
A UBIQUITOUS SYSTEM USING SEMANTIC KNOWLEDGE
IN DYNAMIC SERVICE INTEGRATION

Tomasz Dziubich, Paweł Kaczmarek and Sławomir Nasiadka
Department of Computer Systems Architecture, Faculty of Electronics, Telecommunications and Informatics,

Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233 Gdańsk, Poland

Keywords: Ubiquitous systems, Service integration, Semantic information, Workflow systems.

Abstract: The paper presents a ubiquitous system that uses semantic information to manage dynamic changes in system
elements. We design the system using the Context-Controller-Action architecture that covers the main parts
of ubiquitous environments, including: environment devices (such as sensors and actuators), contexts and ac-
tions, all of which may be dynamically configured during system operation. A graphical user interface for the
system is supplied, which enables non-expert users to perform changes in system configuration. Internally,
semantic information is used throughout the system to define a common language between devices, contexts
and services. A Web services interface is used in services that handle environment devices to support their
integration with the system regardless of internally used communication protocols. The architecture was im-
plemented as a framework for developing and running applications in ubiquitous environments. We integrated
a number of devices in the framework, including, RFID sensors, digital displays, cameras, electronic door
locks and others. We also defined exemplary contexts and actions in the environment.

1 INTRODUCTION

Ubiquitous systems significantly extend everyday life
environments with an ability to dynamically adapt to
changing environment conditions and user behavior.
The conditions and behavior are detected by dedi-
cated sensors (Poslad, 2009) that supply relevant in-
formation for the ubiquitous system. The informa-
tion is used to determine the current context (Loke,
2006) (Salber et al., 1999) of the environment and
to perform various real-world actions using actuators.
Examples of performed actions include door unlock-
ing depending on an identified user, modifications of
digital display contents, and temperature adjustment.

The emerge of ubiquitous systems opened new
challenges and requirements as compared to tradi-
tional desktop computing. Systems must be able to
dynamically manage changes that occur both in the
environment and in a system structure. The nature
and the result of environment actions should change
depending on user preferences or availability of ser-
vices. For example, a user might expect a system
to change its behavior because of the holiday season,
which has not been anticipated earlier. Additionally,
the dynamic changes of system behavior should be
managed by users who usually do not have advanced

knowledge about software development.
Considering the requirements, we propose a sys-

tem that supports both dynamic management of re-
sources and a user-friendly approach to system pro-
gramming. Dynamic management of resources is re-
alized by the Context-Controller-Action architecture
that integrates different system elements, such as sen-
sors, context definitions, available actuators and ac-
tions. Context and action definitions are managed
by a user-friendly interface adequate for non-expert
users. We shift from traditional coding-based appli-
cation development to declarative-based development
supported by a graphical user interface. Internally,
we use semantic information and Web services to im-
prove seamless integration and interoperability of sys-
tem elements. Semantic information is used through-
out the system to define a common language between
devices, contexts and actions.

2 SYSTEM ARCHITECTURE

We propose to use the Context Controller Action
(CCA) architecture, as shown in Fig. 1. In the ar-
chitecture, a system is composed from the following
main modules:

45Dziubich T., Kaczmarek P. and Nasiadka S..
A UBIQUITOUS SYSTEM USING SEMANTIC KNOWLEDGE IN DYNAMIC SERVICE INTEGRATION.
DOI: 10.5220/0003801100450050
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 45-50
ISBN: 978-989-8565-00-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Main components of the Context Controller Ac-
tion (CCA) architecture.

Basic Services Environment.A basic service repre-
sents a single component available in the smart
space such as a sensor, an actuator, or a wrapper
for an external data source. The basic services en-
vironment hosts the services.

Integration Module. The module supplies a user in-
terface enabling the management of system ele-
ments such as basic services, contexts and actions.
A user can configure which actions are taken in
response to a specific context occurrence.

Context Processing Module.In our approach, a
context is a set of data that describes the environ-
ment and that can be interpreted by the applica-
tion (Loke, 2006). The module is responsible for
runtime processing of contexts. It collects infor-
mation from basic services and processes them to
determine if a specific context occurred.

Scenario (Action) Invocation Module. The module
executes scenarios in the environment in response
to requests sent from Context Processing Module
through Integration Module. We use the concept
of scenario to represent a set of basic actions exe-
cuted.

Semantic Knowledge Module.The module stores
semantic concepts concerning basic services. The
information is available for other system modules.

2.1 Basic Services Environment

Basic Services Environment hosts basic services that
manage sensors, actuators and, potentially, other ap-
plications. Basic services supply a Web services in-
terface that is used to integrate with the system. Ser-
vices typically communicate with sensors and actua-
tors (called transducers) using a device controller that
manages low level operations.

Apart from hosting basic services, the Basic ser-
vices module contains two components: a Service

Registry and a Service Wrapper. Service registry
stores information about known basic services to-
gether with their WSDL definitions, semantic de-
scription and internal information. The registry sup-
plies the information for other system modules. Ser-
vice wrapper manages concrete registrations and in-
vocations of services, which unifies the invocations.

2.2 Integration Module

The integration module is a central part of the system
and supplies two main functionalities: communica-
tion between other system modules and a convenient
user interface. System modules register in Integration
Module to enable data interchange and references be-
tween the modules.

The module supplies also a user interface that en-
ables definition of contexts, scenarios and associa-
tions between them. We used the declarative oriented
approach to programming to simplify the develop-
ment process. Using a graphical tool, a user declares
context definition that should be processed by the sys-
tem. Then the user may register the definition using
Integration Module that in turn passes the definition
on to Context Processing Module. Additionally, a
user may register scenario definitions in BPEL and
specify which scenarios should be invoked on occur-
rence of a context.

2.3 Context and Scenario Processing
Modules

Context Processing Module listens for notifications
from basic services and processes them to determine
if a context has occurred. On notification arrival, it
verifies conditions for context occurrence. If a context
is identified, the module sends an event to Integration
Module that in turn searches for a corresponding sce-
nario and sends a request for scenario execution to
Scenario Invocation Module.

We utilize an enhanced Petri net (Jensen et al.,
2007) to process conditions required for a context to
occur. Initial places in Petri net definition represent
input data from basic services or data sources, tokens
represent concrete data that occurred, while transi-
tions represent conditions that must be met for a con-
text to occur (AND, OR). Each token has an assigned
living time which enables us to identify time depen-
dencies between them.

As an example, consider a context that represents
a lecturer starting a lecture in a room. The context
can identified by two conditions: the lecturer is in the
room, and there is the time for the lecture in the room.
We must ensure that the system processes the start of

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

46



the lecture only once. The lecturer can be identified
either by an image recognition system or RFID. A no-
tification from any of the services places a token in an
initial state and fires the first transition. Lecturer’s
timetable is read from the Timetable service. A con-
text is detected if transitions are fired and they reach
the final state of the context definition.

The Scenario (Action) invocation module is re-
sponsible for executing scenarios (sequences of ac-
tions) in the ubiquitous environment. Scenarios are
defined as workflows in the BPEL language and ac-
cept data from Context Processing Module as input.
Using Integration Module, the scenario is registered
in the system by giving a link to its location. Sce-
nario invocation is triggered by a context occurrence
identified by Context Processing Module. The mod-
ule sends a request through the Integration Module.

3 SYSTEM OPERATION

The Context-Controller-Action architecture supplies
a coherent pattern for development, deployment and
operation of context-aware applications. It is focused
on both flexibility and a user-friendly interface. Flexi-
bility is achieved by semantic description of concepts
and dynamic registration of services, context and sce-
narios. A user-friendly interface enables non-expert
users to define their applications and configure the
system.

3.1 Component Integration using
Semantic Knowledge

Semantic Knowledge Module is the central point of
semantic processing as it stores the ontology that de-
scribe concepts occurring in the ubiquitous system.
The concepts concern two main aspects: descrip-
tion of environment entities and description of ser-
vices. Environment entities cover information simi-
lar to other context ontologies (such as SOUPA (Chen
et al., 2004), CONON (Wang et al., 2004a)). The con-
cepts are used to define the environment and to iden-
tify contexts. Selected concepts used in our ontology
include: Person, Name, Location, TimeOfDay, GP-
SPosition, RoadNumber, Weather. Semantic descrip-
tion of services improves service registration and pro-
cessing of service data. Fig 2 shows main components
of the semantic infrastructure.

Basic services are described using concepts from
environment and service ontologies. On registration,
each service supplies its semantic description to the
Semantic Knowledge Module. The description spec-
ifies a mapping between raw data of service interface

Figure 2: Semantic information structure and processing.

and concepts from the ontology. The mapping is used
in Basic Services Environment that receives data from
services and translates it into semantic information.
The information is then passed to context identifica-
tion. Context definitions use semantic concepts from
the environment ontology without concrete references
to services or service data. In this solution, it is possi-
ble to exchange a service without modifying context
definitions and processing.

The ontology is stored in the OWL format as the
most popular format for ontology description. We
used the Jena engine to process the ontology and rea-
son about concepts.

3.2 Processing of Information

Information processing covers two main areas: sys-
tem configuration and system operation. Consider-
ing the dynamic nature of a ubiquitous environment
and dynamic adaptation of system operation, the ar-
eas may interchange. Main steps of making the sys-
tem operational are as follows:

1. Registration of Basic Services. The phase re-
quires installation of adequate devices, deploying
sensor services and registering the services.

2. Configuration of Contexts and Scenarios.The
phase covers definition of contexts using a sup-
plied graphical tool, definition of BPEL scenar-
ios and registering them using Integration Mod-
ule. Integration Module passes contexts to Con-
text Processing Module and scenarios to Scenario
Invocation Module.

3. Basic Services Information Processing. The
processing is performed in a loop in two alter-
native modes. Basic Services Environment either

A UBIQUITOUS SYSTEM USING SEMANTIC KNOWLEDGE IN DYNAMIC SERVICE INTEGRATION

47



explicitly invokes methods of basic services to get
required data or listens for asynchronous notifi-
cations from basic services. After receiving in-
formation, Basic Services Environment translates
raw sensor data to semantic concepts and sends
the information to Integration Module that in turn
passes it on to Context Processing Module.

4. Context Processing Module identifies Context.
The module retrieves contextual information and
maps it to context definitions using the defined on-
tology. If a context is identified, the module sends
information to Integration Module.

5. Scenario Invocation. Integration Module maps
an identified context with an assigned scenario
and passes a scenario invocation request to Ser-
vice Invocation Module. The latter invokes the
BPEL scenario that may invoke services.

4 PROTOTYPICAL
IMPLEMENTATION

As a part of the research, we implemented a frame-
work in the Context Controller Action architecture
and used the framework to deploy exemplary services,
contexts and scenarios. The implementation covers
all modules of the CCA architecture. A Web services
interface is supplied for each of the modules to enable
inter-module cooperation.

The majority of the system is implemented in the
.NET 3.5 Platform. Knowledge Base and Scenario In-
vocation Modules are implemented in Java consider-
ing better support for ontology processing and BPEL
processing in this language.

The .NET part contains a dedicated library for
processing of the Petri net structure that processes
the net considering elements specific for this system;
such as token lifetime, different transition conditions
and token data. We used the Jena framework for
management of ontological structures and reasoning
about concepts. Scenario Invocation Module uses the
Apache Ode for invocation of BPEL workflows.

The system supplies both a regular user interface
and an administration application interface. The reg-
ular user interface enables definition of contexts by
composing block elements and associations between
the elements. After definition of the models, a user
may register the context and scenario, and associate
contexts with scenarios.

The administration application enables monitor-
ing and verification of system behavior such as: ses-
sion establishment, registration of a new context or
scenario together with its XML contents, connection

and disconnection between modules. Fig. 3 shows an
exemplary dialog box with monitoring data displayed.

4.1 Exemplary Services, Contexts and
Scenarios

Context Processing Environment was used to imple-
ment exemplary ubiquitous applications that cover
basic services, context definitions and scenario defini-
tions. We used the following hardware devices in pro-
totypical use of the system: BERA Electronic Door
Lock, CAENRFID 949EU IP65 UHF RFiD sensor
with HUBER+SUHNER AG 806-960MHz antenna,
video cameras: Logitech QuickCam Pro5000, DLink
SecuriCam DCS-5300G, PDA device based on Intel
PXA270, a stepping motor, a multimedia projector
and a PDA device. Using the devices we implemented
basic services that covered different areas of function-
ality. Examples of basic services include: context
recognition (timetable service, camera service, user
authentication based on RFID, projector service), ac-
cess verification (door lock manipulation, MMS no-
tification), environment actions (PowerPoint presen-
tation management, control of a motor, file transfer
to/from PDA). Basic services were used to implement
concrete contexts and invoke scenarios:

Management of Lecture Room Access.The func-
tionality uses the RFID identification, Door lock
service and Timetable service. Context definition
covers place and person identification using the
RFID service and lecture time verification using
the Timetable service. Door is unlocked if a right
person is close to the door, and the Timetable con-
firms that the person has a lecture in the room.

Illumination Control. The functionality uses the
Camera service, Electric stepping motor service
and Projector service. Context definition covers
illumination calculation using the Camera service
and projector state checking using the Projector
service. Electric motor is activated (scenario) if
illumination is higher that a specified limit and
the Projector is turned on. The scenario simu-
lates Roller-blinds closing in case the illumination
is too high during a presentation.

4.2 Sensor Service Integration Process

Sensor services were implemented by independent
groups of students and then deployed in the system by
a single team that was familiar with system operation.
The process supplied interesting data for development
and runtime interoperability (Ullberg et al., 2008)
analysis. All services in the system supply a Web ser-

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

48



Figure 3: A dialog box that enables monitoring of internal system behavior.

vices interface for system communication, which sig-
nificantly improved the interoperability. The services,
however, have to communicate with the sensors us-
ing lower-layer protocols (RS232, 802.11, WEP, FTP,
USB, Ethernet), which requires custom implementa-
tions (Kaczmarek and Downar, 2010).

Sensor communication was implemented in each
service by an individual team, which enabled us to
split the work between a large number of developers,
but raised difficulties during the deployment phase.
The deployment was performed by a single team that
had to familiarize with the service. File manipula-
tion, RFID and Gesture recognition services required
the highest work to deploy, 24 man hours, 14 man
hours and 12 man hours respectively. Other services
were analyzed, deployed and integrated in less than
10 hours for each.

As a part of system testing, we performed ba-
sic performance analysis (Krawczyk and Nasiadka,
2011). Gathering of context related data has been
identified as a potential performance bottleneck. Ac-
tion invocation was identified as less significant as ac-
tions are invoked externally to the environment. We
measured the dependence between context processing
time and the number of parameters passed for pro-
cessing (context size). Experiments shown that pro-
cessing time depends almost linearly on context size
and takes approximately 100 ms for contexts with 10
inputs up to 700 ms for contexts with 200 input.

5 RELATED WORK

Context-aware application development is an active
research field addressed both by industry and aca-
demic teams. Our work differs from existing solution
in the following main areas:

• We propose the Context-Controller-Action archi-
tecture that extends the standard architecture with
Integration and Knowledge Base Modules.

• We enable dynamic management of environment
resources and performing environment actions de-
pending on available devices.

• We present a complete solution that uses seman-
tic description in all system elements, which cov-
ers basic services management, context process-
ing and action invocation.

• We supply a user-friendly interface that enables
non-expert users to dynamically configure a ubiq-
uitous environment.

Context-aware systems are usually composed of
an instrumentation layer, a middleware layer and
an applications layer (Meyer and Rakotonirainy,
2003) (Hsu et al., 2010). The instrumentation cov-
ers smart space sensors and physical devices that sup-
ply information to the middleware layer that iden-
tifies high level context information. The informa-
tion is used by the application layer to gather con-
textual knowledge and deliver the expected service.
The work (Rehman et al., 2007) proposes a differ-
ent architecture for context aware applications that
adapts the Model-View-Controller to ubiquitous envi-
ronments. The work (Sui and Wang, 2006) proposes a
solution for automated generation of service flow pat-
terns, which intends to simplify user interaction with
pervasive systems.

The use of ontologies and automated service dis-
covery in context-aware applications is an active re-
search direction. Unfortunately, there are “far too
many standards” for service description and discov-
ery (Mcgrath et al., 2007) without a consensus about
interoperability formats and common semantics. The
work (Chen et al., 2004) presents the SOUPA on-
tology that is an extensive and mature ontology of
ubiquitous applications. The core of the system cov-
ers information about events, time, people, space, ac-
tions and other. Another ontology of context-aware
systems is presented in (Wang et al., 2004a). Both
ontologies may be extended with concepts specific
for application domain. In (Wang et al., 2004b), au-
thors designed and used an upper-level context ontol-

A UBIQUITOUS SYSTEM USING SEMANTIC KNOWLEDGE IN DYNAMIC SERVICE INTEGRATION

49



ogy that covers typical concepts occurring in context-
aware applications.

Transformation of raw data from basic sensors to
high level information is required to identify con-
text effectively. Context awareness may be imple-
mented either on the device level or on the infras-
tructure level (Loke, 2006). The first requires more
intelligent devices, while the second requires more
advanced context processing on the application level.
A Context Widget (Salber et al., 1999) supplies ab-
stract context information to application hiding the
complexity of the actual sensors. The work (Dimakis
et al., 2008) presents the SitCom and CHILix sys-
tems that enable development of context-aware appli-
cations and incorporation of smart space devices.

6 CONCLUSIONS AND FUTURE
WORK

The designed and implemented solution proved that
the Context-Controller-Action architecture can be
used to develop a dynamic ubiquitous system. Sen-
sor services, context and scenarios, can be configured
at runtime by a non-expert user who is equipped with
a graphical user interface. The internal use of seman-
tic description enables interchange of service infor-
mation and universal definition of contexts. The Web
services interface was used throughout the system to
integrate services with the system, and system mod-
ules between themselves.

Incorporation of semantic information in scenario
definitions is an interesting area of future work. BPEL
for Semantic Web Services is an important initiative
to include semantics into the workflow technology,
but the language has not been implemented in a pro-
cessing engine or design tool yet. Deployment of
further sensors and definition of contexts/scenarios is
another important field of future work. The current
implementation demonstrated the usability of the sys-
tem, but it will be advisable to develop more advanced
behavior scenarios.

ACKNOWLEDGEMENTS

This work was supported in part by the Polish Min-
istry of Science and Higher Education under research
project N N519 172337. Students from the Faculty
of ETI brought significant help in implementation of
basic services.

REFERENCES

Chen, H., Perich, F., Finin, T., and Joshi, A. (2004). Soupa:
Standard ontology for ubiquitous and pervasive appli-
cations. InInternational Conference on Mobile and
Ubiquitous Systems: Networking and Services.

Dimakis, N., Soldatos, J., Polymenakos, L., Fleury, P.,
Curin, J., and Kleindienst, J. (2008). Integrated devel-
opment of context-aware applications in smart spaces.
Pervasive Computing.

Hsu, H.-J., Wu, S.-Y., and Wang, F.-J. (2010). A methodol-
ogy to developing situation-aware pervasive applica-
tions with service oriented architecture. In6th IEEE
World Congress on Services.

Jensen, K., Kristensen, L. M., and Wells, L. (2007).
Coloured petri nets and cpn tools for modelling and
validation of concurrent systems.International Jour-
nal on Software Tools for Technology Transfer (STTT).

Kaczmarek, P. L. and Downar, M. (2010). Interoperabil-
ity analysis of sensor interface in ubiquitous environ-
ments. In31th International Conference on Informa-
tion Systems Architecture and Technology.

Krawczyk, H. and Nasiadka, S. (2011). A new model for
context-aware applications analysis and design. In
UBICOMM: The Fifth International Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies.

Loke, S. W. (2006). Context-aware artifacts: Two develop-
ment approaches.IEEE Pervasive Computing.

Mcgrath, R. E., Mickunas, M. D., and Campbell, R. H.
(2007). Semantic discovery for ubiquitous comput-
ing. CiteSeerX - Scientific Literature Digital Library
and Search Engine.

Meyer, S. and Rakotonirainy, A. (2003). A survey of re-
search on context-aware homes. InAustralasian In-
formation Security Workshop Conference on ACSW.

Poslad, S. (2009).Ubiquitous Computing: Smart Devices,
Environments and Interactions. Wiley Publishing.

Rehman, K., Stajano, F., and Coulouris, G. (2007). An ar-
chitecture for interactive context-aware applications.
IEEE Pervasive Computing.

Salber, D., Dey, A. K., and Abowd, G. D. (1999). The
context toolkit: Aiding the development of context-
enabled applications. InCHI, Pittsburgh, PA.

Sui, Q. and Wang, H.-y. (2006). A service oriented flow pat-
tern in pervasive computing environments. In1st In-
ternational Symposium on Pervasive Computing and
Applications.

Ullberg, J., Lagerström, R., and Johnson, P. (2008). A
framework for service interoperability analysis using
enterprise architecture models. InIEEE SCC (2),
pages 99–107.

Wang, C., Zhang, D., Hung, T., and Pung, K. (2004a). On-
tology based context modeling and reasoning using
owl. In Second IEEE Annual Conference on Perva-
sive Computing and Communications Workshops.

Wang, X., Dong, J. S., Chin, C., Hettiarachchi, S. R., and
Zhang, D. (2004b). Semantic space: An infrastructure
for smart spaces.IEEE Pervasive Computing.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

50


