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Abstract: In the simple devices used for wireless sensor networks, the costs associated with a layered approach can be
significant. Small-footprint operating systems have been developed by adopting non-traditional approaches to
network abstractions while still aiming to simplify software development. In these approaches, some elements
of modularity are valuable to retain, e.g., packet buffer management, which can be factored out of the layers
and supported by a generic interface. In this paper, we describe the PicOS operating system with its versatile
network interface (VNETI) and describe our experience using it. VNETI’s approach to the problem, where it
acts as a mediator between (a) the application programming interface, (b) protocol plug-ins, and (c) a physical
input/output module, allows for an effective component-based design with low overheads. With our essentially
layer-less approach to networking, we have found it intuitive to incorporate even the simplest devices into non-
trivial networks.

1 INTRODUCTION

Networks are traditionally built around a stack of
layers, where each layer provides a set of services
via a clearly defined interface. By isolating each
layer and assigning it clear responsibilities, traditional
approaches achieve an overall reduction in design
complexity at the cost of increased resource usage.
In general-purpose computing environments with di-
verse and powerful machines and operating systems,
the costs of layering are negligible. The situation is
different for platforms with scarce memory and pro-
cessing resources, where the costs of layering tend to
outweigh its benefits. If one is to avoid layers in these
devices, it is still important to devise an OS structure
that still allows for flexible application development.

Researchers have developed a wide range of op-
erating systems capable of running on low-power de-
vices, e.g., (Dunkels et al., 2004; Levis et al., 2005;
Abrach et al., 2003; Akhmetshina et al., 2003; Beu-
tel, 2006; Eswaran et al., 2005), with the most pop-
ular of them being TinyOS (Levis et al., 2005). We
focus on a mature and evolving alternative named Pi-
cOS (Akhmetshina et al., 2003) that has a number of
advantages over the former, most notably (a) all of the
program dynamics available to the programmer are

captured by PicOS’s threads (finite state machines)
rather than interrupt service routines (or callbacks),
allowing all threads to share the same (global) stack
and (b) support for flexible dynamic memory alloca-
tion, even within less than 1 KB of RAM.

In this paper, we address how to structure a layer-
less WSN operating system such that it still allows
for modular application development. Section 2 de-
scribes the architecture of the operating system. It ex-
plores the versatile network interface, VNETI, a sin-
gle meta-driver that mediates between the application
programming interface (API), protocol plug-ins, and
physical input/output (I/O) modules. In Section 3, we
describe an application built in this framework, our
experience running it in an unfriendly environment,
and how that experience led to an improvement of our
layer-less communication scheme. Section 4 summa-
rizes our work with conclusions.

2 PicOS

The primary problem with implementing classical
multitasking within limited RAM is minimizing the
amount of per-process fixed memory resources, most
notably, stack space. PicOS solves this problem
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Figure 1: The relationship between VNETI and other sys-
tem components.

by implementing a non-classical flavor of multitask-
ing inherited from a specification/simulation environ-
ment named SIDE (Gburzynski, 1995; Gburzynski
and Nikolaidis, 2006). A program’s multiple tasks
share the same global stack and act as co-routines
with multiple entry points and implicit control trans-
fer. A task looks like a finite state machine (FSM) that
navigates its states in response to events, and the CPU
is multiplexed among the multiple tasks, but only at
state boundaries. This simplifies – to the point of
practically eliminating – all synchronization problems
within the application, while still providing a reason-
able degree of concurrency and responsiveness.

Since WSN applications are predominantly reac-
tive, i.e., not CPU bound, it is quite natural to ex-
press them as FSMs. Although many types of ap-
plications can be expressed as FSMs, the format is
especially useful and natural for reactive applications
that respond to possibly complicated configurations
of events. While one FSM remains blocked, other
FSMs can continue to operate independently.

The operating system provides a wide variety of
library functions as well as tools for interacting with
peripherals. A key software component (VNETI)
mediates and standardizes interaction with the ra-
dio transceiver and (optionally) the universal asyn-
chronous receiver/transmitter (UART) (Figure 1).

2.1 VNETI

The purpose of the Versatile NETwork Interface
(VNETI) is to provide a simple collection of APIs,
independent of the underlying I/O driver implemen-
tation, which, in addition to enabling the rapid de-
ployment of networked applications, make it easy
to develop testbeds using emulated I/O interfaces.
To avoid potentially problematic protocol layering in

small footprint solutions, the presented interface is
essentially layer-less and its semi-complete generic
functionality can be redefined by plug-ins.

The actual implementation of the physical inter-
face can be encapsulated as a relatively simple and
easily exchangeable module. In a drastic depar-
ture from the layered approach, the plug-ins facilitate
modularity and incorporate functionality that would,
conceptually, span across many layers in a traditional
layered design. For example, there is no restriction
preventing plug-ins from consulting the “payload” as
well as any “descriptive” information present in a
packet, i.e., headers. Multiple plug-ins and physical
interfaces can coexist within the same system config-
uration.

VNETI (Figure 1) implements (a) transparent
management of buffer (packet) storage in a dynamic
number of queues with per-packet timeouts, (b) mul-
tiple application access points, and (c) a unified set of
functions for interfacing plug-ins and physical mod-
ules. It acts as a mediator between the physical I/O
modules, protocol plug-ins, and the application.

2.1.1 phy: Physical Network Interface

The phy interface provides a standard set of APIs
for attaching device drivers to VNETI. Those drivers
typically deal with networking (mostly RF) devices;
however, other I/O devices can also be accessed via
VNETI. The interface assumes that information writ-
ten to/received from the device is packetized.

A phy module (device driver) registers itself with
VNETI (tcvphy reg), and VNETI assigns it a queue
of outgoing packets. Three functions then allow the
device driver to (a) retrieve a pointer to the first (top-
most) packet in the queue (tcvphy top), (b) extract
the first packet from the queue (tcvphy get), and
(c) mark a previously-retrieved packet as no longer
needed (tcvphy end). Thus, the transmission thread
of the driver may be organized into an event loop in
which it examines the outgoing queue, e.g.,

fsm driver {
address pkt;
state LOOP:
int len;
if ((pkt = tcvphy_get (0, &len)) == NULL) {

when (new_packet, LOOP);
} else {

start_transmission (pkt, len);
when (xmit_done, DONE);

}
release;

state DONE:
tcvphy_end (pkt);
proceed LOOP;

}
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When sent over an RF channel, a packet is never
physically addressed or encapsulated in any particular
way, even if the device implements data-link address-
ing, handshakes, or any MAC-level features facili-
tating point-to-point transmission. At thephy level,
packets are always broadcast and their contents are
considered raw, i.e., the entire packet is treated as a
sequence of bytes to be made available to the praxis
or, more specifically, to VNETI plug-ins.

Packet reception (by aphy driver) is implemented
by the VNETI functiontcvphy rcv. The function
presents the newly received packet to the chain of
plug-ins which determine the first step of its formal
processing.

2.1.2 API: Application Interface

A workable VNETI setup involves at least one physi-
cal I/O module (phy) and at least one plug-in. Praxis
(application) interactions through VNETI deal with
sessions which are logical entities with the flavor of
UNIX file descriptors. At the highest level, a ses-
sion is an identifier that refers to some specific way
of handling packets sent out or received by the praxis,
both in terms of the physical interface and the pro-
cessing by plug-ins. The need for multiple sessions
stems from the fact that the praxis may require diverse
ways of handling different kinds of packets.

2.1.3 plugs: Plug-in Interface

VNETI maintains a single buffer for each outgoing
and incoming packet. Rather than introduce lay-
ers, it predictably coordinates access to these buffers
among registered plug-ins. Each plug-in consists of a
data structure containing six function pointers, which
VNETI calls at appropriate instances. It calls these
entry points when (a) the praxis opens a session that
will use the plug-in (tcv ope), (b) the praxis closes a
session that used the plug-in (tcv clo), (c) a packet
has been received from the praxis for transmission
(tcv out), (d) a packet has been transmitted by the
physical interface (tcv xmt), (e) a per-packet timer
has expired (tcv tmt), and (f) a packet has been re-
ceived by the physical interface (tcv rcv).

VNETI invokes the latter four packet-centric plug-
in functions whenever a packet reaches some stage
of processing. These functions provide feedback to
VNETI by returning a code that determines the fate
of the packet buffer:

TCV DSP XMT means queue the packet for
transmission by the physical module associ-
ated with the session.
TCV DSP XMTU means queue the urgent packet
for transmission (at the queue’s head).

TCV DSP DROP means drop the packet and
deallocate its buffer.
TCV DSP PASS meansskip or do nothing, de-
pending on the context.
TCV DSP RCV means queue the packet for re-
ception at the plug-in’s associated session.
TCV DSP RCVU means queue the urgent packet
for reception (at the queue’s head).

Each one of these codes is a valid return value for
the four packet-centric plug-in functions, resulting in
a very flexible framework for handling packets.

To highlight the flexibility, consider the case of
an outgoing packet. After a packet arrives from
the application, VNETI executestcv out. Typi-
cally, a plug-in will update the buffer and then return
TCV DSP XMT, which causes VNETI to pass the buffer
to the transceiver. After transmission, VNETI calls
tcv xmt. A simple plug-in will then request the dele-
tion of the buffer (TCV DSP DROP). An advanced plug-
in, however, could set a per-packet timer and defer
further processing until it expires (TCV PASS); after it
expires, VNETI callstcv tmt, which again can deter-
mine the fate of the buffer. This advanced case could
accommodate plug-in-level acknowledgements.

The reception of packets is similarly flexible. Af-
ter a packet arrives from the transceiver, VNETI
alone cannot identify the appropriate session, so it se-
quentially invokestcv rcv for each registered plug-
in. Using the previously described codes, a plug-
in may (a) claim the packet for its associated ses-
sion (TCV DSP RCV) or (b) pass the packet on to
the next plug-in (TCV DSP PASS). The first plug-
in whosetcv rcv returns something different from
TCV DSP PASS prevents further scanning, and if no
plug-in claims the packet, VNETI drops the packet.

2.2 TARP

The Tiny Ad-hoc Routing Protocol (TARP), imple-
mented within the VNETI framework, illustrates how
to implement non-trivial communication schemes that
allow peer-to-peer communication as a collaborative
distributed task. TARP has been described else-
where (Olesinski et al., 2003; Gburzynski et al.,
2007), but we review its key features here given its
relevance to the later case study (Section 3).

Upon receiving a packet, TARP’sdefault action is
to re-send it. Before falling back to the default, how-
ever, it tries find a reason to drop the packet. To this
end, it uses a set (or chain) of rules that a node applies
to the contents of received packets. If a rule matches
a packet, TARP drops the packet; otherwise, a lack
of knowledge tends to translate into overly altruistic
collaboration.
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2.2.1 The Essential Rules of TARP

The first two rules of TARP restrict the extent of the
flooding in rather straightforward ways. The first lim-
its the number of hops that a single packet can travel.
Meanwhile, the second rule namedDD (for Duplicate
Discard), drops packets with asignature matching an
entry within a cache of previously forwarded packets.

The third and most powerful rule of TARP is
called SPD (for Suboptimal Path Discard). Its role
is to avoid forwarding in those circumstances when
the node believes that its help is not needed, i.e., there
are better forwarders already helping the case. The
rule uses its own cache to store triplets containing
the destination identifier (N), the expected number
of hops toN, and the number of packets dropped by
the rule. The node calculates the expected number of
hops based on the TARP headers: specifically, head-
ers contain both the number of hops travelled so far
and the number of hops last travelled on the reverse
path. Given a transmission fromS to D, an intermedi-
ate nodeK will drop packets when it determines itself
to be too far from the optimal path. The count field
addresses changing topologies: after dropping a cer-
tain number of packets, nodes try forwarding a packet
again in an attempt to discover a new shortest path.

2.2.2 The TARP Plug-in

Given an implementation of the requisite caches, the
TARP plug-in itself is remarkably simple. Here is the
reception function:

static int tcv_rcv_tarp (int phy, address pkt,
int len, int *ses) {

if (tarp_ses < 0 || tarp_phy != phy)
return TCV_DSP_PASS;

if (hdr(pkt)->snd == my_node_id)
return TCV_DSP_DROP;

if (rule_check_dd (pkt))
return TCV_DSP_DROP;

if (hdr(pkt)->rcv == my_node_id)
return TCV_DSP_RCV;

if (++(hdr(pkt)->hoc) > MAX_HOC)
return TCV_DSP_DROP;

if (rule_check_spd (pkt))
return TCV_DSP_DROP;

return TCV_DSP_XMT;
}

The macrohdr provides access to the TARP-specific
packet header (casting the packet pointer to a perti-
nent structure). We see thatDD is checked before
the hop count limit (note that the packet signature for
DD does not include the hop count). The secondif
statement eliminates packets that have originated at
the current node.

The only other not completely trivial function of

the plug-in is

static int tcv_out_tarp (address pkt) {
hdr(pkt)->hco = get_hco (hdr(pkt)->dst);
hdr(pkt)->snd = my_node_id;
hdr(pkt)->ser = sernum++;
return TCV_DSP_XMT;

}

executed whenever the praxis submits a new outgoing
packet. The praxis is responsible for filling in the des-
tination address in the packet header, while this func-
tion inserts the backward hop count (extracted from
theSPD cache), the sender address, and the packet’s
serial number.

3 A CASE STUDY: THE IL
SUPPORT SYSTEM

PicOS, including VNETI and TARP, has been used
in several practical setups: a commercial grade as-
set monitoring system, a sensing network for ecolog-
ical monitoring (EcoNet), an indoor location track-
ing system (Haque et al., 2009), and the Smart Condo
project (Boers et al., 2009; Stroulia et al., 2009). Re-
cently, we have been experimenting with a pilot ver-
sion of a campus-wide WSN for non-intrusively mon-
itoring the vital signs of residents in an independent
living (IL) facility. This project exposed real-life RF
constraints that invalidated our implicit environmen-
tal assumptions, thus exhibiting a weak spot of TARP.
Fortunately, we were able to fix the problem quite eas-
ily, once its nature had become well understood. The
requisite modification was performed essentially on-
site and on-demand, courtesy of the PicOS/VNETI
layer-less holistic structure. The praxis needed no
changes at all, while the TARP rules have been ex-
tended by a fuzzy variant of the usual acknowledg-
ment mechanism.

The IL network is built around Olsonet’s EM-
SPCC11 (Olsonet Communications Corporation,
2008) which is a general-purpose wireless mote for
prototyping WSN solutions. The network is based
on two functionally different types of nodes: (a)tags
equipped with sensors for monitoring the environ-
ment and (b)pegs for providing connectivity between
the tags and the data collection station (sink). The
pegs form an ad hoc network providing mesh con-
nectivity between the tags and the sink, which can be
viewed as a semi-infrastructure for the tags.

The peg receiving a report from a tag will send
an explicit acknowledgment packet (22 bytes) back
to the tag: this one-hop exchange does not involve
TARP. The peg will forward the report to the sink in a
44-byte TARP packet. Such a packet is acknowledged

SENSORNETS 2012 - International Conference on Sensor Networks

56



by the sink at the praxis level, i.e., in an explicit 12-
byte acknowledgment packet sent (over TARP) to the
peg. An unacknowledged peg report will be retrans-
mitted roughly at 30-second intervals until overridden
by a new report from the tag.

3.1 The Problem

While the open-field tests of the IL system yielded
satisfactory performance, the deployment at the target
site proved disappointing with a highly unpredictable
and capricious behaviour of the network. As it turned
out, the RF characteristics of the site were particularly
malicious.

The deployment of pegs was constrained by the
geometry of buildings and the availability of power
outlets, forcing them to be laid along corridors where
the movement of people and metal equipment would
cause drastic disturbances to the propagation of RF
signals. The indoor paths would cross with outdoor
ones resulting in mixed characteristics of both open-
field and bunker-like environments. The same region
would exhibit the properties of either environment, on
an unpredictable trigger, for periods lasting from sec-
onds to hours. The practical range of a single hop
would vary from 20 to 150 meters, translating into
occasional periods of “good luck,” where a tag was
able to reach the sink in a single hop, as opposed to
incidents of “bad luck,” with 5 hops required to ac-
complish the same feat.

3.2 The Solution

The single most important source of problems with
the IL deployment was the whimsically poor qual-
ity of a single hop: an accidentally acquired series
of longish hops would fool TARP (theSPD rule) into
rejecting subsequent attempts to forward packets via
longer (albeit more reliable) paths. Even though the
scheme would recover from the misjudgement after a
while, the confusion would have a performance toll,
as a few subsequent attempts to use the overly opti-
mistic route would fail.

Within the framework of TARP, there is no con-
cept of a next-hop node, which made explicit ac-
knowledgements impractical. There is, however,
a natural way of implementing acknowledgments
within the broadcast-based forwarding of TARP. Hav-
ing retransmitted a packet, the node will wait until it
hears its copy retransmitted by another node in the
neighbourhood, such that the retransmitted copy is
seen to have made more hops than the original. Such
an event can be viewed as an implicit acknowledge-
ment that the current node has fulfilled its duty in the

sense that the packet has made the hop.
The required modification of TARP consists of

adding one more cache where the node will store sig-
natures of packets that have been (re)transmitted, but
not yet discarded, awaiting an implicit acknowledg-
ment. Such a packet will be retransmitted a number
of times (at some interval) before the protocol gives
up, drastically increasing the chances for a successful
hop. Given the toolbox of VNETI, the modification
turns out to be reasonably straightforward:

static int tcv_rcv_tarp (int phy, address pkt,
int len, int *ses){

rtr_cache_t *re;
if (tarp_ses < 0 || tarp_phy != phy)
return TCV_DSP_PASS;

if ((re = find_rtr (pkt)) != NULL &&
re->hoc < hdr(pkt)->hoc)

rtr_cache_drop (re);
if (hdr(pkt)->snd == my_node_id)
return TCV_DSP_DROP;

if (hdr(pkt)->rcv == my_node_id)
rtr_ack (pkt);

if (rule_check_dd (pkt))
return TCV_DSP_DROP;

... /* unchanged from earlier */
return TCV_DSP_XMT;

}

For every received packet, the function first uses its
signature to consult a retransmission cache containing
hop counts. If the hop count of a received packet copy
is larger than the cache value, the function concludes
that the retransmitted packet has been acknowledged
and drops it from the buffer pool. Otherwise, the func-
tion proceeds as before with one exception: it may
broadcast a dummy packet (with signature match-
ing the received packet) to implicitly acknowledge a
packet making its last hop.

Another modification to the scheme involves the
plug-in’s transmission function:

static int tcv_xmt_tarp (address pkt) {
rtr_cache_t *re;
if ((re = find_rtr (pkt)) != NULL) {
if (++(re->cnt) > MAX_RETRIES) {

rtr_cache_drop (re);
return TCV_DSP_DROP;

}
} else {
if (rtr_cache_add (pkt) == ERROR)

return TCV_DSP_DROP;
}
tcvp_settimer (pkt, RETRY_INTERVAL);
return TCV_DSP_PASS;

}

This function is invoked after a packet has been trans-
mitted by thephy driver. The function looks up the
packet’s signature in the retransmission cache. If no
entry is found (the part afterelse), this is the first
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transmission of the packet – cache it. If a match-
ing entry is found in the cache, the function checks
the retransmission counter. If the packet has reached
the limit, it is dropped and its signature is removed
from the cache. For retained packets, the function
sets up a timer for the packet (VNETI operation
tcvp settimer) and returnsTCV DSP PASS.

When the timer goes off, VNETI calls the plug-
in’s timer expiration function

static int tcv_tmt_tarp (address pkt) {
return TCV_DSP_XMTU;

}

which simply sends the packet back to the transmit
queue of thephy.

After adopting the solution sketched above, the
performance of our IL network improved dramati-
cally. The pilot system has been in use for six months,
now passing all tests with flying colours.

4 CONCLUSIONS

We have discussed a layer-less, yet structured, sys-
tem for developing applications for WSNs built us-
ing devices with few resources. The philosophy em-
braced in our work is to serve the needs of the appli-
cation first, and the network second. Attempting to
harness the channel to appear as areliable, equivalent
to “wired”, connection has been the root of consid-
erable complexity to wireless networking that has yet
to bring any workable solution for small footprint de-
vices. Instead of employing complexity to produce
“virtual wires,” we argue that we should be enhanc-
ing the collaboration of nodes in a communal effort to
produce the desired application outcome.

Looking at the IL praxis discussed in Section 3,
we see that some communication scenarios (tag-to-
peg) intrinsically involve a single hop, while some
others (peg-to-sink) call for a special case of network-
layer forwarding (many-to-one and back). TARP,
with its parameterizable and malleable rules, and the
architecture of VNETI, appear sufficient to cater to
the application demands.
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