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Abstract: An underwater vision system operating in shallow water faces unique challenges, which often degrade the
quality of the acquired data. One of these challenges is the sunflicker effect, created from refracted sunlight
casting fast moving patterns on the seafloor. Surprisingly few previous works exist to address this topic. The
best performing available method mitigates the sunflickering effect using offline motion compensated filtering.
In the present work, we propose an online sunflicker removal method targeted at producing better registration
accuracy. The illumination field of the sunflicker effect is considered as a dynamic texture, since it produces
repetitive dynamic patterns. With that assumption, the dynamic model of the sunflicker is learned from the
registered illumination fields of the previous frames and is used for predicting that of the next coming frame.
Such prediction allows for removing the sunflicker patterns from the new frame and successfully register it
against previous frames. Comparative results are presented using challenging test sequences which illustrate
the better performance of the approach against the closest related method in the literature.

1 INTRODUCTION

In the field of underwater image sensing, new and
complex challenges need to be addressed like light
scattering, sunflicker effects, color shifts, shape dis-
tortion, visibility degradation, blurring effects and
many others. The research work presented in this pa-
per deals with the presence of strong light fluctuations
due to refraction, commonly found in shallow under-
water imaging. Refracted sunlight generates dynamic
patterns, which degrade the image quality and the in-
formation content of the acquired data. The sunflick-
ering effect creates a difficult challenge to the scien-
tists to understand and to interpret the benthos. Devel-
opment of an online method to completely or partially
eliminate this effect is a prerequisite to ensure optimal
performance of underwater imaging algorithms.

2 RELATED WORK

Motivated by the work by on effective shadow re-
moval method (Weiss, 2001) in land scenes and the
work on shadow elimination (Matsushita et al., 2002)
on video surveillance, Schechner and Karpel devel-
oped an approach (Schechner and Karpel, 2004a) to
solve the sunflicker removal problem based on the

observation that the spatial intensity gradients of the
caustics tend to be sparse. Under that assumption,
doing the temporal median over the gradients of a
small number of images, a gradient field was ob-
tained where the illumination effect was greatly re-
duced. The flicker free image was obtained by inte-
grating the median gradient field. This sunflicker re-
moval method (Schechner and Karpel, 2004a) did not
take into consideration the camera motion for which
registration inaccuracies are likely to appear. Us-
ing the method by Sarel and Irani (Sarel and Irani,
2004; Ukrainitz and Irani, 2006) two transparent over-
lapped video can be separated using the information
exchange theory, if one of the video mentioned con-
tains a repetitive dynamic sequence. This method
(Sarel and Irani, 2004) claims to work for the repeti-
tive dynamic sequence with variation in each repeated
cycle, though the variation amount in the repetitive
dynamic sequence is not quantitatively defined. On
the other hand, a large number of frames would be
required to grab a complete cycle of a repetitive dy-
namic sequence, making it impractical for moving
cameras. An interesting approach to this problem
can be to use polarization information (Schechner and
Karpel, 2004b), to improve visibility underwater and
in deep space. The refracted sunlight underwater has
unique polarization characteristics. The exploitation
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of such characteristics is possible, but requires spe-
cial cameras with polarized filters or imaging sensors,
which are not commonly deployed. Another way of
looking in to the same problem can be to recover the
low rank matrix (Candès et al., 2009) which presents
the illumination field. But this method only works
when there is no camera motion which in our case is
impractical.

The work by Gracias et al. (Gracias et al., 2008)
can be considered as the state of art among the meth-
ods that have addressed the removal of sunflicker in
shallow underwater images. This motion compen-
sated filtering approach accounted for the basic re-
quirement that the camera should be allowed to move
during acquisition, thus being more adequate to real
optical survey work. The method is based on the as-
sumption that video sequences allow several observa-
tions of the same area of the seafloor, over time. If the
assumption is valid, it is possible to compute the im-
age difference between a given reference frame and
the temporal median of a registered set of neighbor-
ing images. The most important observation is that
this difference will have two components with sepa-
rable spectral content. One is related to the illumi-
nation field (which has lower spatial frequencies) and
the other to the registration inaccuracies (mainly hav-
ing higher frequencies). The illumination field can be
approximately recovered by using low–pass filtering.
The main limitation is that the median image for each
frame is obtained from both past and future frames,
thus making it non causal.

3 APPROACH

The presented method uses dynamic texture modeling
and synthesizing (Doretto et al., 2003), using princi-
pal component analysis, to predict the sunflicker pat-
tern of the next frame from the previous few frames.
The prediction is then used to coarsely remove the il-
lumination field from the current working frame. The
presented approach attains higher registration per-
formance even under heavy illumination fluctuation.
Also this method is strictly causal (i:e: does not rely
on future observations), fulfilling the important con-
dition of online operation required for visual-based
robot navigation.

3.1 Dynamic Texture Modeling and
Synthesizing

The Open Loop Linear Dynamic system (OLLDS)
model (Doretto et al., 2003) is used to learn the dy-
namic model of sunflicker illumination pattern and to

synthesize it for unknown cases. Once modeling is
done, the OLLDS can potentially be used for extrap-
olating synthetic sequences of any duration at negli-
gible computational cost. The underlying assumption
in this approach is that, the individual images are real-
izations of the output of a dynamical system driven by
an independent and identically distributed (IID) pro-
cess.

For learning the model parameters, the OLLDS
model uses one of two criteria: total likelihood or pre-
diction error. Under the hypothesis of second-order
stationarity, a closed-form sub-optimal solution of the
learning problem can be obtained as follows (Doretto
et al., 2003).

1. A linear dynamic texture is modeled as an auto-
regressive moving average process (ARMA) with un-
known input distribution, in the form,

x(t +1) = Ax(t)+Bv(t) v(t)� N(0;Q) x(0) = xo
y(t) =Cx(t)+w(t) w(t)� N(0;R)

where y(t) belongs to Rn is the observation vector; x(t)
belonging to Rr, is the hidden state vector (r is much
smaller than n); A is the system matrix; C is the output
matrix and v(t), w(t) are Gaussian white noises. Here
y(t) presents the noisy output, in this case the image
sequences.

2. Taking the SVD of y(t), C can be found.

Y t
1 =USV T

C(t) =U X(t) = SV T

3. A can be determined uniquely by,

A(t) = SV T D1V (V T D2V )�1
S
�1
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3.2 Motion Compensated Filtering

Let us consider a set of registered images. We refer
to a given image by the discrete parameter i which
indexes the images temporally. The radiance L of a
given pixel with coordinates (x, y) can be modelled
as

Li(x;y) = Ei(x;y) �Ri(x;y)
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where Ei is the irradiance of the sunlight over the 3D
scene at the location defined by pixel (x, y) at time i,
after absorption in the water. R(x, y) is the bidirec-
tional reflectance distribution function. For underwa-
ter natural scenes, where diffuse reflectance models
are applicable, R is assumed independent of both light
and view directions.

Converting the expression for Li to a logarithmic
scale allows the use of linear filtering over the illumi-
nation and reflectance.

li(x;y) = ei(x;y)+ ri(x;y)

For approximately constant water depth, and for
realistic finite cases, the median converges signifi-
cantly faster to average value of li than the sample
mean.

Imed(x;y) = med[i0;i1]Ii(x;y)� e+ rmed(x;y)

Here rmed(x, y) stands for an approximation to the
median of reflectance. The difference di(x, y) of a
given image li(x, y) with the median radiance lmed(x,
y) is used to recover the approximate background im-
age.

dli(x;y) = li(x;y)� Imed(x;y)

� (ei(x;y)� e)+(ri(x;y)� rmed(x;y))

This difference dli (x,y) has two main components.
The first component relates to the instant fluctuation
of the illumination field and has lower spatial frequen-
cies. This component will have positive values in the
over-illuminated areas where there is convergence of
the refracted sunlight and will have negative values
in the areas where the sunlight is diverted away. The
second component relates to inaccuracies in the image
registration and has higher spatial frequencies. Af-
ter applying a low pass filter on the difference image,
the low frequency components which resembles the
illumination field is kept in the output. This approx-
imated illumination field is later used to correct the
main input image and recover a flicker–free image.

4 PROPOSED ALGORITHM

In the online sunflicker removal method proposed in
this work, the approximate illumination field of the
current frame is found from the dynamic texture pre-
diction step. The homography is mainly calculated
between the temporary recovered current image (us-
ing the approximate illumination of the current frame)

and the last recovered image. Finally, the new image
can be recovered by using a median image calculated
from the current and previous few images warped
with respect to the current image using the calculated
homography. The median image and the current im-
ages can be used to find the difference image for the
current frame. The difference images after being fil-
tered through a low pass filter only holds the low fre-
quency components which represents the correct illu-
mination field. Using this correct illumination field
the working image is recovered from the sunflicker
effect. The steps are demonstrated as in fig. 1

Figure 1: Step by step flow diagram of the proposed online
method for sunflicker removal. From left to right, (1)warp-
ing previous illumination field to the current frame, (2)pre-
dicting the current illumination field, (3)coarsely recover-
ing the current image, (4)finding homography between the
current and the previous frame and (5)removing sunflicker
pattern from the image using the calculated homography.

The proposed approach considers the following
mentioned assumption to be valid
� Illumination field is a dynamic texture

� Camera movement in the video sequence is smooth

� Bottom of the sea is approximately flat

The main algorithm contains several steps which
are presented next, using the following nomenclature:
� I0;k - Original input image obtained at time instant k

� IR;k - Recovered image obtained from I0;k after sun-
flicker removal

� Hk - low pass filtered version of the difference image
at time k, which is used as estimate of the illumination
field at time k

� IM;k - Median image obtained from N frames after be-
ing warped into the frame of image I0;k

� N - the number of images present in the learning se-
quence.

� Mk;k�1 - Homography relating the image frames at time
k and k�1.

The algorithm comprises the following steps:
1. Apply the motion compensated filtering

method (Gracias et al., 2008) to register and recover
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first few images from the sun flickering effects. In our
implemented system, we used first the 25 frames for
this step.

2. Get the new image in the sequence I0;k assum-
ing that the previous images I0;k�1, . . . , I0;k�N have
been recovered after sunflicker removal (IR;k�1, . . . ,
IR;k�N). Advance time k (i.e. all previous data struc-
tures that had index k now have index k�1).

3. Predict the flicker pattern by

� Warping all the filtered version of the difference im-
ages, Hk�1, . . . , Hk�N with respect to the current frame
I0;k to be recovered , assuming that Mk;k�1 �Mk�1;k�2.
All other previous homographies were obtained from
actual image matches and thus known previously.

� Learning the sunflicker pattern from the registered fil-
tered difference images. After registration, the motion
of the camera is being compensated. In the learning
phase, all the difference images of the previous frames
H (Hk�1, . . . , Hk�N ) are converted into a column ma-
trix. Using the array of all the registered H (Hk�1, . . . ,
Hk�N ) a large matrix called Wt�1 is created having P
rows and N columns. P is the number of pixels per
frame and N is the total number of frames in the learn-
ing sequence.

� Predicting the Ĥk using the learned model. For learn-
ing, open loop linear dynamic model (Doretto et al.,
2003) is being used. In this step the last frame Hk�1
of the learned sequence is considered as the first frame
for the synthesize part.

4. Create the correction factor Ĉk using the pre-
dicted low pass filtered version of the difference im-
age Ĥk and the approximate difference image Îd;k. To
find the approximate difference image, the previously
recovered image IR;K�1 is warped into the current
frame I0;k position using the last homography. Using
the warped portion of the previous recovered image
and the rest from current original image, a approxi-
mate median image is created, which is fused into the
system to find the approximate difference image, Îd;k
of the current frame. Using this approximated differ-
ence image Îd;k and the predicted Ĥk, the correction
factor Ĉk is found.

5. Apply predicted correction factor to I0;k. Us-
ing the correction factor Ĉk found in the last step, the
current image is approximately recovered from sun-
flicker effect. This recovered image is denoted by ÎR;k.

6. Perform image registration between ÎR;k and
IR;k�1. From this obtain the real Mk;k�1.

7. Update IM;k. Using the motion compensated
filtering method (Gracias et al., 2008) create a median
image for the current frame using the last few original
frames. In this case, use the ÎR;k to do the registration
during finding the current median image, IM;k.

8. Obtain final IR;k. Using IM;k find the real differ-
ence image for the current frame, Id;k and the correct

sunflicker pattern Hk and later the correct recover im-
age IR;k removing the sunlight properly.

9. Go to step 2 and do the same for the next frames
The image registration is performed using the

classic approach of robust model based estimation
using Harris corner detection (Harris and Stephens,
1988) and normalized cross–correlation (Zhao et al.,
2006). This method proved more resilient to strong
illumination differences when compared with the re-
sult doing the same with SIFT (Lowe, 2004). Further-
more, the operation is considerably faster since the
search areas are small.

We assume the knowledge of the gamma values
for each color channel. For unknown gamma val-
ues one can apply blind gamma estimation. An ef-
ficient method is described in (Farid, 2001; Farid and
Popescu, 2001), which exploits the fact that gamma
correction introduces specific higher-order correla-
tions in the frequency domain. Having the gamma
values we transform the intensities to linear scale.
After the deflickering the final output images are
transformed into the sRGB space with the prescribed
gamma value.

The steps above are applied over each color chan-
nel independently. Strong caustics lead to overex-
posure and intensity clipping in one or more of the
color channels, resulting in chromaticity changes in
the original images. These clippings typically affect
different regions of the images over time, given the
non-stationary nature of the caustics. The median is
not affected by such transient clippings, whereas the
average is. The low pass filtering is performed using
a fourth order Butterworth filter (Kovesi, 2009), with
a manually adjusted cutoff frequency.

Due to the camera motion, the stack of warped dif-
ference images described in step 3, may not cover the
entire area of the current frame. If one considers the
whole area of the current frame, this creates a condi-
tion of missing data in the W matrix for PCA. To cir-
cumvent this condition, only the maximum sized area
of the current frame which is present in each warped
frame at current frame location, is considered.

5 SELECTED RESULTS

The performance evaluation of the proposed system
was done comparing with the previously available of-
fline method (Gracias et al., 2008) by evaluating both
on several test datasets of shallow water video se-
quences having distinct refracted sunlight conditions.
The main evaluation criterion is the number of inliers
found per time–consecutive image pair in each reg-
istration step. This criterion was found to be a good
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indicator the image de–flickering performance. The
better the sunflicker removal is achieved, the larger
the number of found inliers per time–consecutive im-
age pair, considering all the other influencing factors
constant.

5.1 Grounding Sequence

The first test sequence was obtained from a ship
grounding survey and contains illumination patterns
of relatively low spatial frequency. Fig. 2 shows an
example of how in each step the image is coarsely re-
covered, registered and finally cleaned. The top left
and bottom left parts of the image 2 show the original
input image and real illumination field accordingly.
Using this initial estimate, the warped illumination
field is learnt and predicted for the current frame; the
new image is temporarily cleaned with the prediction
of illumination field and registered with respect to the
last recovered image. In the bottom middle of Fig. 2,
the predicted illumination field is shown and the upper
middle part of the Fig. 2 represents the intermediate
condition of the illumination field. The prediction il-
lumination fields approximates the real illumination
field with some spatial displacements and intensity
variation. On the top right of Fig 2 shows the final
recovered image and the bottom right of Fig 2 shows
the final median image. Some examples of the finally
recovered images for difference video sequences are
given in Figs. 3(b), 3(d) and 3(f).

Figure 2: Step by step results for the grounding sequence.
The top left is the original input image and bottom left is
the original illumination field in the input image. In the
top middle, the image is of the temporary recovered im-
age, ÎR;k and the bottom middle is the predicted illumina-
tion field. This was done using the predicted illumination
field as shown in the bottom middle. On the top right is the
finally recovered image, ÎR;k and on the bottom right is the
final median image.

In Fig. 4 the proposed online method and the ex-
isting offline method (Gracias et al., 2008) are being
compared in terms of the number of inliers during the
registration step. From the graph, it can be seen that
the new method is outperforming the old method in

(a) Original Image (b) Recovered Image

(c) Original Image (d) Recovered Image

(e) Original Image (f) Recovered Image

Figure 3: Illustration of the online sunflicker removal per-
formance.

almost all the frames. Quantitatively, matching per-
formance is improved by 46% based on the inliers de-
tected in every pair of frames. Without prediction, the
registration or the number of found inliers are vary-
ing very rapidly because of complete dependency on
the camera motion. In the case of prediction, it in-
cludes the displacement errors creating a generalized
solution which provides approximately constant out-
comes.

Figure 4: Comparison between proposed method and the
offline method for grounding sequence.

5.2 Rock Sequence

The Rock sequence is more challenging than the
grounding sequence, captured in shallow waters hav-
ing a very rocky bottom. Both the methods are be-
ing tested for sunflicker removal keeping other pa-
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rameters unchanged. The proposed online method
is also performing significantly better than the offline
method in terms of found inliers per registration steps
as shown in Fig. 5. Overall gain in the matching per-
formance in the proposed method is about 67% com-
pared with the offline method.

Figure 5: Comparison between proposed method and the
offline method for Rock sequence.

5.3 Andros Sequence

This is the most challenging sequence of the three,
captured in very shallow waters of less than 2 meters
depth under intense sunlight. In this case, the illumi-
nation patterns have simultaneously very high spatial
and temporal frequencies which leads to the method
of (Gracias et al., 2008) to fail. In such situation it is
very hard to get a good registration performance. In
the Fig. 6, the graph shows that the proposed method
performs 15% better. This performance is achieved
because of the steady motion of the camera in this par-
ticular sequence. It proves the robustness of the online
method achieving better results even in such a difficult
video sequence. In case of large registration errors,
the prediction model performance degrades rapidly.

Figure 6: Comparison between proposed method and the
offline method for Andros sequence.

6 CONCLUSIONS AND FUTURE
DIRECTION

This work addresses the specific problem of sun-

flicker in shallow underwater images, by presenting
a method which is suited for de–flickering on the fly.
In the current online method, only the previous few
frames with the current frame are used to create me-
dian image. In this case, the homography is calculated
by registering the sunflicker removed version (using
prediction from dynamic texture model learned from
the last few frames) of current image with the last
flicker–free image. This results in higher image reg-
istration accuracy than the offline method where the
registration is carried out over the original images af-
fected by the illumination patterns. The better regis-
tration then reflects in better median images estima-
tion and ultimately in better sunflickering correction.

This research was motivated by the fact that the
flicker–free images will help creating more accurate
mosaics of the sea floor. Currently the method is im-
plemented in Matlab, and the code has not been op-
timized for speed. It takes 6.39 seconds per frame,
on average, when executed on an Intel core 2 Duo 2
GHz processor. However, being an on-line approach,
the method has the potential to be implemented for
real–time operation.

An extension to the current work is to relate the
illumination frequency with the number of frames re-
quired to perform sunflicker removal optimally. It can
be a way to know beforehand the minimum frame rate
of the camera required to remove the sunflicker effect
properly. Also, for instrumented imaging platforms,
the camera motion can be estimated using a motion
sensor, such as a rate gyro or an accelerometer. This
estimate can be used during the initialization phase of
the method, or whenever the image registration is not
possible.

Another extension addresses highly slanted cam-
era configuration, where the illumination patterns
present distinct spatio-temporal frequencies for dif-
ferent regions of the image. In the described method,
the cutoff frequency of the the low-pass filter is con-
stant. As future work, this cutoff frequency will be
made adaptive to the spatial location and estimated
from image data.
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