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Abstract: Computer Tomography is aimed to calculate a three dimensional reconstruction of the inside of an object 
from series of X-ray images. This calculation corresponds to the solution of a system of linear equations, in 
which the equations arise from the measured X-rays and the variables from the voxels of the reconstruction 
volume, or more precisely, their density values. Unfortunately, some applications do not supply enough 
equations. In that case, the system is underdetermined. The reconstructed object, as only estimated, seems to 
be stretched. As there are a few voxels, that are already representing the object true to original, it is possible 
to exclude these variables from the system of equations. Then, the number of variables decreases. Ideally, 
the system gets solvable. In this paper we concentrate on the detection of all good reconstructed voxels i.e. 
we introduce a quality measure, called Accuratio, to evaluate the volume voxel by voxel. In our experi-
mental results we show the reliability of Accuratio by applying it to an iterative reconstruction algorithm. In 
each iteration step the whole volume is evaluated, voxels with high Accuratio are excluded and the new 
system of equations is reconstructed again. Steadily the reconstructed object becomes “destretched”. 

1 INTRODUCTION 

First and foremost, Computer Tomography was 
introduced for clinical diagnostics. Nowadays, it is 
also used for quality assurance in the production and 
maintenance of any object. As it generates a three 
dimensional reconstruction of the inside of the 
object from series of X-ray images, inner structures 
such as casting defects or cold soldered connections 
become visible. Moreover, exact measurements of 
the shape are feasible. But the very use in quality 
assurance demands reconstructions that are 
absolutely true to original. To calculate such 
reconstructions, it is necessary to provide many X-
ray images from different angles of vision. Ideally, 
the object is turned through 360° while x-raying. 

In some applications it is not possible to turn the 
object through 360°. For example, if the shape is 
bulky and stops the rotation in the computer 
tomography scanner, then the number of X-ray 
images is reduced. Mathematically speaking, the 
reconstruction problem is underdetermined. The 
reconstructed volume can only be estimated. For the 

most voxels this estimation differs drastically from 
the target. The object seems to be stretched (shown 
in Figure 1). 

  
Figure 1: Cross sections through the reconstructed volume 
from a series of X-ray images spanning 360° (left image) 
and 135° (right image).  

An underdetermined system of equations can not 
be solved in principle. But including a priori 
knowledge that does not arise from the measurement 
can improve the reconstruction quality. There are 
two types of a priori knowledge; knowledge about  
the shape, and knowledge about the materials the x-
rayed object consists of, i.e. the density of each 
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material. An abundance of approaches exists for 
both types.  

Most  of  all  solutions  that  deal with knowlege  
about the shape fit a parametric model to the 
reconstructed object. They get useful results, as 
shown for example by Benameur et al. (2003) or 
Sadowsky et al. (2011). Others handle fragmentary 
knowledge about the shape demanding smoothness 
of the surface or similar, and usually combine 
knowledge about the material densities (Varga, 
Balázs and Nagy, 2010).  

It becomes more difficult to improve the 
reconstruction of any object due to the sheer 
knowledge about the material densities. Some 
approaches achieve passable results for objects that 
consist of one material only. Then, the 
reconstruction problem is a binary decision between 
object and air. But the algorithms get unreliable if 
the object is composed of several materials and x-
rayed with limited angle. Herman and Kuba 
published a compendium of these works in 2007.  

In our approach, we introduce a new quality 
measure to evaluate a volume voxel by voxel 
including a priori knowledge about the materials, no 
matter the number of different materials. By 
evaluating, voxels that are representing the target 
true to original get detected. In a second step, we 
exclude the detected voxels from the system of 
equations. This means, the number of variables 
decreases. The reconstruction problem, which was 
once underdetermined, becomes solvable.  

In Section 2.1 we introduce the basic notation 
and give an overview about conventional 
reconstruction techniques. Then, in Section 2.2 we 
enter into the question how to decrease the number 
of variables. In Section 3 the evaluation step is 
described. We present and discuss our experimental 
results in Section 4. A few remarks conclude the 
paper.  

2 RECONSTRUCTION 
TECHNIQUES 

2.1 Foundations 

Physically, the grey value yi of pixel i in an 
measured X-ray image is equal to the line integral of 
the density x(l) along the ray path l.  

∫= dllxyi )(  (1)

To   calculate   a   reconstruction  of  the  x-rayed  

object in a quantised grid the equation (1) changes 
into equation (2). 
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Here, N is the number of voxels in the whole 
volume, xn represents the density of voxel n, and wni 
describes the contribution of the nth voxel to the ith 
measurement. Figure 2 shows a ray path through the 
volume. Voxels with wni ≠ 0 are marked with a red 
outline. 

 
Figure 2: X-ray in a regular grid. 

There are several techniques to calculate the 
densities xn from the measured X-rays yi, listed very 
comprehensively in (Kak and Slaney, 1988). These 
techniques can be divided into two categories: On 
the one hand, there are analytical methods, which 
involve all X-ray images to generate one 
reconstruction. On the other, there are iterative 
methods that approach the solution step by step. In 
each step a correction for the current reconstruction 
is calculated.  

One of the most frequently referred iterative 
reconstruction algorithms in highly topical works is 
ART, first published by Gordon, Bender and 
Herman (1970), recently adapted to GPU-based 
calculation and sophisticated by Xu and Müller 
(2007). As we adapt this technique to our work, we 
explain it more detailed.  

In ART, the differences yi - ∑wnixn of all 
measurements i are minimised by applying the 
Kaczmarz method (Kunze, 2007). This leads to the 
correction equation (3) for the density xj of a voxel j 
and for iteration number k+1. 
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As long as yi ≠ ∑wnixn, the difference yi - ∑wnixn 
is divided by the number of voxels that are part of 
the ray i (wni ≠ 0), and distributed uniformly among 
these voxels. In this way, after adding in accordance 
with (3), the difference yi - ∑wnixn is zero. Equation  

(2) is met, but for the current ray i only.  

2.2 Vary the Number of Variables 

In the following, A = {1, 2, 3, ..., N } is the set of all 
voxels, strictly speaking their indices. B is a subset 
of A and contains all bad reconstructed voxels i.e. 
the remaining variables. The equation (2) can be 
expressed by (4). 
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Based on (4), the ART correction equation for 
any voxel j ∈ Β changes into 
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and only for j ∈ B the update is executed.  
Now, the difference yi - ∑wnixn ≠ 0 is distributed 

among the bad reconstructed voxels only, i.e. 
exactly the voxels that have produced the difference.  

The basic idea of excluding good reconstructed 
voxels from the system of equations is already 
mentioned by Batenburg and Sijbers (2007). In 
contrast to our topic, they work on the problem of 
limited data, which yields reconstructions that are 
slightly deformed in all directions. In our approach 
we use a novel quality measure in the evaluation 
step, better fitted to the problem of limited angle i.e. 
extremely stretched reconstructions.  

3 EVALUATION STEP 

3.1 Include A Priori Knowledge 

There are many ways of including a priori 
knowledge about the materials of which the X-rayed 
object consists into its reconstruction. Some present 
works use a conventional reconstruction technique 
(according to Section 2.1), and afterwards put in a 
priori knowledge. In the simplest case, for example 
in (Censor 2001), the reconstructed density xn is 
discretised via thresholding.  

Others, such as Kuba, Ruskó, Rodek and Kiss 
(2005) extend the cost function with an additive 

term which includes a priori knowledge. For our aim 
to evaluate the reconstruction, we pursue a related 
strategy: For every voxel j the reconstructed density 
xj is replaced successively with each predefined 
material density md. For each inserted material 
density and for each X-ray i crossing the selected 
voxel the mean square deviation between yi and 
∑wnixn is calculated. The sum of all mean square 
deviations, normalised to the number of rays I, is 
called density error fj(md) (6).  
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The higher the support of the measurements for a 
material density md is (or, metaphorically speaking, 
the more X-rays the material density md prefer), the 
smaller will be the density error fj(md). 

3.2 Probability Modelling 

The density errors fj(md) already provide a basis for 
the selection of  the most probable material md (q.v. 
Frost and Hötter (2010)). But in order to classify a 
voxel, we need a quality measure that is independent 
of parameters such as the object size and enables a 
quantitative evaluation of the reconstruction quality. 
Therefore, we convert the density error fj(md) into a 
probability pj(md): a probability of existence of the 
material md at the position j. The conversion takes 
three constraints into account: pj(fj=0) = 1, 0 ≤ pj(fj) 
≤ 1 and pj(fj) is strictly monotonic decreasing. The 
Gaussian function in (7) fulfils the three constraints.  

2
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The output of (7) still depends on the material 
densities and size of the x-rayed object. In case it is 
demanded to compare various reconstructions with 
different objects, the conversion in (7) has to be 
expanded by a fourth constraint; If two distinct 
material densities, for example md and md+1, produce 
density errors fj(md) and fj(md+1) that are equal in 
value, it is impossible to come to a decision. Both 
materials are equiprobable. In this instance the 
density error is the squared half difference of both 
material densities and pj(fj = ((md+1 – md)/2)²) = 0.5. 
Considering this fourth constraint, we get the 
conversion formula (8).  
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3.3 Probability Distribution 

The probability pj(md) of material density md with d 
= 1...D and D different materials yields a probability 
distribution. For a good reconstructed voxel j the 
very density md, which was really existing at the 
position j while x-raying, is supported by the most 
rays and stands out with a high probability pj(md). 
For a more inaccurate reconstructed voxel, the rays 
do not correspond with the preferred material 
density. In this case, less rays support the real 
density md. The probability pj(md) is lower.  

Figure 3 shows exemplarily the probability 
distributions of two voxels in a reconstructed 
volume. Voxel g is situated inside of the large 
sphere and evidently good reconstructed. The 
probability distribution holds a distinct maximum at 
material density m1, which stands for the sphere 
material. Voxel b is near to the surface. The 
reconstruction in this area is difficult, because some 
measurements prefer material density m1, and others 
favour the air density m0. There is no outstanding 
maximum in the probability distribution. 

 
Figure 3: Probability distribution of a good reconstructed 
voxel g (green coloured) as well as of a bad reconstructed 
voxel b (red coloured). 

3.4 Quality Measure 

Now, for each voxel there is a probability 
distribution which expresses the quality of the 
reconstruction. For the practical application it is 
necessary to handle one numerical value instead of a 
function. Hence, we pick out the maximum of 
probability distribution max(pj), briefly called 
Accuratio aj, since this maximum already obtains all 
the information required for quality determining. 
Figure 4 shows a cross section through the Accuratio 
volume that corresponds to a 135°-reconstruction. 
The higher the Accuratio of a voxel, the lighter the 
grey is displayed. It becomes visible that Accuratio 
is generally high, except for the falsified areas, 
where a low Accuratio predominates. 

  
Figure 4: Cross section through the reconstructed volume 
from a series of X-ray images spanning 135° (left image) 
and corresponding Accuratio (right image). 

Binarising the Accuratio volume, we distinguish 
“good” from “bad” reconstructed voxels.  

4 EXPERIMENTAL RESULTS 

4.1 Algorithm of Discrete Steering  

In our experiment we executed the reconstruction 
algorithm outlined in Figure 5.  

  
Figure 5: Iteration of Discrete Steering. 

At the start, the subset B is equal to A. The whole 
volume will be reconstructed. When each X-ray 
image was used for reconstruction once, each voxel 
is evaluated by our quality measure. Voxels with aj 
> 0.5 are defined as “good” and excluded from the 
subset B. Moreover, their reconstructed density xj is 
replaced by the most likely material md. In this way, 
the reconstruction is steered into a discrete solution. 
In the next reconstruction step (according to 
equation 5), the “good” voxels go into ∑wnixn, which 
is also called forward projection. But only the “bad” 
voxels become reconstructed again.  

4.2 Test Objects and Scenes 

The experiment deals with one mathematically 
defined object (A) and one real work piece made of 
aluminium (B). Object A modelled on a circuit 
board (Figure 6). Three soldered points (material 
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Figure 6: Cross section in xy-plane of test object A. 

density m3 = 2.7) are situated between two plates (m1 
= 0.9). On the top, there is a flat box (m2 = 1.8). 
From this model we generated 29 X-ray images in a 
157° rotation around the z-axis. Each image has the 
size of 64² pixels. The volume contains 64³ voxels.  

Object B we describe as screw-nut. 168 X-ray 
images on a scale of 168 x 128 pixels were 
measured in a 360° rotation. The reconstruction of 
the complete data is shown in Figure 1 (on the left).  
Afterwards, we limited the angle range to 135°. 
The Figures 7 and 8 demonstrate the influence of 
limited angle on conventional ART as well as the 
improvements by Discrete Steering. As can be seen, 
the results of ART are falsified: In Figure 7 (Object 
A) all horizontal surfaces, such as the plates, are 
blurred. Hence, the crack between the right soldering 
and upper plate vanishes completely. In Figure 8 
(Object B) the air gap is invisible, too. Additionally, 
the reconstruction volumes do not change 
significantly during 8 iterations of ART. At the same 
time, in each iteration step of Discrete Steering the 
reconstructed objects converge more and more to the 
original shape. The first evaluation step already 
improves the reconstruction. Here, due to the 
inclusion of a priori knowledge, some falsified areas 
can be corrected immediately. For example, light 
artefacts in the air disappear. In case the falsified 
areas can not be corrected, they show low  
Accuratios and will be reconstructed again. In the 
following evaluation steps, the number of bad 
reconstructed voxels decreases. In Figure 7 the 
plates get a distinct shape and the crack between the 
right soldering and upper plate becomes visible. In 

Figure 8 the air gap is detected by low Accuratios. 
To sum up, in the end the reconstructed objects 
show the rough shape of the original or, at least, an 
improvement compared to the results of ART. 
In 24 test series with varied limited angles from 129° 
to 157° we recorded the number of correctly 
discretised voxels while reconstructing. In 
comparison to ART (with discretisation via 
thresholding),   the   Discrete   Steering   Algorithm 
performs a faster as well as longer rise, and finally 
keeps 98 % correctly discretised voxels on average.  

5 CONCLUSIONS 

We have presented a technique to generate three 
dimensional reconstructions from X-ray images 
spanning a limited angle only, i.e. in the first 
instance the system of equations is underdetermined. 
By detecting and excluding all good reconstructed 
voxels from the system of equations, the number of 
variables decrease and the system gets solvable.  
To distinguish “good” from “bad” reconstructed 
voxels, we have applied the new quality measure 
Accuratio: For each voxel there is calculated a 
probability distribution of a priori known material 
density by taking into account all X-rays that are 
crossing the selected voxel. The better the 
reconstruction is, the more X-rays prefer the same 
material and the more the maximum of the 
distribution increases. If the maximum exceeds 0.5, 
we define the voxel as “good” assuming that the 
corresponding material density really existed at the 
position of the selected voxel while measuring. 

We have shown in our experimental results that 
Accuratio is suited to detect “good” and “bad” 
voxels. The very first evaluation step marks falsified 
areas or correct them reliably. In the following 
iterations,  the  number  of bad reconstructed  voxels 

 
Figure 7: Cross sections through the reconstruction volume of test object A applying conventional ART (upper row) and 
Discrete Steering (lower row). In the results of Discrete Steering, voxels with aj ≤ 0.5 are red marked.  
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Figure 8: Cross sections through the reconstruction volume of test object B applying conventional ART (upper row) and 
Discrete Steering (lower row). In the results of Discrete Steering, voxels with aj ≤ 0.5 are red marked. 

decreases. The over all quality increases. In the end, 
the reconstructed objects are closer to the original, 
though a lot of noise appeared. In further works we 
want to address the problem by separate noise 
suppression. 
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