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Abstract: Energy minimization algorithms are used in low-level computer vision applications for labeling tasks such
as stereo-disparity estimation, image restoration, motion estimation, and optical flow. The energy function
involves terms that evaluate the goodness of a solution in terms of a prior knowledge in addition to data terms.
The most widely used priors are smoothness-based priors, which enhance the quality significantly. However,
the smoothness assumption is not valid across discontinuities (e.g.motion boundaries). We present a method to
update the weights of smoothness terms using the dual problem when the approximation algorithm is iterative.
The dual of the primal energy minimization problem is used to infer about the validity of the smoothness prior
and impose it more correctly at each iteration. We demonstrate the effectiveness of this method against the
state-of-the-art in the optical flow literature.

1 INTRODUCTION

Energy minimization refers to designing an energy
function that describes the desired properties of a
solution and its minimization to obtain a good so-
lution. Most problems in computer vision such as
motion/optical-flow estimation, stereo-disparity esti-
mation, video synopsis, image formation modeling,
texture segmentation are ill-posed (Boykov et al.,
2001; Rav-Acha et al., 2008; Rav-Acha et al., 2006;
Hofmann et al., 1996) in the Hadamard sense: many
solutions exist and choosing one of the many solu-
tions based solely on data results in over-fitting of the
parameters. A model with over-fitted parameters is
not good in prediction and also not effective in gener-
alizing beyond data for truly explaining the observed
phenomenon.

An energy function consists of a data term and
a prior knowledge term to discriminate between the
large number of solutions. Energy functions are of-
ten difficult to minimize because the solution space is
generally exponentially large depending on the size
of the problem. The data energy typically has a
large number of non-convexities, which exacerbates
the problem. One of the most commonly used prior
knowledge is the smoothness of the solution, which is
shown to be NP-hard (Boykov et al., 2001).

Energy minimization problems can be formulated

as labeling problems. A typical energy is of the form

E(v) = ∑
b∈B

Db(lb)+λ ∑
b,a∈N

Vb,a(lb, la), (1)

whereDb is the data fidelity term,Vb,a represents the
prior knowledge as a penalty cost between two inter-
acting sitesb anda. B is the set of sites,N is the set
of sites that interact with each other, andlb is the label
for siteb. With nb sites andnl labels, the number of
possible labellings isnnl

b .
NP-hard labeling problems will require exponen-

tial time to find the global minimum. To achieve prac-
tical algorithms, local search methods can be used
to refine an initial solution iteratively (Papadimitriou
and Steiglitz, 1998). When there are many local
minimums, approximation algorithms that do a lo-
cal search are likely to get stuck at a local minimum.
The local minimums are created mostly due to the
non-convexities inDb. Fortunately,Vb,a is generally
convex because the prior knowledge is commonly a
norm of a distance measure on the solution space or
its derivatives. Hence, increasing the weight ofVb,a in
the energy will help with the convergence of the al-
gorithm. But labels have discontinuities, which make
Vb,a invalid for specific interactions between sites and
increasing its weight will falsely impose an invalid
prior knowledge on the labels. To solve this problem,
we propose to use the dual problem of the primal en-
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ergy problem. The primal problem for each iteration
of a label is expressed as a linear programming prob-
lem and the equivalence of its Lagrangian to the en-
ergy under specific choices of the Lagrangian multi-
pliers is shown. The dual solution is used to correctly
impose the prior knowledge by adapting the weights
in the smoothness prior via complementary slackness
conditions.

In the next section we give a review of prior art in
energy minimization. In Section 3, we present our
primal-dual method for energy function design us-
ing a spatial smoothness prior. Finally, in Section 4,
we demonstrate the power of our proposed method
against the state-of-the-art in the optical flow litera-
ture.

2 RELATED WORK

Prior works on energy-minimization determines the
energy function at the beginning by fixing the pa-
rameters manually, and focus on efficient minimiza-
tion techniques. Energy-minimization is commonly
used in computer vision applications (Rav-Acha et al.,
2008; Rav-Acha et al., 2006), and it is applied to
pixel level stereo-disparity estimation, which is simi-
lar to motion estimation in essence (Kolmogorov and
Boykov, 2002; Boykov and Veksler, 2006; Veksler,
1999).

The majority of prior art focuses on the mini-
mization problem rather than the design of the en-
ergy function. Graph-cut methods are powerful in
quickly converging to good local minimums due to
their ability to do large moves (Kolmogorov and
Boykov, 2002; Boykov and Veksler, 2006; Veksler,
1999). However, they are computationally complex
and are not hardware-friendly since they operate on
node lists to find max flows in a graph. Modifying
energy functions to avoid falsely imposing smooth-
ness priors across discontinuities is proposed for ob-
ject segmentation but the discontinuity is inferred us-
ing the contrast in the pixel intensities (Kohli and
Torr, 2007). For optical flow changing the weights us-
ing the image gradients is also proposed (Werlberger
et al., 2009). In these approaches, although the en-
ergy is adapted to the image (or data in general), it is
still fixed throughout the iterations. Also, the adapta-
tion may bias the solutions towards a bad local min-
imum since in some cases contrast in pixel intensity
may not produce discontinuities/boundaries in the la-
bels. Instead, we propose to modify the energy using
the labels from the previous iteration, which becomes
more reliable as the minimization algorithm improves
the solution.

Belief propagation techniques are also used for
minimizing the energy (Meltzer et al., 2005). The re-
sults achieved with belief propagation techniques are
similar to graph-cut methods in quality.

Application of energy minimization to various
computer vision problems is done by introducing
new terms in the energy function to utilize prior in-
formation for the specific problem. For example,
video synopsis tries to compress an image sequence
in time, hence, requires the use of energy terms that
imposes this via temporal energy terms (Rav-Acha
et al., 2006). Another application such as unwrap-
ping the surface of an object for video editing requires
some other energy terms related to tracking and mo-
saic stitching (Rav-Acha et al., 2008).

In this work, we study the energy design aspect of
energy minimization that uses first-order smoothness
priors. We propose a primal-dual linear programming
method that utilizes labels from the previous iteration
to modify the smoothness priors in order to take the
discontinuities into account.

3 PRIMAL-DUAL METHOD FOR
ENERGY-MINIMIZATION

3.1 Formulation of a Move as a Linear
Program

We define a move as a change of labels to a particular
candidate label,ρ. A large move can change a group
of site’s labels toρ, keeping all other labels the same
as the pre-move labelsl∗, while a standard-move can
only change a single site’s label toρ.

We formulate the move problem for candidate la-
bel ρ as a linear programming problem (move-LP) in
the canonical form

min ∑
b∈B

xbDb(ρ)+ (1− xb)D)b(l∗b) (2)

subject to

xb− xa ≥−pba, xa− xb ≥−pba, ∀{b,a} ∈ N ,

xb ≥ 0, −xb ≥−1, ∀b ∈ B,

where l∗ is the pre-move labels,ρ is the candidate
label of the move, andpba is the probability ofb
and a to be on different objects1. x is the variable
of the move-LP, which is in[0,1]. xb = 1 indicates
that lb = ρ, and xb = 0 indicates thatlb = l∗b. For
xb ∈ (0,1), a fractional move is indicated, which can

1Generally, pba’s are neither known nor directly ob-
served from data. However as discussed in Section 3.3 our
technique does not require the knowledge ofp.
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be interpreted asb takes onρ with probabilityxb and
retainsl∗b with probability 1− xb. The advantage of
expressing the move problem as a linear problem is
that it enables fractional moves during the iterations.
To avoid confusion, it is important to note that the
above equation is not a relaxed version of the en-
ergy minimization problem given in (1), but its La-
grangian with specific set of multipliers is identical to
(1), which will be proved next.

The cost term in (2) is a weighted sum of data
terms with labelsρ and l∗b. Two inequality con-
straints are imposed on the move to achieve smooth-
ness:xb− xa ≥ −pba andxa− xb ≥ −pba. They are
canonical form linear constraints for|xb− xa| ≤ pba.
With these constraints neighbor sites that are likely to
move together are forced to move together depending
on the probability,pba, of b anda to have different
labels. Hence, smoothness is enforced on actions but
not on the labels. However, a sequence of smooth
moves will create a smooth label set in the end.

We next write the Lagrangian for the move-LP in
(2),

L(x,β,γ,κ) = ∑
b∈B

xbDb(ρ)+(1−xb)Db(l
∗
b)+

∑
{b,a}∈N

βba(−xb+xa− pba)+βab(−xa+xb− pba)+

∑
{b,a}∈(N)

−γbxb+κb(xb−1), (3)

whereβ, γ, andκ are positive Lagrange multipliers
associated with their corresponding inequality con-
straints.
Lemma 1. A binary solution2 x of the move-LP cor-
responds to a move from l∗ to lLP.

Proof. By the definition ofx, lb = ρ if xb = 1, and
lb = l∗b if xb = 0, which means a change of labels to
ρ while keeping all other labels same as inl∗. There-
fore, a binaryx corresponds to a move from the pre-
vious label setl∗ to a new label setlLP, which is the
solution to our linear program.

Using Lemma 1, and the Lagrangian in (3) yields:
Theorem 2. The Lagrangian of the move-LP with a
binary solution x is equal to the energy, E(lLP), if the
Lagrangian multipliers satisfy

βbapba = βabpab =− 1
2λVb,a(l∗b, l

∗
a) s.t. xb = 0,xa = 0

βba = 0, βab = 0 s.t. xb = 1,xa = 1
βba = 0.βab(1− pba) = λVb,a(ρ, l∗a) s.t. xb = 1,xa = 0
βba(1− pba) = λVb,a(l∗b,ρ),βab = 0 s.t. xb = 0,xa = 1
γb = 0,κb = 0,

(4)

2A binary solution is defined such that each component
of x is either zero or one.

wherelLP is a move away froml∗.

Proof. We skip the proof due to space limitations.3

3.2 Sub-optimality of the Energy

Theorem 2 shows that for a specific choice of the La-
grangian multipliers, the Lagrangian of the move-LP
problem is equal to the energy under a binary move.
The conditions for the Lagrangian multipliers for this
equality may not be the best in terms of convergence
and energy function design, because the Lagrangian
multipliers are chosen without utilizing any informa-
tion learnt from the iterations. By intelligently choos-
ing the Lagrangian multipliers, contributions of the
constraints in the Lagrangian can be better adjusted.
This will especially improve the application of the
smoothness constraints for sites that are in the vicinity
of a discontinuity.

To achieve our goal, we utilize theprimal-dual
schema(Papadimitriou and Steiglitz, 1998). This
technique constructs a feasible solution of the dual
problem and an integer solution of the primal prob-
lem iteratively. Since a solution of the dual problem
also provides lower bound on the primal problem by
the weak duality, one can compute a feasible solution
for the dual problem first which then can be used to
find the corresponding primal solution via the com-
plementary slackness conditions (Papadimitriou and
Steiglitz, 1998).

Our method differs from the primal-dual schema
by the way complementary slackness conditions
(CSCs) are utilized. In the conventional primal-dual
schema, CSCs are used to obtain the integer primal
solution from the dual solution. However, we want
to design a uniform algorithm, which has one type of
computation kernels, which iteratively update the la-
bels by substituting in the energy. Iterations of the
same forms of energy function are more suitable for
parallel implementations rather than an approach that
involves minimizing an energy followed by solving
the CSCs. In our method, CSCs are used to infer if
a constraint of the move-LP istight or slack. A slack
constraint means the constraint is satisfied as a strict
inequality, and a tight constraint means the constraint
is satisfied with equality. By learning if a constraint
is slack or tight via the dual feasible solution and the
CSCs, the Lagrangian multipliers can be adjusted be-
cause a slack constraint means our prior information
agrees with our current solution, and a tight constraint
mean our prior information disagrees with our current

3The proof can be found in the first author’s Ph.D thesis.
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solution. Compared to choosing the Lagrangian mul-
tipliers as specified by the condition of Theorem 2
in an ad hoc manner, our primal-dual method uses
the feasible dual solution to determine the Lagrangian
multipliers, which is then used in the Lagrangian that
is to be minimized. We present the dual problem of
energy minimization in the following section.

3.3 The Dual Problem

We start with rewriting the move-LP problem in (2) in
matrix form for a compact representation. The primal
problem is

min
x

cTx+ c̄T(1− x) (5)

subject to

Ax ≥ −p

x ≥ 0,−x≥−1,

wherec, c̄,x∈ R
|N |, andA∈ R

|N |×|B| such thatcb =
Db(ρ) and c̄b = Db(v∗b), andAki = 1, Ak j = −1 for
anykth pair {i, j} ∈ N . It is straightforward to con-
struct the remaining labels so that the above problem
is equal to the original move-LP problem. The La-
grangian can be formed similar to (3):

L(x,β,γ,κ) = cTx+ c̄T(1−x)+βT (−p−Ax)−

γTx+κT(x−1)

= (c− c̄−ATβ− γ−κ)T x−βT p−κT 1

= mTx−βT p−κT1,
(6)

wherem is substituted forc− c̄−ATβ− γ − κ for
compactness. One can see that because of the way
the constraints of the primal problem are utilized in
the Lagrangian, the Lagrangian is always smaller than
the primal problem’s objective

L(x,β,γ,κ)≤ cTx+ c̄T(1− x), (7)

given thatx is a feasible point in (5).
The dual function is a minimization of (6) onx:

g(β,γ,κ) = inf
x

L(x,β,γ,κ)

=

{

−βT p −κT1 if m= 0

−∞ otherwise

(8)
For the dual function to existm must be equal to 0.
It is straightforward to show that the dual function
provides lower bounds on the more complex primal
problem’s optimal value by observing (7) and (4).

The dual problem is the maximization of
the dual function, which becomes a minimization by
changing the sign of the objective function:

min
β,γ,κ

βT p+κT1 (9)

subject to

c− c̄−ATβ− γ−κ= 0, (10)

The dual problem turns out to be the minimum cost
flow problem with costs given as the probabilities of
two sites belonging to different objects, which can be
solved using the maximum flow algorithms. The re-
quired flow is specified byc− c̄−ATβ− γ−κ, while
flows across discontinuities (highp values) are dis-
couraged. We are looking for a feasible solution of
the dual problem, not necessarily the optimal solu-
tion. An optimal solution requires more computation
and knowledge ofp, which specifies the probability of
two sites having different blocks, which is not known.
p values can be inferred from data similar to (Kohli
and Torr, 2007) by using intensity gradient, but in this
work we will use a feasible solution of the dual prob-
lem that does not require the knowledge ofp.

Dual feasibility condition is specified by the re-
quired flow condition given by

c− c̄−ATβ− γ−κ= 0, (11)

And β can be estimated by

β̂ = A†(c− c̄− γ), (12)

whereA† is the pseudo-inverse ofA, κ is set to zero
in the second equation, because the dual function that
we want to minimize is an increasing function ofκ4.
SinceA†(c− c̄) can be negative, the non-negativity as-
sumption ofβ̂ required for the derivation of the dual
function can be violated. Hence, we need to thresh-
old its components to zero from below. Sinceγ is
unknown, one can chooseγ to minimize the need for
this clamping operation. At any rate, we can rewrite
(12) to get the dual feasibility condition (DFC)

β̂ = max{0,A†(c− c̄)}. (13)

Using a feasible solution for̂β of the dual problem, we
can understand if the constraints of the primal prob-
lem are loose or tight, which can be used to re-design
the energy function for the next iteration. Next sec-
tion discusses this relation betweenβ̂ and the smooth-
ness constraints, and also how it is used for energy
re-design.

4We note thatκ = 0 does not necessarily produce the
optimal solution of the dual problem.
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3.4 The Primal-dual Relation

First, we describe a method to solve forβ. To have
a unique solution for the DFC equation,A† must be
well-defined. However, by the way we defined the
constraints in the move-LP each block pair{a,b} has
two constraints

xb− xa ≥−pba (14)

xa− xb ≥−pba. (15)

To find a relation betweenβ and move-LP con-
straints, we utilize the dual complementary slackness
conditions (Papadimitriou and Steiglitz, 1998). If the
complementary slackness conditions are satisfied, any
feasible solutionx of the primal andβ of the dual
problem are optimal. The dual complementary slack-
ness condition (DCSC) is given below.

Eitherβba= 0 orAbax=−pba, (16)

where{b,a} is any site pair andAba is the row for the
constraint associated withβba. The complementary
slackness conditions are important in the design of
efficient approximation algorithms for complex prob-
lems. These algorithms are called primal-dual based
methods and they try to improvex and β by modi-
fying them in a way that more of their components
satisfy the complementary slackness conditions (Pa-
padimitriou and Steiglitz, 1998).

Our goal for applying the primal-dual method is
to re-design the energy function, which corresponds
to the Lagrangian of the primal problem. The La-
grangian is showed to be equivalent to the energy
function under the conditions on the Lagrangian mul-
tipliers given in Theorem 2. However, our choice of
the constraints were imposed for all sites pairing with
a site, independent of the discontinuity since the un-
known l is what we want to estimate. Fortunately,
β̂ reveals some information on the connectedness of
sites with their neighbors by the use of DCSC. DCSC
dictates that ifβ̂ is non-zero, then the constraint is
binding and must be satisfied with equality. If the con-
straint had been relaxed, the interacting sites would
have chosen different labels. This implies that the two
sites are on different label segments. Hence, the con-
straint that is binding is conflicting with our smooth-
ness ofl assumption in that locality, and should be
imposed less by decreasing its contribution in the en-
ergy. To this end, the Lagrangian multipliers must
be inversely related tôβ, for example by multiplying
with a functionf (β̂) that is decreasing witĥβ and has
range[0,1]. Hence, by DCSC we propose to update
theβ values as

βDCSC
ba = f (β̂ba)βba, (17)

where β̂ is a feasible solution of the dual problem
given in (13), andf is a decreasing function ofβ̂. Re-
placing Lagrangian multiplierβ with βDCSC and sub-
stitutingκ = 0 from the solution of the dual problem,
Lagrangian in (3) after some simplification becomes

E(v) = ∑
b∈B

Db(vb)+λ ∑
{b,a}∈N

f (β̂)Vb,a(vb,va). (18)

The above energy formulation does not isotropi-
cally enforce a smoothness constraint, but adapts the
weights of constraints in the energy with information
derived from the data via the dual problem. This will
enable us to obtain an energy function that is more
powerful to explain labeling across discontinuities.

4 EXPERIMENT RESULTS

We present experiment results using the proposed
method and compare our results with the state of the
art in the optical flow literature. Our implementation
of the proposed method is a hierarchical motion es-
timation algorithm that uses a full resolution and a
half resolution image produced by down-sampling the
full resolution image by two. For each half resolution
block, a motion search is performed to pick the two
best motion vectors to minimize a cost. The cost is
a sum of absolute deviation (SAD) based cost and all
motion vectors in a 2-D search window are evaluated
to find the minimum cost vectors. This way an ini-
tial motion-vector fieldv0 is created and refined using
N standard-move iterations. Candidate vectors in re-
duced search windowS is used to pick the best-two
standard move for eachb. Sconsists of 18 vectors ob-
tained from a block’s and its eight-connectivity neigh-
borhoods’ best-two vectors. Smoothness cost is de-
rived from blocks in four-connectivity neighborhood
and weights of the neighboring blocks is adapted us-
ing information from the dual problem. Each block is
partitioned to quarter blocks so that a half-resolution
quarter-block matches with a full resolution block in
size. This will increase the reliability of the centered
motion search in full resolution. Also, partitioning
to quarter blocks increases the quality of half reso-
lution vectors in general, since with a smaller block
size block-based translational-motion model is less
problematic for rotation, zooming, and motion bound-
aries. After the partitioning, standard-move iterations
are again applied to refine further, before passing to
full resolution. Execution of our algorithm on a sam-
ple instance of the underlying problem is illustrated
in Figures 1 and 2. FR-FULL, FR-QUARTER, and
FR-QUARTER2 images in Figures 1 and 2 have res-
olutions of 16x16, 8x8, 4x4 pixel blocks respectively.
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Table 1: Comparison of our DCSC-based method to Weickert et al.’s method on the Middlebury dataset. Mean endpoint error
of our method is comparable, if not superior, to that of Weickert et al.’s method even though our method uses only half the
pixel accuracy.

Mean Endpoint Error Schefflera Wooden Grove Urban Teddy
all disc untext all disc untext all disc untext all disc untext all disc untext

Method of Weickert et al. (2005)1.12 1.80 0.99 1.07 2.06 1.12 1.23 1.52 1.62 1.54 2.15 0.96 1.38 2.26 1.83
DCSC-based method 1.21 1.77 1.18 0.94 2.03 0.97 1.20 1.57 1.08 1.73 1.90 1.12 1.37 2.16 1.81

The super-imposed image in Figure 4 shows the video
frame with color plane modulated using the estimated
motion vectors.

(a) (b)

Figure 1: (a) FR-FULL and (b) FR-QUARTER.

(a) (b)

Figure 2: (a) FR-QUARTER2 and (b) Super-imposed im-
age.

We now compare our method’s performance
against that of Weickert et al.’s method (We-
ickert et al., 2005), which is a state-of-the-art
technique in optical flow literature. We use
the Middlebury dataset available on the Web at
http://vision.middlebury.edu/flowfor benchmarking
purposes. This dataset has four types of data with
different characteristics and error measures distin-
guished for motion discontinuities and textureless re-
gions. Comparison of our DCSC-based method to
Weickert et al.’s method is given in Table 1. Although
performance of our method is comparable to that of
Weickert et al. (2005) in mean endpoint error, our
method performs better in 4 out of 5 discontinuity
cases; as expected. Our motion vectors operate with
only half pixel accuracy because we are searching in
a reference image upscaled by two. It is therefore
impressive that even though our current implemen-
tation uses only of half available pixels, our method
performs better than that of Weickert et al. (2005) in
10 out of the total 15 cases. This shows that adapt-
ing the smoothness prior using the dual problem is
a promising technique. It is, however, important to

observe that we are not finding the optical flow, but
rather performing motion estimation via motion vec-
tor searching. As future work, we plan to perform
further benchmarking on different datasets and com-
pare our method to other optical flow techniques in
the literature.

5 CONCLUSIONS

Energy minimization enables incorporation of prior
knowledge for improving parameter estimation. Un-
fortunately, the weights of the prior knowledge in the
energy function is not known. We proposed to use a
feasible solution of the dual of the primal minimiza-
tion problem to adjust the weights, which improves
the energy when the prior knowledge is not valid.
In the case of a smoothness prior knowledge, which
is commonly used in computer vision problems, the
dual feasible solution is used to infer about the discon-
tinuities via the dual complementary slackness condi-
tions.
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