particular user is more interested in media
objects of zone 2 than in those of zone 3. However,
simply counting accesses is not sufficient as the coun-
ters would grow with each access. In order to avoid
this phlegm, we halve and round down all zone coun-
ters after 50 accesses each and therefore flatten the
importance curve (cf. Figure 8).

Figure 8 illustrates a different user behaviour than
Figure 7. Here, the user accesses data that expires
in one week but not earlier than one day from now
more often than those data expiring within the next
24 hours. Therefore, the importance function reflects
Irene’s interest in concerts taking place in a week
from now. If the system has to cache new data and
if the cache is full, objects from the least important
zone are replaced according to Algorithm 2. Besides
the virtual TA queue, we need a function l f z that cal-
culates the least frequently used2zone and a function
map(n) that assigns a media object n to a particular
zone. The zones are represented as the set Z = f(i;c)g
of tuples of the form (i;c) with i;c 2 N. At this, i
is the zone number and c is the (flattened) number

1 2 3 t 4 5 6
0

10

20

30

40

50

zones i

nu
m

be
ro

fa
cc

es
se

s
N

i
pe

rz
on

e

before flattening
after flattening

Figure 8: Smoothing of the aTA importance function.

of accesses to this zone. In our implementation3, the
mapping is done as follows. 24h means one day (24
hours), 168h = 24h �7 means one week.

map(n) =

8>>>>>>>>><>>>>>>>>>:

1 if exp(n)< now�168h
2 if now�168h� exp(n) : : :

� � �< now�24h
3 if now�24h� exp(n)< now
4 if now� exp(n)� now+24h
5 if now+24h < exp(n) : : :

� � � � now+168h
6 if exp(n)> now+168h

The l f z(Z) functions is a lookup function that returns
the value of i of the tuple (i;c) 2 Z where 8(i0;c0) 2
Z : c� c0 holds.

zone (i) number of accesses (c)
1 0 (1)
2 2 (4)
3 5 (10)
4 3 (7)
5 20 (41)
6 5 (10)

Figure 9: Example: zone based access frequency.

Figure 9 corresponds to Figure 8 and presents an
example for the zone set. The rightmost column,

2Please note that this approach is not comparable to the
LFU replacement strategy (Tanenbaum, 2007). LFU con-
siders the access frequency of objects rather than the group-
ing of temporal accesses that are independent of the ac-
cessed objects.

3Please note that other zone definitions might be possi-
ble. As Algorithm 2 only uses this function, the algorithm
can be adapted by providing another mapping function.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

78



which has been included into the figure for illustra-
tion purposes only, contains the access values for the
unflattened curve. As one can see, the zone impor-
tance does not change if flattening is used.

Algorithm 2: aTA cache replacement.

Precond.: // new object would fit into cache
Input: TAQ // virtual TA queue

n // new media object
now // current date/time
rm // required memory

Output: R // set of discarded objects’ references
01 def aTA replacement(TAQ, n, now, rm):
02 R = /0 // reset replacement set
03 f s = rm�FCM // initiate loop variable
04 CZ = /0 // remember cleaned zones
05 while f s > 0 do:
06 tTAQ = /0 // reset tTAQ
07 cm = 0 // cleanable memory per zone
08 zone = l f z(Z�CZ)
09 for each (x;y) 2 TAQ do:
10 if map(x) == zone then
11 cm = cm+ size(x)
12 tTAQ = tTAQ[fx;yg
13 fi
14 done
15 if tTAQ 6= /0 then
16 R0 =TA repl.(tTAQ, n, now, cm)
17 R = R[R0

18 f s = f s� cm
19 fi
20 CZ =CZ[fzoneg
21 done
22 return(R)

Algorithm 2 works in two stages. In stage 1, a
temporary virtual TA queue tTAQ is generated (Lines
6-14). It represents those objects that belong to
the least recently used zone. Furthermore, stage 1
calculates the amount of memory that can be freed
by replacing all objects from the selected zone. This
value is stored in cm. Stage 2 utilises cm and calles
Algorithm 1 based on tTAQ (Line 16). We iterate
through both stages until enough memory can be
freed. Stage 2 is only entered if the selected zone
contains objects (Line 15).

Example. Given the example discussed in the pre-
vious subsection, the virtual TA queue illustrated in
Figure 5, as well as the zone definition from Figure 9.
On February, 7th 2011 object C belongs to zone 3,
object A belongs to zone 5, and the objects D and B

belong to zone 4. We need 10MB for caching object
E. Again, we have 4MB free cache memory. Hence,
6MB must be freed. The aTA algorithm first deter-
mines the least frequently used zone, which is zone 1
(cf. Figure 9, 0 accesses). As no object belongs to
zone 1, zone 2 (2 accesses) is analysed. This zone
does not contain objects either. Hence, zone 4 (3 ac-
cesses) is used next. Zone 4 contains B (1MB) and
D (3MB). As we have to free 6MB, both objects are
selected using the TA algorithm. The next least im-
portant zone is zone 3 or zone 6. It does not matter,
which one is selected, because both were used equally
often. As zone 6 does not contain any objects, zone 3
is used anyway. Hence, A is selected for replacement,
too.

Under the assumption that the access frequency
history represents Anna’s behaviour, B, C, and D
would be replaced. The resulting virtual TA queue
after this replacement is illustrated in Figure 10.

object reference expiration date size
A 10.2.2011 8MB
E 1.3.2011 10MB

Figure 10: Example aTA replacement result on February
7th, 2011.

5.3 Cache Filters

Explicit temporal aspects are indicators for a manual
individualisation of the caching behaviour, indepen-
dent of the used replacement strategy. Remember the
application scenarios presented in Section 2. Anna is
more interested in events taking place on weekends.
We utilise this information and cache only those me-
dia objects that are relevant for weekend events (cf.
Figure 11).

yes

no
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo

Figure 11: Example for manually defining cache contents.

6 EVALUATION

The performance of cache replacement strategies is
measured in form of the ratio of the number of cache
hits NCH 2 N to the number of requests NQ 2 N. A
cache hit occurs if a request can be answered using
cached objects. Otherwise a cache miss indicates that
the requested object is not in the cache. The following
formula is used in order to calculate the cache hit rate
HTA 2 R for the TA replacement strategy:

TEMPORAL�ASPECTS-BASED�REPLACEMENT�IN�MEDIA�OBJECT�CACHES

79



HTA =
NCH

NQ

Obviously, the value must be in the interval [0;1],
while 1 indicates best performance (all requests are
answered by the cache) and 0 indicates worst perfor-
mance (no requests are answered by the cache). We
evaluated our strategies in comparison to the LRU
strategy. The respective LRU cache hit rate is de-
noted as HLRU . According to this naming convention,
HaTA denotes the cache hit rate for the aTA-algorithm.
HTA+LRU names the cache hit ratio for the combina-
tion of TA and LRU.

6.1 Prototype

As mentioned in Section 1, the importance of cached
data is of a subjective nature. Therefore, evaluation
is subject to a user study. We implemented the mo-
bile information system introduced in Section 2 using
the WebOS plattform (Allen, 2009) (cf. Figure 12).
The WeIS-client requests data from a server running
CouchDB (Anderson et al., 2010). We manually filled
the server database and cleaned up the respective ex-
piration dates. The prototype also covers cache co-
herency mechanisms that are out of the scope of the
paper but necessary for future applications.

Figure 12: Screenshot of the WeIS evaluation prototype.

6.2 Experimental Setup

We implemented four different caches that ran in par-
allel and utilised one of the following replacement
strategies:

LRU: A standard least recently used replacement
strategie is used as reference implementation as.

TA: The TA implementation is based on Algorithm 1
presented in Section 5.1. As an extension, we de-
cided to replace all media objects with the same
expiration date if more alternatives exist.

TA+LRU: The TA+LRU implementation is based on
Algorithm 1 presented in Section 5.1, too. In the
case that media objects have the same expiration
date we aditionally used LRU in order to select
the replacement candidate.

aTA: The aTA+LRU implementation is based on the
Algorithm 2 presented in Section 5.2. In stage 2,
the TA+LRU implementation is used.

We conducted a rather small user study with 5 users
that used WeIS for 14 days. During this time and due
to privacy issues, we asked the users to actively sub-
mit at least 10 generated reports through the app. In
order to guarantee that replacement is used, we lim-
ited cache memory to 512 KBytes. Furthermore, in a
preprocessing phase, we guaranteed comparable ob-
ject sizes among provided media objects. This was
necessary as larger objects would cleanup the “small”
cache completely. However, in productive environ-
ments, the capacity of modern smartphones super-
sedes this assumption as well as the cache memory
limit.

6.3 Evaluation Results

The numbers shown in Figure 13 illustrate that our
test persons used the app differently. Especially, there
was no improvement over a default LRU replacement
for user4 and user5. However, Figure 14 shows that
TA, TA+LRU, as well as aTA performed just as bad
as or even better than LRU. The relatively low cache
hit rates result from the fact, that users were free to
use the system and mostly accessed uncached data.
However, the trend shows, that our temporal approach
reflects user behaviour better than the access statistic
used in LRU.

Figure 15 supports this hypothesis, too. It shows
the average cache hit rate in relation to the mea-
sured LRU result. Interestingly, TA is better than
TA+LRU. Please remember that our TA implemen-
tation replaces all replacement candidates in case of
equal expiration dates. Due to the nature of the
used application scenario, this means that all objects

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

80



user1 user2 user3 user4 user5
LRU 59 44 8 23 11
TA 70 53 9 23 11
TA+LRU 70 47 9 23 11
aTA 56 54 9 23 11
S 266 215 56 94 69

Figure 13: Absolute number of cache hits.

user1 user2 user3 user4 user5
HLRU .222 .205 .143 .245 .160
HTA .263 .247 .161 .245 .160
HTA+LRU .263 .219 .161 .245 .160
HaTA .211 .251 .161 .245 .160

Figure 14: Cache hit rates.

(images, texts, videos) belonging to the same event
are replaced at once. In other words, this means
that more memory is freed in one replacement step.
Hence, TA+LRU keeps rather unimportant data in
cache at the point of replacement. As the importance
value might change over time, these remaining ob-
jects might become more important than those that
are more frequently used. If a replacement request
selects a more frequently accessed but, from a tempo-
ral point of view, less important media object, cache
hit ratio decreases with upcoming requests.

replacement cache hit rate in relation to LRU
strategy
LRU 100%
TA 110.36%
TA+LRU 107.49%
aTA 105.44%

Figure 15: Cache hit rate improvement in relation to LRU.

Furthermore, we analysed the number of cached
objects for user2. As illustrated in Figure 16, starting
with report 5, less objects remain in cache with LRU.
The reason for this results from the fact that LRU kept
certain larger files in cache that were replaced right
before this report. TA in contrast replaced those files
in an earlier stage at the point the corresponding event
information was replaced. However, a more detailed
analysis of this behaviour is subject to future research
and requires a more detailed and more frequent data
acquisition with more users.

Figure 17 compares the TA implementation to the
aTA implementation using the reports of user1. Obvi-
ously, TA outperforms aTA. The reason for this is the
fact that aTA requires some time to learn the user’s be-
haviour. Starting with report 6, one can see a perma-
nent increasing aTA cache hit rate. Hence, the learned

2 4 6 8 10

4

6

8

10

12

14

report

nu
m

be
ro

fc
ac

he
d

m
ed

ia
ob

je
ct

s

LRU
TA

TA+LRU
aTA

Figure 16: Cache space usage of user2.

importance function becomes better. However, aTA
must adapt the zones to the current user behaviour. If
it changes, aTA cache hit rate would decrease dramat-
ically as the wrong zone would always be selected for
replacement (until the zones are corrected again).

2 4 6 8 10
0

0:1

0:2

0:3

0:4

0:5

report

ca
ch

e
hi

tr
at

e

HTA
HaTA

Figure 17: Development of the cache hit rates for user1.

7 SUMMARY, CONCLUSIONS
AND OUTLOOK

In this paper, we introduced two new cache replace-
ment strategies, TA and aTA. Both utilise temporal
aspects of accessing media objects in order to select
the replacement candidate(s) in case of a full cache.

TEMPORAL�ASPECTS-BASED�REPLACEMENT�IN�MEDIA�OBJECT�CACHES

81



We first analysed and classified the temporal aspects.
Then we used them in order to define importance
functions describing the temporal aspect-based (sub-
jective) importance of media objects. Explicit and im-
plicit temporal aspects that result from the media ob-
jects themselves were used for the TA replacement.
Implicit temporal aspects that result from user’s be-
haviour were used for aTA. As the evaluation results
show, both approaches outperform a standard LRU re-
placement. However, we are aware of the fact that
there are plenty of other replacement strategies we
should analyse in comparison to TA and aTA. How-
ever, before doing this, we will take a deeper look
into the zone definition and the zone numbers of aTA.
Furthermore, we plan to use dynamic zone definitions
instead of fixed ones.

A more general research question results from the
data preprocessing. For our experiments, we man-
ually tagged the media objects. In order to adapt
our approaches to other applications, one has to find
proper ways to harvest time and date information
from arbitrary media objects. Our prototype contains
rudimentary support for Websites. However, not all
dates mentioned on a Website have to be expiration
dates. Another open issue is the support for durations
of validity. We currently only support expiration dates
and assume that validity starts at the first time an ob-
ject is accessed before caching. A more detailed study
on time/date ranges could improve temporal aspect
based caching approaches.

Last but not least, we are planning a more detailed
evaluation including some of the mentioned future
works and involving more users for a longer period of
time. Therefore, we are working on porting WeIS to
Apple’s iOS and Google’s Android platform and also
include the cache filtering. The latter was not eval-
uated during the experiments presented in this paper,
but might improve the cache hit ratio dramatically if
used in a proper way.

ACKNOWLEDGEMENTS

We want to thank all students of the Mobile Me-
dia Group of the Media Department at the Bauhaus-
Universität Weimar, who participated in the con-
ducted evaluation.

REFERENCES

Allen, M. (2009). Palm webOS. O’Reilly Media, 1st edi-
tion. http://shop.oreilly.com/product/9780596155261
.do.

Anderson, J. C., Lehnardt, J., and Slater,
N. (2010). CouchDB: The Definitive
Guide. O’Reilly Media, 1st edition.
http://guide.couchdb.org/editions/1/en/index.html.

Bennett, B. T. and Kruskal, V. J. (1975). LRU stack pro-
cessing. IBM Journal of Research and Development,
19:353–357.

Calsavara, A. (2003). The least semantically related cache
replacement algorithm. In LANC’03 Proceedings of
the 2003 IFIP/ACM Latin America conference on To-
wards a Latin American agenda for network research,
pages 21–34. ACM Press.

Höpfner, H., Mansour, E., and Nicklas, D. (2009). Review
of Data Management Mechanisms on Mobile Devices.
it – information technology, 51(2):79–84.

Lienhart, R. (1999). Abstracting home video automatically.
In Proceedings of the seventh ACM international con-
ference on Multimedia (Part 2), pages 37–40. ACM
Press.

Martı́nez-Barco, P., Saquete, E., and Muñoz, R. (2002). A
Grammar-Based System to Solve Temporal Expres-
sions in Spanish Texts. In Ranchhod, E. and Mamede,
N. J., editors, Advances in Natural Language Process-
ing — Proceedings of the Third International Confer-
ence, PorTAL 2002, volume 2389 of Lecture Notes in
Computer Science, pages 709–719, Berlin / Heidel-
berg. Springer.

Morita, M., Lethelier, E., Yacoubi, A. E., Bortolozzi, F.,
and Sabourin, R. (2000). An HMM-based Approach
for Date Recognition. In Proceedings of the Fourth
IAPR International Workshop on Document Analysis
Systems (DAS 2000), December 10-13, 2000, Rio de
Janeiro, Brazil, pages 233–244.

Podlipnig, S. and Böszörmenyi, L. (2003). A Survey of
Web Cache Replacement Strategies. ACM Computing
Surveys, 35(4):374–398.

Ren, Q. and Dunham, M. H. (2000). Using semantic
caching to manage location dependent data in mobile
computing. In Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Net-
working, pages 210–221. ACM Press.

Romano, S. and ElAarag, H. (2008). A quantitative study of
recency and frequency based web cache replacement
strategies. In Ahmad, A. and Bragg, A., editors, CNS
’08: Proceedings of the 11th communications and net-
working simulation symposium, pages 70–78. ACM
Press.

Saquete, E. and Martı́nez-Barco, P. (2000). Grammar
specification for the recognition of temporal expres-
sions. In MT 2000: Online-Proceedings of the In-
ternational Conference on Machine Translation and
Multulingual Applications in the new Millenium. The
British Computer Society. paper 21, available online:
http://www.mt-archive.info/BCS-2000-Saquete.pdf.

Tanenbaum, A. S. (2007). Modern Operating Systems.
Prentice Hall, Upper Saddle River, NJ, USA, 3rd edi-
tion. http://www.pearsonhighered.com/product?
ISBN=0136006639.

Wang, J. (1999). A survey of web caching schemes for the
Internet. ACM SIGCOMM Computer Communication
Review, 29(5):36–46.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

82


