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Abstract: Massive sensor data management is an important issue in large-scale sensor based systems such as the 
Internet/web of Things. However, existing relational database and cloud data management techniques are 
inadequate in handling large-scale sensor sampling data. On the one hand, relational databases can not 
efficiently process frequent data updates caused by sensor samplings. On the other hand, current cloud data 
management mechanisms are largely key-value stores so that they can not support complicated spatial-
temporal computation involved in sensor data query. To solve the above problems, we propose a Relational 
Data-Base and Key-Value store combined Cloud Data management (“RDB-KV CloudDB”) framework, in 
this paper. The experimental results show that the RDB-KV CloudDB can provide satisfactory query 
processing and sensor data updating performances in large scale sensor-based systems. 

1 INTRODUCTION 

Massive sensor data management is an important 
issue in large-scale sensor based systems such as the 
Internet/web of Things. However, existing relational 
database and cloud data management techniques are 
inadequate in handling large-scale centralized sensor 
sampling data. On the one hand, relational databases 
(Güting, Almeida, and Ding, 2006) and middle-ware 
systems (Gurgen, Roncancio, Labbé, et al., 2008) can 
not efficiently process frequent data updates caused 
by sensor samplings. On the other hand, current 
cloud data management mechanisms (Abadi, 2009) 
are largely key-value stores so that they are not 
suited for sensor data management. Detailed reasons 
are as follows: 

(1) Sensor data are highly heterogeneous since 
there could be various kinds of sensors even in a 
same sensor-based system. Different kinds of 
sensors can have different semantics and data 
formats, and it is important to keep the semantics of 
the data for querying and for interoperation.  

(2) Spatial-temporal attribute is intrinsic for 
sensor data. Every sampling value corresponds to a 
sampling location and a sampling time, which are 
crucial information for query processing in sensor-

based systems. In a lot of cases, data are queried 
through spatial-temporal constrains and other 
complicated conditions, not through keyword 
searches on identifiers of sensors. 

(3) More information about a monitored object is 
contained in the sequence of its sampling values 
than in individual sampling values. Queries about 
the state of the monitored object can not be 
answered simply through keyword matches, since 
data are sampled discretely and the chances for the 
querying time to coincide with the sampling time are 
very low. To answer queries correctly and 
efficiently, we need to organize the sampling data of 
the same object into a sequence and answer the 
queries through interpolation.  

(4) The sensor sampling data to be managed are 
dynamically changing stream data. The data are 
always changing because of insertions of new 
sampling values and deletions of obsolete sampling 
values.  

To support massive heterogeneous sensor data 
management, we propose a Relational DataBase and 
Key-Value store combined Cloud Data management 
(“RDB-KV CloudDB”) framework, in this paper. 
The overall architecture of the RDB-KV CloudDB is 
depicted in Figure 1. 
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Figure 1: Architecture of the RDB-KV CloudDB. 

The RDB-KV Cloud Storage adopts a two-
layered architecture. The actual sensor sampling data 
are stored at the leaf nodes, while the master node 
stores global indices and global catalogues of the 
whole system. The cloud can not only support 
keyword searches, but also support spatial-temporal 
queries, sampling sequence based interpolation 
queries, and other complicated queries. 

Each leaf node of the RDB-KV Cloud Storage is 
a database (denoted as “RDB-KV NodeDB” in 
Figure 1) which can manage heterogeneous sensor 
data in a uniformed manner through a set of data 
types and operators.  

The root nodes of the RDB-KV Cloud Storage 
include a coordinator (denoted as “Master Node” in 
Figure 1, which is a RDB-KV NodeDB augmented 
with global indices and catalogues) for global query 
processing, and a group of servers for receiving and 
distributing new sensor sampling values (denoted as 
“Sampling Receivers” in Figure 1). 

The system has global distributed indices built 
on RDB-KV NodeDBs and the master node so that 
both SQL queries and keyword searches can be 
supported efficiently. 

2 RDB-KV NODE DATABASE 

In this section, we describe how each leaf node of 
the RDB-KV Cloud Storage works to manage 
heterogeneous sensor data. In an RDB-KV NodeDB, 
multiple sampling values of a same object form a 
“sampling sequence”. Through related data types, 
operators, and indices, the sampling sequence data 
can be managed and queried at the database kernel 
efficiently. 

In describing the data types and operators of the 
RDB-KV NodeDB, we use the notation introduced 
in (Güting, Almeida, and Ding, 2006) and assume that 
the standard data types, spatial data types, and their 

related operators have already been designed and 
implemented. 

2.1 Data Types for Expressing Sensor 
Data in Databases 

In this subsection, we first define the data types for 
expressing individual sensor sampling values, and 
then define the sampling sequence data type, which 
is the general format for organizing and managing 
the sampling data. Through these data types, the 
database can express and present heterogeneous 
sensor sampling values in a uniformed manner. 

Definition 1 (Sampling Value) A sampling 
value, denoted as SamplingValue, is defined as: 

SamplingValue = (t, (x, y), npos, schema, value) 
where t is the time instant when the value is 
sampled; (x, y) and npos are the Euclidean position 
and the network position where the value is 
sampled; schema and value are the format and the 
actual value of the sampling respectively. 

Through the SamplingValue data type, we can 
express heterogeneous sensor sampling data in a 
uniformed manner.  

A sampling value can have multiple components. 
For instance, a GPS sampling value can have 2 
components: longitude and latitude. Components of 
a sampling value can be expressed through the 
Sampling Value Component data type. 

Definition 2 (Sampling Value Component) A 
sampling value component, denoted as 
SamplingComponent, can be defined as follows:  

SamplingComponent = (cSchema, cValue) 
where cSchema and cValue are the schema and the 
value of the component respectively.  

Definition 3 (Sampling Sequence) For a certain 
monitored object, its sampling sequence is 
composed of all sampling values of the object for a 
certain time period, ordered by sampling time. Since 
the sampling values of the same object share the 
same schema, we can define the sampling sequence 
data type as follows: 
SamplingSequence=(schema, (ti, ((xi, yi), nposi, 

valuei, flagi))
n
i 1= ) 

where schema describes the format of the sampling 
values; ti, (xi, yi), nposi, valuei are the time, the 
Euclidean position, the network position, and the 
actual value of the ith sampling respectively; and 
flagi indicates whether the ith sampling value is a 
“breaking point” in the sequence. 

For static objects whose positions do not move, 
their sampling sequence can be further simplified as 
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follows (flagi is still needed to indicate the situation 
when the object is temporarily suspended): 

SamplingSequence = (schema, (x, y), npos, (ti, 

valuei, flagi)
n
i 1= ) 

The above two formats for sampling sequences 
are a little bit different and the database can 
differentiate them automatically. 

With the above data types, we can create tables 
for storing sensor sampling data. For instance: 

Create Table IoTData  
(ObjectID: String, ObjectType: String,  
Owner: String;  DepoyedTime: Instant,  
Samplings: SamplingSequence) 

2.2 Sensor Querying Operators 

The data types allow us to express sensor sampling 
data in databases. To query the sensor data, we need 
to define a set of operators based on these data types. 
The most important operator based on the 
SamplingSequence data type is the atInstant 
operator which computes the state of the monitored 
object at a given time instant. The signature of the 
operator is as follows: 

atInstant:  
SamplingSequence × Instant → SamplingValue 
The operator has two input arguments which are 

of SamplingSequence and Instant data types 
respectively, and outputs a value of the 
SamplingValue data type. During the computation, 
interpolation may be needed so that the database can 
answer queries about the states of monitored objects 
at any time during the monitored time periods. 

To facilitate the appending of new sampling 
values to sampling sequences, we define the 
samplingAppend operator with the following 
signature: 

samplingAppend:  
SamplingSequence×SamplingValue×Bool→ 
SamplingSequence 
The operators based on the SamplingValue data 

type mainly include 3 data projection operators, 
getInstant, getPosition, getNetPosition, and a data 
extraction operator, getComponent. Their 
signatures are as follows: 

getInstant: SamplingValue → Instant  
getPosition:  
SamplingValue → Point 
SamplingSequence → Point (for static objects) 
getNetPosition: SamplingValue → String 
getComponent: 
SamplingValue×integer → SamplingComponent 

Besides, we upgrade all the relevant standard 
operators (such as +, −, ×, /, <, =, >) and spatial 
operators (such as inside, intersect, touches, 
distance, direction, overlap) through “lifting” 
(Güting, Almeida, and Ding, 2006) so that the 
SamplingComponent data type can interoperate with 
other standard and spatial data types through these 
operators. For instance, the “=” operator can be 
“lifted” as follows (assume that “BASE” and 
“SPATIAL” are the sets of standard data types and 
spatial data types respectively): 

=: α × β→ Bool  
where α, β ∈ {samplingComponent} ∪ BASE ∪ 
SPATIAL. 

In the RDB-KV NodeDB, queries are submitted 
in the SQL format no matter whether they are 
normal SQL queries or keyword searches. For 
keyword searches, we define the following operator: 

keySearch: string → set(tuple) 
With the above operators, we can make various 

kinds of queries in the SQL format. Let’s see some 
examples. 

3 RDB-KV CLOUD DATA 
MANAGEMENT FRAMEWORK 

In a sensor-based system, there could be huge 
numbers of sensors monitoring the states of various 
kinds of objects. To manage the sensor sampling 
data efficiently, we need large numbers of RDB-KV 
NodeDBs to work together and to form an RDB-KV 
Cloud Storage system. The RDB-KV Cloud Storage 
assumes a two-layered structure, with the leaf nodes 
storing real sensor data and the master node storing 
global indices and catalogues for global query 
processing. The architecture of the RDB-KV Cloud 
Storage is shown in Figure 2. 

 
Figure 2: Architecture of the RDB-KV Cloud Storage. 

In the RDB-KV Cloud Storage, both the master 
node and the leaf nodes are RDB-KV NodeDBs, 
with the master node having some additional 
modules for global indexing and query processing.  
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3.1 Data Distribution Strategies 

In the RDB-KV CloudDB, all new sampling values 
are sent to the Sampling Receivers (see Figure 2) 
first, and then are distributed among leaf nodes 
according to their geographical attributes. In the 
system, each leaf node site corresponds to a certain 
area (called the “service area” of the node, denoted 
as α(site)), and data are distributed among the leaf 
nodes according to their geographical attributes. The 
master node and the sampling receivers keep the 
Service Area Partition Table (SAP-Table). 

For an arbitrary object obj, if it is a static object, 
then it corresponds to only one tuple which is saved 
at the leaf node whose service area covers the 
location of obj. If obj is a moving object, then it 
corresponds to multiple replicated tuples − The basic 
information (including attributes other than 
“Samplings”, that is, ObjectID, ObjectType, Owner, 
DeployedTime, see Subsection 2.1 for the schema of 
the IoTData table) are replicated among all leaf 
nodes through whose service areas obj has travelled, 
while its “Samplings” attribute is partitioned and 
kept in a distributed manner among these nodes. 
Figure 3 shows how the “Samplings” attribute of obj 
is distributed  

 
Figure 3: Distribution of the “Samplings” value. 

3.2 Global and Local Indices 

In sensor-based systems, queries about individual 
sensors can be roughly divided into three categories: 
keyword queries, spatial-temporal queries, and 
value-based queries. 

The first kind of queries can be supported 
efficiently through the Global Keyword B-Tree 
Index which indices the keywords extracted from the 
database records. The index is a distributed one 
which involve all the leaf nodes of the RDB-KV 
cloud to organize the (keyword, siteID) pairs. 

For the second kind of queries, we need the 
Sensor-Sampling-Sequence Spatial-Temporal Tree 
(S4T-Tree) to index the spatial-temporal attribute of 
the sampling sequence data. S4T-Tree actually 

consists of two trees, a spatial R-Tree which indices 
the locations of static objects and a Grid-Sketched 
Spatial-Temporal R-Tree (GSSTR-Tree) which 
indices the time-dependent locations (or 
“trajectories”) of moving objects whose locations 
change over time.  

The third kind of queries is very important in 
real-world applications. For instance, “query all the 
sensors whose temperatures are above 40 °C at time 
t”. To support this kind of queries, we need to build 
a Grid-Sketched Value-Temporal R-Tree for every 
kind of sensors. The records of the index are shown 
in Figure 4. From the figure we can see that the 
Grid-Sketched Value-Temporal R-Tree can greatly 
reduce the number of records and the updating 
frequency in indexing sampling sequences. 

 
Figure 4: Grid-Sketched Value-Temporal R-Tree. 

4 CONCLUSIONS 

In this paper, the RDB-KV CloudDB mechanism is 
proposed which can support spatial-temporal queries, 
value-based queries and keyword queries efficiently. 
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