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Abstract: The aggregate motion of flocks of birds, a herd of land animals, Mexican wave forming in stadia are 
beautiful and nice examples of collective behaviour. The aggregation is constructed by the action of each 
individual, each action solely on basis of its local perception of the world. Scientists from different 
backgrounds have tried to model collective behaviour. Most of the models are strictly metric (based on 
Euclidian distance among individuals) but flocks of birds do not act on metric perception. In this paper we 
proposed a model based on topological perspective to construct a flock of birds with large number of 
individuals and checked flock’s density independent behaviour. 

1 INTRODUCTION 

Collective behaviour could be stated as “the way in 
which an individual unit’s activity is dominated by 
its neighbours so that all units simultaneously alter 
their behaviour to a common pattern” (Vicsek, 
2001). By acting collectively, individuals (both 
organisms and non-living objects are considerable) 
synchronize their signals or motion. The main 
features of collective behaviour are that an 
individual unit’s action is dominated by the 
influence of its neighbours – the unit behaves 
differently from the way it would behave on its own; 
and that such systems show interesting ordering 
phenomena as the units simultaneously change their 
behaviour to a common pattern. 

The aggregate motion of flock of birds, a herd of 
land animals, a school of fish are beautiful and nice 
examples of collective behaviour. People clapping in 
phase during rhythmic applause, Mexican wave 
forming in stadia (Farkas, Helbing and Vicsek, 
2002) also demonstrates collective behaviour. Even 
non-living objects like ferromagnets show collective 
behaviour. These materials can undergo spontaneous 
magnetization, in effect because they are made up of 
a host ‘tiny magnets’ (Vicsek, 2001).  

Collective behaviour of animals exhibits many 
contrasts. In case of flock of birds, flocks are made 
of discrete birds yet the overall motion seems fluid; 
it is simple in concept yet is so visually complex, it 

seems randomly arrayed and yet is magnificently 
synchronized. The aggregation is constructed by the 
action of each individual, each action solely on the 
basis of its local perception of the world (Reynolds, 
1987). 

Scientists from different backgrounds have tried 
to understand and model different aggregations: 
school of fish (Inada and Kawachi, 2002), flock of 
birds (Reynold, 1987, Bhattacharya and Vicsek, 
2010), pedestrian behavior (Moussaid, Helbing and 
Theraulaz, 2011). Reynolds (1987) first introduced a 
flock of birds model in computer graphics (Reynolds, 
1987). He named the individual units ‘boids’ related 
to ‘bird-like’ or ‘bird-oid’. To simulate a flock, he 
used three simple rules: (1) collision avoidance, (2) 
velocity matching and, (3) flock centering. Their 
simulation was confined to some tens to some 
hundreds of individuals. These three rules seem 
reasonable, but they are unable to reproduce a flock 
once the boids separate a little far away. Again, 
global consideration is not realistic.  

Another simple model (SPP model) (Vicsek and 
Czirok, 1995); (Gonci et al., 2008); (Vicsek, 2008) 
showed that an individual need not to consider the 
whole flock to produce collective behaviour. Only 
interactions with local neighbours and directional 
averaging with neighbours, while some 
environmental noise exists, is enough to produce 
collective motion. In their model, the individuals 
which exist around a certain radius circle to a 
reference individual, are considered the neighbours 
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of that reference individual. Therefore, collective 
behaviours created in this model greatly depend on 
density of the aggregation. However, recent field 
study from European scientists (Ballerini et al., 
2008) confirmed that the starling flock’s behaviour 
is density independent. They argued that birds’ 
behaviour depends on topological distance rather 
than metric one. 

In this paper, we tried to construct a bird flock of 
large numbers. We take the basic SPP model for its 
simplicity (Vicsek and Czirok, 1995), but include 
cohesion and collision avoidance. Though the SPP 
model is strictly metric, we would exclude the metric 
perspective, instead, include the topological 
perspective for the topological idea is supported 
from empirical study (Ballerini et al., 2008). Finally, 
we would check flock’s density independent 
behaviour. 

2 SPP MODEL 

The particles that make action or motion without the 
influence or action of any external force are called 
self-propelled particles (Simha and Ramaswamy, 
2002). In this sense, animals that produce collective 
behavior in different sorts of aggregations, can be 
pointed as self-propelled particles. Instead of the 
three rules model of Reynolds (Reynolds, 1987), the 
SPP model (Vicsek and Czirok, 1995) is based on 
only one rule: at each time step, a given particle 
driven with a constant absolute velocity assumes the 
average direction of motion of the particles in its 
neighborhood of radius r with some random 
perturbation added. The analogy can be formulated 
as follows: The rule corresponding to the 
ferromagnetic interaction tending to align the spins 
in the same direction is replaced by the rule of 
aligning the direction of motion of particles. 
Random perturbations are applied in analogy with 
the temperature. Biological subjects have the 
tendency to move as other subjects do in their 
neighborhood (Brien, 1989). Therefore, the SPP 
model can be useful to model the flock of birds and 
other living organisms. 

The simulations were carried out in a square 
shaped cell of linear size L with periodic boundary 
conditions. Interaction radius r was used as the unit 
to measure distances (r = 1), while the time unit, ∆ݐ 
was the time interval between two updating of 
direction and positions. The initial condition: (1) at 
time, ݐ = 0,ܰ particles were randomly distributed in 
the cell, (2) had the same absolute velocity, ݒ଴ and 
(3) randomly distributed directions. The velocities of 

particles {ݒԦ௜} were determined at each time step, and 
the position of ith particle is updated according to- 
ݐ)Ԧ௜ݒ  + (ݐ߂ = ଴ݒ < (ݐ)Ԧ௝ݒ >௥| < (ݐ)Ԧ௝ݒ >௥ |+  ݊݋݅ݐܾܽݑݐݎ݁݌

(1)

ݐ)Ԧ௜ݔ  + (ݐ߂ = (ݐ)Ԧ௜ݔ + ݐ)Ԧ௜ݒ + (2) ݐ߂(ݐ߂
 

Here <. . >୰  denotes averaging of the velocities 
within a circle of radius r surrounding particle i.  < vሬԦ୨(t) >୰/| < vሬԦ୨(t) >୰ |  provides a unit vector 
pointing in the average direction of motion. 
Perturbation is taken account by adding a random 
angle corresponding to the average direction of 
motion in the neighbourhood particle of i. 
Perturbations are random values taken from a 
uniform distribution in the interval of  [−ߨߟ,  .[ߨߟ
The only parameters of the model is the density -- 
the number of particles in unit square (for 2 
dimensions) or unit volume (for 3 dimensions) – the 
velocity, ݒ଴ and the level of perturbation,ߟ < 1. In 
two dimensional simulation, Vicsek showed that, for 
a wide velocity range (0.003 < ଴ݒ < 0.3) , and 
higher density (ߩ = 12.0) and smaller level of noise 
or perturbation (ߟ = 0.1), after some time steps, all 
particles move in the almost same direction i.e. 
synchronize themselves by locally interacting with 
each others. 

In the SPP Model, Vicsek introduced an order 
parameter which denotes the level or ordered motion 
of the aggregation. The ordered parameter, ߮ , is 
determined as follows: 
 ߮ = ଴ݒ1ܰ |෍ݒԦ௜ே

௜ୀଵ | (3)

 

Where N is the number of particles, ݒԦ௜ is the velocity 
of the i th particles. ߮  goes near to 1 when the 
aggregation is ordered and equal to 1 for fully 
ordered. In contrast, when ߮ is near to zero; it means 
that the particles are randomly walking and showing 
no collective behaviour. 

3 METRIC OR TOPOLOGY 

Topological distance: The word ‘topology’ is 
derived from Greek word ‘topos’ which means place 
or space, and ‘logos’ which means study or idea or 
theory (http://en.wikipedia.org/wiki/Topology, 
http://www.nn.iij4u.or.jp/~hsat/techterm/topos.html)
. Therefore topology can be understood as the study 
of place or space. “Topology" the English form, was 
first used in 1883 in Listing's obituary in the journal 
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Nature to distinguish "qualitative geometry from the 
ordinary geometry in which quantitative relations 
chiefly treated". In this paper, when we would talk 
about ‘metric distance’, we would mean the 
quantitative distance i.e. real distance. And when we 
use ‘topological distance’, we would rank the 
surrounding particles to a reference. The rank would 
be 1, for the most nearest neighbour, 2 for the 
second nearest neighbour and so on. These ranks 
would be the topological distances. Therefore 
topological distances would be discrete: 1, 2, 3,.. 
The important distinction is that topological distance 
does not change with the density of aggregation i.e. 
the first nearest neighbour’s rank would be 1 
(topological distance = 1) no matter how far or how 
near it is. In economics, for example, the relevant 
quantity is not how many kilometers separate two 
countries (metric distance), but rather than the 
number of intermediate countries between them 
(topological distance) (Henrikson, 2002). 

4 BALLERINI’S FIELD STUDY 

Ballerini et al., (2008), by reconstructing three-
dimensional positions of individual birds of few 
thousand members showed that the interactions 
among the birds do not depend on metric distance 
rather than depend on topological one. Moreover, 
each bird interacts with a fixed number of birds (6-7 
birds). They tried to show that the topological 
interaction can achieve more cohesion than the 
metric one while robust cohesion is needed for 
complex density and shape changes of flock not 
breaking cohesion among birds. 

The main goal of the interaction among 
individuals is to maintain cohesion of the 
aggregation. This is very strong biological 
requirement, shaped by the evolutionary pressure for 
survivor: stragglers and small groups are 
significantly more prone to predation than animals 
belonging to large and highly cohesive aggregation 
(Vine, 1971). In topological model, cohesion among 
individuals does no vary with density changes, 
therefore more suitable to keep cohesion. 

Ballerini et al., (2008) discussed about the 
characterization of structure of birds within flock by 
showing the spatial distribution of nearest 
neighbours. Given a reference bird, they measured 
the angular orientation of its nearest neighbours with 
respect to the flock’s direction of motion. The 
measurement shows an anisotropic characteristic and 
the anisotropic characteristic tends to fade out as the 
rank of the nearest neighbours increases. This means 

that the anisotropic characteristic of flock is the 
result of individual interaction. 

5 RESULTS AND DISCUSSIONS 

Ballerini et al., (2008) made a simple two 
dimensional predator-prey model based on SPP 
model to emphasize that the topological interaction 
should show strong cohesion. However, we 
reproduced the same results in two dimensional case 
and extended it to three dimensional predator-prey 
model. We have been successful to show that the 
three dimensional model exhibits the same type of 
cohesion as the two dimensional model does (Figure 
1b and 1e). 

5.1 Predator-prey Model 

In the predator-prey model (two dimensional), we 
used equation (1) and (2) to update prey’s velocity 
and position. However, the perturbation or noise part 
is replaced by the impulsive force from the predator 
to prey. Predator’s velocity and direction remain 
unchanged and does not have effect from preys. The 
impulsive force from predator to prey is determined 
as equation (4). 
Ԧ௜ܨ  = ଴݂ Ԧ௣௥௘ௗ௔௧௢ି௜|ଶ (4)ݎ|Ԧ௣௥௘ௗ௔௧௢ି௜ݎ

Ԧ௜ܨ   is the impulsive force to i th bird, ଴݂  is the 
magnitude of the impulsive force posed by the 
predator and ݎԦ௣௥௘ௗ௔௧௢௥ି௜ is the distance vector from 
predator to prey. For metric case, we used 
interaction radius as 0.15 and in case of topological 
situation, we assume that a bird interact with three 
nearest neighbour -- for two dimensional case 
individuals show optimum interaction when they 
interact with three nearest neighbours (Inada and 
Kawachi, 2002). For both metric and topological 
case, we calculated the isolated individuals separated 
by predator attack. Figure 1a shows that in metric 
case, maximum probability is for three isolated 
individuals while in topological case, Figure 1b 
shows that the maximum probability is for zero 
isolated individual. Again, the probability bars of 
separated individual decay very quickly in contrast 
with the metric interaction. Therefore, it shows that 
metric interaction is prone to predator attack and 
topological interaction produces more cohesion 
among individuals in aggregation.  

We can assume that the birds may have 
preference while aligning with the neighbours. We 
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ran another simulation taking weighted average of 
neighbour’s velocity. We modified equation (1) to 
equation (5) to update velocity, and found that 
cohesion increased (Figure 1d). We cannot say for 
sure, but point out to birds may have preferences 
among nearest neighbours. Same sort of 
characteristic has been achieved for three 
dimensional predator-prey simulation (Figure 1e). 
ݐ)Ԧ௜ݒ  + (ݐ߂ = ଴ݒ < (ݐ)Ԧ௝ݒ >௥| < (ݐ)Ԧ௝ݒ >௥ |+  ݊݋݅ݐܾܽݑݐݎ݁݌

(5a)

 where, < vሬԦ୨(t)>୰ vሬԦ୧(t) + ∑ vሬԦ୨(t)/(1 + j)୒୨ୀଵ1 + ∑ 1/(1 + j)୒୨ୀଵ  
(5b)

 

 

Figure 1: The horizontal axis (in a, b, d and e) shows the 
number isolated bird after attack and vertical axis shows 
the probability of that number isolated bird(s). In the 
model, we valued ݒ଴ = 0.25, ଴݂ = 0.05. At ݐ = 0, all birds 
are initialized with the same direction and the predator is 
at the opposite direction. (a) shows the probability of 
isolated bird in metric case (maximum probability is 
16.5% for 3 isolated birds), (b) shows the probability in 
topological case, and the maximum probability is 52.4% 
for zero isolated bird. (c) shows the image of the 
simulation; (d) Comparison between non-preferred and 
preferred velocity alignment. Preferred alignment shows 
better cohesion. (e) shows the simulation result for three 
dimensional topology case. Time step is 1000, number of 
simulation is 1000. 1000 individuals, initially, are 
distributed in 1 unit radius sphere. The parameter values 
are, ݒ଴ = 0.50, ଴݂ = 0.05 , and isolation determination 
distance is 1.15. 

In the simulations, the number of individuals is 
200. Data is measured after 2000 time steps for each 
simulation, and probability is taken after 2000 
simulations done for both metric and topological 

case. The prey, initially are distributed a radius 1 
circle and predator’s vertical position is 0.9 from the 
flock’s centre. Interaction range for metric case, i.e. 
metric range is 0.15 and topological range is 3. We 
considered a bird is isolated if no other bird is 
present in 0.45 radius with respect to the reference 
bird. In 3D simulation, this radius would be 1.15. 

5.2 Density Independence 

In topological interaction, interactions among 
individuals should be density independent, i.e. they 
should show the same sort of interaction results for 
different densities in aggregation. We have run 
simulations (the above two dimensional predator-
prey model) for different densities and demonstrate 
that the characteristic of interaction vary negligibly 
(Figure 2). 

 

Figure 2: Predator-prey model has been tested for different 
densities (different numbers of individuals are distributed 
within the same area). Other parameters coincide with the 
two dimensional topological model in section 5.1. We 
used the same parameter values as section 5.1.  

5.3 Compatibility of SPP Model 

 

Figure 3: (a) Linear correlation between sparseness and 
metric range (Ballerini), Pearson correlation = 0.78. (b) 
Linear correlation between sparseness and metric range 
(simulation), Pearson correlation = 0.98. We used the 
same parameter values as section 5.1. 

Is the SPP model is compatible to model bird flock? 
To test this, we have considered one of Ballerini’s 
field study’s result (Ballerini et al., 2008). They 
defined a parameter called sparseness (ݎଵ ) – the 
average first nearest neighbor distance of a flock – 
which is inverse proportion to the density of the 
flock; and metric range for topological interaction 
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( ௖ݎ ) – the average nୡ(= 7)  th nearest neighbour 
distance of a flock – and found a strong linear 
correlation (Figure 3a) between them. We will take 
this as a test-stone to test the compatibility of SPP 
model. For ten different initial sparseness of our 
predator-prey model, we found that our simulations 
showed that there remains strong linear correlation 
between sparseness and metric range (Figure 3b). 

5.4 Our Model 

In SPP model, we could produce some trend of 
flock’s behaviour (staying together under 
perturbation and linear correlation between 
sparseness and metric range). But as only directional 
alignment has been considered, as time passes 
cohesion will break down (Chate, Gregoire, Peruani 
and Raynaud, 2008). In our predator-prey 
simulation, we found that even though boids have 
strong relation in alignment, the flock tends to get 
sparser as time passes even when there is negligible 
perturbation (Figure 4). Therefore, to model a flock 
consisting large number of individuals we have to 
consider some other interactive forces that are 
presented among individuals. Gruler et al., (1999), 
and Kemkemer et al., (2000) described that human 
melanocytes - pigment cells of the skin – are also act 
collectively without external force. That is why, 
melanocytes can be said as SPPs. But melanocytes 
do not show directional properties rather show 
apolar characteristics. Melanocytes show nematic 
arrangements (Figure 5) and their net motion is zero. 
They interact with each other nematically. This can 
be a vital interaction in different SPPs (Simha and 
Ramaswamy, 2002). Vicsek model (1995) assumes 
objects as point like while melanocyes are rod like. 
Therefore, to model bird flock, we can consider 
birds as a rod like objects that consider nematic 
forces for cohesion and also tend to make directional 
alignment. With this hypothesis, we will introduce a 
topological model where both nematic forces and 
tenderness for directional alignment would exist. By 
modifying SPP model with topological essence, we 
described the velocity update for each bird as 
equation (6). The main difference of this equation 
with Chate et. al. is that it only deals with 
topological range where Chate et. al. considered 
metric distance. 
ݐ)Ԧ௜ݒ  + (ݐ∆ ݏ}଴߭ݒ = ෍ (ݐ)Ԧ௝ݒ + (1 − ෍(ݏ ଴݂ Ԧ݁௜௝ + Ԧ}ேݖߟ

௝
ே

௝ ௜  
(6)

 

Here, ݒ଴ is the speed, N is the number of neighbours 
for interaction, ଴݂ represents the nematic or cohesive 

force to each other, Ԧ݁௜௝ is the unit vector to from i th 
bird to j th neighbor. ߟ is the system’s noise level, zԦ 
represents the random unit vector. ݒԦ௝ is the velocity 
of j neighbour. s represents a strategy parameter, 
where, 0 ൑ ݏ ൑ 1. It determines to what extent, a 
bird is going to evaluate directional alignment and 
cohesion. Vicsek’s (1995) SPP model does not 
consider the prevention of collision among the 
individuals. We introduced collision prevention by 
imposing an infinite value to ଴݂  and, setting Ԧ݁௜௝ =− Ԧ݁௜௝  when the nearest neighbor(s) are too close. ߭ 
makes a vector to a unit vector, i.e. ߭ = Ԧܽ ∥ Ԧܽ ∥⁄ . 

In large flocks, some characteristics can be 
found: density fluctuation, wave flow and complex 
patterns. SPP model for large number of particles 
shows density variance in the system both in two 
and three dimensions (Chate et al. 2008). By 
simulating a large number of individuals with our 
proposed topological cohesive-directional alignment 
model, we were able to produce real like flock 
(Figure. 6). The simulated flock mainly showed two 
properties of real flock: visual complexity and 
density variations through flock. Though the flock 
shows visual similarities, we must test the internal 
structures of simulated flock. At this point, we could 
argue that the proposed model is able to create visual 
complexity and density variations in flocks. 
 

 

Figure 4: Sparseness increases with time steps. 

 

Figure 5: Human melanocytes on a glass surface. We can 
see that these cells have nematic arrangements (Simha and 
Ramaswamy, 2002). 

We think that velocity alignment is responsible 
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for density variation and nematic cohesive force is 
responsible for complex pattern. However, yet, we 
have not been able to include wave flow in flock of 
birds. We are working on this. 

 

Figure 6: A snapshot of flock of birds in our simulation. 
Number of individuals is 4096. Initially we distributed the 
individual randomly in a box of length 7 and initial 
directions were randomly taken. Individuals were updated 
according to equation (6) and equation (2). Time step was 
1500. Other parameters are: ଴݂ = 0.5, ߟ = 0.001, ݏ =0.94 ଴ݒ , = 0.05, ݐ∆ = 1.0 , and collision prevention 
distance = 0.25. 

6 CONCLUSIONS 

Though interactions among birds in a flock depend 
on topological range and birds interact only local 
perception of the world, previous models for bird 
flock lacks these properties of birds’ behaviour. We 
presented a model of bird flocks from topological 
perspective. We took two important behaviours of 
self-propelled particles to model the bird flock: 
alignment and cohesion with neighbours. The 
simulation result presents two important properties 
of bird flocks: complexity in shapes and density 
variations through flocks. We were also able test the 
density independence characteristics of flock of 
birds and bird’s preferential behaviour that might be 
true. Still we need to check flocks’ internal structure 
of flocks to compare simulated flocks with real 
flocks. Again, we are unable to create wave passing 
through flock. We are working on this topic. 
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