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Abstract: This paper describes a region-based attention approach on motion saliency, which is important for systems that
perceive and interact with dynamic environments. Frames are collected to create volumes, which are sliced
into stacks of spatiotemporal images. Color segmentation is applied to these images. The orientations of the
resulting regions are used to calculate their prominence in a spatiotemporal context. Saliency is projected back
into image space. Tests with different inputs produced results comparable with other state-of-the-art methods.
We also demonstrate how top-down influence can affect the processing in order to attend objects that move in
a particular direction. The model constitutes a framework for later integration of spatiotemporal and spatial
saliency as independent streams, which respect different requirements in resolution and timing.

1 INTRODUCTION

The biologically inspired concept of visual attention
is used in artificial vision to filter relevant from irrel-
evant information at early stages of processing. As
in biological systems, only parts of the scene that
are in the focus of attention (FOA) are forwarded to
higher processing levels, such as object recognition or
scene learning. Classic computational models create
saliency maps from local contrasts in the input im-
age regarding different feature dimensions, including
color, intensity and orientation (see (Itti et al., 1998),
for example). Additionally, besides this bottom-up
process, top-down processes have been identified in
biological attention which influence the FOA with
respect to the current task. Recent technical mod-
els have incorporated such influences; (Wischnewski
et al., 2010), for example, propose a method based
on a psychological model. In mobile robotics and
other systems that perceive — and possibly act in —
dynamic environments it is not sufficient to process
static saliency. Often robots observe a great deal of
motion due to self motion and events in the environ-
ment. Local contrasts in direction or speed usually re-
late to something interesting, such as another moving
entity that should be avoided (or approached, depend-
ing on the task). Salient motion is also a strong fea-
ture in biological attention (Mahapatra et al., 2008)
and computational models are being updated to re-
spect motion cues. Obtaining motion information

from successive frames constitutes a coherence prob-
lem, the problem of describing the displacement of
image parts from one frame to the next. This implies
that raw image data must be grouped and described to
match occurrences in subsequent frames. These are
computationally expensive processes, which require
solving high level problems such as object recogni-
tion and representation. Attention was considered to
speed them up at an early stage, but extracting motion
information in that manner requires these high level
problems to be solved before the attentional stages.
To resolve this chicken-egg situation, the coherence
problem can be bypassed by creating spatiotemporal
slices from the input. Successive X �Y frames are
collected for a certain duration of time and then con-
verted into stacks of spatiotemporal X �T and Y �T
slices. The incremental displacements in the X �Y
frames result in ’traces’ or motion signatures in some
of the slices, and their angles are related to the mo-
tions. Figure 1 illustrates this relation: The horizontal
motion of the person produces a tilted region in the
X � T slice. If the person would be standing still,
the trace would be parallel to the temporal axis. In
the case where horizontal as well as vertical motion is
present, tilted motion signatures would exist in X�T
and Y �T slices. In short, the orientation of a motion
signature describes the motion of the corresponding
object, a fact that can be exploited to process motion
saliency.

Spatial orientation is a classic feature of at-
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Figure 1: X �Y � T volume visualization of a clip from
(Schüldt et al., 2004). The images on the faces of the cuboid
show slices from the inside. The same are shown separately
without perspective distortion. The marker frames indicate
where the slices are located in the volume.

tention models, so existing methods for calculating
spatial orientation saliency may be used to calcu-
late motion saliency on spatiotemporal slices. Pixel-
based models emulate receptive fields and center-
surround mechanisms (Itti et al., 1998); these have
also been applied in the spatiotemporal domain (Be-
lardinelli et al., 2008). An approach that constructs
spatial saliency from singularities in frequency do-
main, Spectral Residual (Hou and Zhang, 2007) can
be applied to spatiotemporal slices (Cui et al., 2009).
A region-based approach on spatial attention is de-
scribed in (Aziz and Mertsching, 2008a) where a
color-segmentation is performed as an initial step.
This model is capable of including top-down in-
fluences utilizing templates (Aziz and Mertsching,
2008b) which is more specific than tuning weights
when combining different feature saliencies, a com-
mon method in classic models. First tests to ex-
pand this idea to the spatiotemporal domain have been
conducted in (Tünnermann, 2010) where the same
method was used for obtaining spatial and spatiotem-
poral orientations. Due to resulting constraints re-
garding the temporal range of the collected volume
(it must be long), this system is incapable of process-
ing continuous streams of visual data in (near) real-
time, undoubtedly an important ability for the use in
robotics. In this paper, we use a method for calcu-
lating region-based spatiotemporal saliency that is not
subject to these restrictions but still preserves the abil-
ity of template-based top-down interfacing.

The following section discusses related work,
while section 3 describes the proposed method. Eval-
uation of the results is shown in section 4. Section
5 discusses the proposed architecture with an eye on
future work.

2 RELATED WORK

In the previous section we discussed different ap-
proaches that make use of spatiotemporal slices to de-

tect motion saliency and we suggested a region-based
method realizing this concept. However, other recent
work approaches the problem in different ways. (Seo
and Milanfar, 2009) and (Mahadevan and Vasconce-
los, 2010), for example, apply center-surround win-
dows and image statistical descriptions of the stim-
uli. (Mahadevan and Vasconcelos, 2010) apply their
algorithm in a foreground-background-classification
scenario and report robust results, even when a com-
plicated dynamic background is present. In (K. Ra-
pantzikos S. Kollias, 2009) a method is proposed
that processes spatiotemporal volumes to make use
of saliency information for video classification. The
classic center-surround mechanism is applied in 3D
to differently scaled sub-volumes. (Guo et al., 2008)
extend the concept of the Spectral Residual. In con-
trast to (Cui et al., 2009), who applied it to spatiotem-
poral slices, they use a Quaternion Fourier Transfor-
mation that allows coding color, intensity and spa-
tiotemporal change to obtain saliency by analyzing
the phase spectrum. The mentioned models do not
provide mechanisms to integrate top-down motion in-
formation. This is not only important when knowl-
edge should influence the FOA, but also to retain the
focus in consecutive frames. In other situations, re-
focusing must be suppressed, for example, when the
object has been analyzed sufficiently (inhibition of re-
turn). These models also calculate spatiotemporal and
spatial saliency in one common process. In contrast,
separate pathways allow adjustments to different re-
quirements. The processing of motion information
must be fast but might not require resolutions as high
as for spatial information. In human perception, mag-
nocellular and parvocellular pathways transport vi-
sual information with large, fast low-resolution cells
and slower high-resolution cells, respectively. The
magnocellular pathway mainly contributes to motion
and depth perception, while the parvocellular is in-
volved with color and form (Livingstone and Hubel,
1987; Goodale and Milner, 1992). The information is
combined at later stages to generate a coherent, con-
scious percept. Information from the pathways can be
accessed before combination happens. We automati-
cally dodge an object thrown at us even without see-
ing how it looks. This concept should be transferred
to artificial systems. When something of possible in-
terest quickly passes through a robot’s vision and it is
too fast to retrieve detailed information it may be use-
ful to turn the camera in attempt to follow the object
(or dodge, if it moves towards the robot). The method
we suggest separates spatiotemporal from spatial in-
formation by processing spatiotemporal slices inde-
pendently from the spatial frames. The region-based
approach allows the use of top-down templates, which
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in future work can be used to establish feedback-loops
for saliency-based tracking and basic attentional con-
trols, as inhibition of return. The initial color segmen-
tation of each slice results in a list of regions for which
basic features are calculated. By a voting mechanism
regions collect saliency based on how different they
are from their neighbors. Additional to this bottom-
up path, top-down templates can be used to assign
saliency with regard to similarity of each region to a
template. All mentioned operations as well as the fi-
nal combination of the different saliency channels can
be done efficiently by looping through the region lists.
Pixel-based saliency maps (usually only required for
visualization) can be generated by information from
the region lists and a label image which is created dur-
ing the segmentation process and which maps pixel
positions to the regions. In addition to spatiotemporal
saliency processing with a good interface to top-down
information that is separated from — and can be later
integrated with — spatial attention, we see the need
for a system that allows continuous processing of a
visual input stream. Most of the other models work
on closed volumes or finite numbers of frames and
only some are stated to be able to process input in (or
near) real time. To our knowledge there is no system
for which it has been demonstrated how processing
volumes are collected online from continuous input,
say a camera, and calculate the FOA based on spa-
tiotemporal saliency.

3 PROPOSED METHOD

The concept of region-based processing of spatiotem-
poral slices to obtain motion saliency can be illus-
trated as a flow of processing volumes (containing re-
gion lists for each slice). In figure 2 an overview of
the processing done for each volume (initially a stack
of input frames) is depicted. In the following expla-
nations, numbers in round brackets refer to the cir-
cled numbers in the figure. Processing volumes are
stacks of frames which can be collected from contin-
uous input (see section 4.2). The volume is sliced
into stacks of X � T and Y � T slices (1a). To en-
able a re-transformation to the spatial domain later,
spatial color segmentation (see section 3.1) is per-
formed for each frame (1b). For the spatiotemporal
slices feature magnitudes are determined (2). This
is done by performing color segmentation on each
slice and then calculating the spatiotemporal angle
(section 3.2). This information is then forwarded
to the bottom-up module (3a) where spatiotempo-
ral saliency is computed as described in section 3.3.
With consideration of top-down influences, top-down

saliency is processed, also based on the feature mag-
nitudes (3b), as described in section 3.4. The result-
ing bottom-up and top-down feature maps are com-
bined to form spatiotemporal master saliency maps
(4). This combination is done by forming weighted
averages of bottom-up and top-down saliency, where
the weights should depend on the task. They can be
used to completely switch off one of the pathways.
This was done for the experiments reported in section
4 to evaluate bottom-up and top-down attention sepa-
rately. The spatiotemporal master saliency maps from
the X �T and Y �T pathways are now combined to
produce a volume of spatiotemporal saliency which is
then sliced back into common X �Y orientation (5).
This crucial step makes the spatiotemporal saliency
accessible from the spatial context and is described in
section 3.5. The results of this step are pixel-based
intensity maps. The coherence problem which was
bypassed by working on spatiotemporal slices must
now be solved in a different form: Spatiotemporal
saliency, projected back into the spatial domain, must
now be assigned to the entities that were responsible
for the motion. This is done by adding the values from
the pixel-based intensity maps to corresponding re-
gions from the spatial segmentation (1b) and normal-
izing them by the region size (section 3.5). Once this
is done, the FOA is determined by selecting the re-
gion with the most projected spatiotemporal saliency
for each X�Y frame.

3.1 Segmentation of Spatial Frames and
Spatiotemporal Slices

Initially, spatial as well as spatiotemporal images
must be segmented. Please note that the used color
segmentation cannot be described in detail in the
scope of this paper. Conceptually, any method can
be used that turns pixel images into coherent regions.
The algorithm we used in our implementation is ba-
sically the same as described by (Aziz, 2009). Seed
pixels are selected and regions are grown iteratively.
Six thresholds decide whether a pixel is added to a
region or not. Thresholds Gh, Gi and Gs denote how
much the pixels may vary in hue, intensity and satu-
ration regarding the region’s seed pixel. Thresholds
th, ti, ts denote the tolerance of variance between the
neighboring pixels (all in range [0::255]). In contrast
to (Aziz, 2009) we use the same thresholds for the
complete hue range. For gray-scale input we consider
intensity only. The minimum region size µ (in pix-
els) is used to filter out all regions smaller in size. It
is crucial because on short spatiotemporal slices mo-
tion signatures will be small but must be kept while
on spatial slices small regions can appear due to noise
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Figure 2: Architecture overview of the proposed method. This figure depicts the flow of information for one processing
volume. The circled numbers relate to the order of steps performed and refer to explanations in the text. Please note that only
the X�T pathway and the shared path is numbered and explained, whereas the Y �T processing is done in an analog manner.

and may be dropped. The existence of these parame-
ters does not imply that the model needs a great deal
of supervision to adjust them for different images.
Quite the opposite is the case; a set of parameters is
sufficient for various kinds of input scenes. All clips
in our evaluation were processed with the same pa-
rameter set (see section 4 for concrete parametriza-
tion).

3.2 Feature Magnitudes of
Spatiotemporal Orientation

The proposed model is based on the fact that the angle
of motion signatures on spatiotemporal slices (spa-
tiotemporal orientation) is related to the motion of
the object that produced the signature. Assuming no
other transformations, such as scaling or rotating, a
motion signature is a spatiotemporal area defined by a
parallelogram. Non-moving background objects, as-
suming that they are not disturbed by moving objects,
produce rectangular signatures. The sides that are in
parallel to the time axis indicate that the object did not
move during the time represented by the slice. When
an object starts to move, the signature shears and the
sides that were parallel to the time axis have a specific
angle. In general, the orientation of edges produced
by a moving object in spatiotemporal slices is related
to the object’s velocity u with

u =�
�

tanjx
tanjy

�
(1)

where jx is the angle between the temporal axis and
the edge on the X �T slice and jy the corresponding
edge’s angle on the Y �T slice.

A common method to obtain a region’s orienta-
tion is to use second order central moments. How-
ever, this results in special requirements for the pro-

t

x
y

x
fst

2

(a)
(b)

R1 R2 R3 R4 R5

Figure 3: (a) A white disk moving in front of gray rectan-
gles. The horizontal dashed line marks the Y level of the
X�T slice shown in (b). The X�T slice shows spatiotem-
poral signatures of background and disk. Dashed vectors
illustrate how spatiotemporal orientation fst

i is determined
(the angle is marked explicitly for region R2, only).

cessing volume dimensions. A rather short volume
can cause false spatiotemporal orientations. This can
be seen considering region two in figure 3 (b). As the
angle produced by that approach is relative to the ma-
jor axis of the region, it would describe a region par-
allel to the spatial axis. The region was produced by
a non-moving background object so its spatiotempo-
ral orientation should be 90� to the spatial axis. The
major axis would in fact be 90� to the spatial axis,
if more frames would have been recorded (elongat-
ing the slice temporally) or if the input image resolu-
tion would have been smaller (compressing the slice
spatially). Both options have drawbacks. Decreas-
ing resolution means loosing detail and increasing the
frame number leads to requiring more time to collect
the frames, delaying the result.

As we are interested in the “tiltiness” of a region
rather than the orientation of its major axis, we use
a simple method to obtain spatiotemporal orientation
in this sense. For each region Ri on a spatiotemporal
slice, we determine the first row L f irst

i and the last row
Llast

i of pixels that belong to the region with
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L f irst
i = fpxt j t � a^ pxt ; pxa 2 Rig (2)

Llast
i = fpxt j t � a^ pxt ; pxa 2 Rig (3)

The region membership of pixels pxt is obtained from
the label image, which was produced in the segmen-
tation step. The centers of these rows (corresponding
to the black dots in figure 3) are determined as

c f irst
i =

1

jL f irst
i j å

pxt2L f irst
i

x (4)

clast
i =

1
jLlast

i j
å

pxt2Llast
i

x (5)

and the spatiotemporal orientation fst
i is obtained by

f
st
i = atan2(h;c f irst

i � clast
i ) (6)

where atan2(t;x) calculates arctan(tx�1) and adjusts
the angles to give the angle between (x; t) and the
positive x axis. The fst

i correspond to the angles of
the vectors drawn in figure 3. An angle of 90� re-
lates to the motion signature of a static object. Mo-
tion towards the left in image space produces angles
between 90� and 0�, while motion towards the right
results in values between 90� and 180�. We can use
short processing volumes, so an object in motion will
usually be present in a number of them and have
straight first and last rows of pixels. Region four in
figure 3 is not a perfect parallelogram. It rather has
a bent edge and the last row is larger than the first
row. This means there was some acceleration and also
the object (or its projection) was scaled. Given the
processing volume is short and such changes not to
heavy, the vector is a good approximation of the mo-
tion. Similarly, regions three and five are motion sig-
natures that are not rectangular and have spatiotem-
poral angles different from zero, even though they
represent a static background. These errors are pro-
duced by the moving object passing in front of the
background. In theory these are not errors, as there
is spatiotemporal change. However, we do not want
to highlight non-moving objects and luckily these sig-
natures usually do not carry much weight. Their spa-
tiotemporal angles are often still different from the
moving objects, so they contribute to its saliency but
won’t acquire as much as the moving object does.

3.3 Bottom-up Saliency of
Spatiotemporal Orientation

With spatiotemporal orientation angles fst
i being de-

termined for each region of a slice, the bottom-up

saliency " Si
fst with values between 0 and 1 is com-

puted straight forward by summing up the normalized
difference of the angles (180� is the maximum differ-
ence between two regions’ angles).

" Si
fst =

jRj

å
j=1

jfst
i �fst

j j
180�

wD
i j (7)

where wD
i j with values between 0 and 1 denotes a

weight that depends on the distance between the cen-
ters of Ri and R j. Due to the fact that slices are usually
short in the temporal dimension, the distance weight
can be approximated by taking the difference of the
x-components and normalizing it by the slice width.

3.4 Top-down Saliency of
Spatiotemporal Orientation

The top-down saliency # Si
fst is obtained with regard

to the spatiotemporal orientation fst
T of a template re-

gion. Spatiotemporal top-down saliency # Si
fst (rang-

ing from 0 to 1) is then determined by the similarity
between each region and the template.

# Si
fst = 1�

jfst
i �fst

T j
180�

(8)

Here, we only make use of what spatiotemporal ori-
entation contributes to saliency. However, a seg-
mented motion signature carries more information.
Color, size or other features from region-based spatial
saliency computation can be used to create more spe-
cific top-down templates. The mechanisms can easily
be transfered from the spatial context, in which they
are used in (Aziz and Mertsching, 2008b). In this con-
text we restrict the template mechanism to spatiotem-
poral orientation as it is directly induced by motion.

3.5 Transforming Saliency from
Spatiotemporal to Spatial Domain

The purpose of saliency processing is to obtain a FOA
of attention, which is a region in image space that is
important in the current situation. The previous steps
described how to calculate the saliency of motion sig-
natures on spatiotemporal slices. These saliency val-
ues must be transformed back into image space and
integrated with the spatial segmentation to make them
accessible for FOA selection.

For each slice of the X � T and Y � T stack
pixel-based master saliency maps are produced as a
weighted combination of top-down and bottom-up
saliency. The pixel activity for a X �T slice can be
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described as

axt =
jRj

å
i=1

(" Si
fst wbu+ # Si

fst wtd)
1

wbu +wtd
r

i
xt (9)

where

r
i
xt =

(
1 if (x; t) belongs to region Ri

0 otherwise
(10)

which is determined by a look-up in the label image
that has been created when the slices of spatiotempo-
ral stacks were segmented before the calculation of
the feature magnitudes. Weights wbu and wtd can be
used to control the ratio of bottom-up and top-down
influence. With ay

xt we denote the pixel activities axt
on slice y of the X � T -stack and with ax

yt activities
ayt on slice x of the Y �T -stack, ayt is defined analo-
gous to axt . A saliency volume Axyt is constructed by
blending the pixel activities from both stacks.

Axyt = (ay
xtwxt +ax

ytwyt)
1

wxt +wyt
(11)

X �Y slices extracted from Axyt already constitute
pixel-based saliency maps, which are the final results
of many models. To obtain a more differentiated fo-
cus that is a region (or a proto-object), the pixel ac-
tivities are grouped with regard to the spatial regions
Qt

i of frame t, which have been created initially in
the spatial segmentation step (1b, in figure 2). So the
final motion saliency map Mt for frame t in spatial
domain is constructed by iterating over the image (of
size X �Y ), summing and averaging the intensities
that belong to each region.

Mt
i =

1
jQt

ij

X

å
x=1

Y

å
y=1

Axytr
t;i
xy (12)

with r
t;i
xy indicating the region membership check and

yielding 1 if the pixel at (x;y) is a member of region
Qt

i and 0 else. Region size in pixels is denoted as jQt
ij.

For the experiments in the scope of this paper, for
each frame t the region Qt

i with the highest corre-
sponding motion saliency Mt

i is selected to constitute
the FOA. As Qt represents region lists of the same
kind as in (Aziz and Mertsching, 2008a), the spatial
saliency processing there can be performed on them
and the saliencies of spatial and spatiotemporal pro-
cessing can easily be merged.

4 EXPERIMENTS

4.1 Saliency Results

It is virtually impossible to obtain objective mea-
sures for correctness of the output of attention models.

Ground truth from human subjects, obtained by eye-
tracking or manual marking of salient spots, is heavily
influenced by top-down processes, which cannot be
fully modeled with today’s technical systems. Covert
attention shifts are not accounted for in eye-tracking
experiments and manual marking relies on introspec-
tion. Observers report full objects even if only some
salient part of it drew their attention. Despite these
difficulties, ground truth obtained in such ways has
been used to evaluate the output of attention mod-
els. (Mahadevan and Vasconcelos, 2010) use man-
ually created masks that isolate moving foreground
objects and evaluate their model in a foreground-
background-classification task. They use receiver op-
erator characteristics (ROC) curves to quantify the
models’ classification success. A similar ROC-based
analysis based on eye-tracking results, originally from
(Itti and Baldi, 2006), was done by (Seo and Milan-
far, 2009) for their model. These techniques cannot
be used to evaluate our model. One reason is that,
due to its region-based nature, the output consists of
maps of salient regions which are not necessarily full
objects. The inner regions of a moving object may not
be salient, because their neighbors show the same mo-
tion. In an ROC analysis based on object masks this is
reflected in a high false negative rate. Similarly, fix-
ations from eye-tracker data will often hit non-salient
regions of a moving object. Additionally, the test se-
quences and eye-tracker results from (Itti and Baldi,
2006) are not useful to evaluate a purely spatiotempo-
ral model, as under the free-viewing conditions, spa-
tial conspicuities (and top-down influences) are also
likely to influence the gaze.

To enable quantitative evaluation, at least to some
degree, we report simple hit-counts for the clips pro-
cessed. We award one hit for each frame, where the
FOA was assigned to a location displaying target mo-
tion. Fixations were also counted as hits when an
element adjacent to the object in motion was high-
lighted because it was disturbed by the moving ob-
jects. These fixations are still very close to the moving
target. However, as this is a region-based approach, it
is our aspiration to highlight regions that belong to the
target. Strict hit rates, where only such hits are con-
sidered, are given in round brackets behind the lenient
values (see table 1).

To enable a qualitative visual comparison, we vi-
sualize our model output for sequences that have been
used for the evaluation of other state-of-the-art mod-
els. The clips that we processed are from (Belar-
dinelli et al., 2008), the KTH data set (Schüldt et al.,
2004), the Weizmann data set (Gorelick et al., 2007),
(Mahadevan and Vasconcelos, 2010) and our own se-
quences (GET). The prefixes of the clip names in ta-

CONTINUOUS REGION-BASED PROCESSING OF SPATIOTEMPORAL SALIENCY

235



Table 1: Clip properties and bottom-up hit rates (and strict
hit rates) for all evaluated clips.

Clip name Frames Hits in %
(evaluated) (strict %)

BELA DOTS 40 (40) 75 (75)
BELA WALK 40 (40) 77.5 (60)
BELA SHAKE 30 (30) 96.7 (90) todo
BELA FLICKR1 30 (30) 96.7 (53.3)
KTH P01 WALKING 80 (70) 95.7 (94.3)
KTH P02 BOXING 100 (100) 95 (90)
KTH P03 HANDCLAP 100 (100) 71 (69)
KTH P04 JOGGING 50 (44) 86.7 (81.8)
KTH P05 RUNNING 30 (25) 88 (88)
KTH P06 HANDWAVE 100 (100) 99 (85)
WEIZ DARIA JUMP 60 (60) 100 (91.7)
WEIZ DENIS SIDE 50 (50) 98 (98)
WEIZ ELI BEND 60 (60) 71.7 (45)
WEIZ IDO SKIP 30 (30) 83.3 (76.7)
WEIZ IRA JACK 70 (70) 95.7 (81.4)
WEIZ LENA PJUMP 40 (40) 95 (90)
MAHA SKIING 110 (110) 47.3 (47.3)
MAHA TRAFFIC 190 (190) 98.9 (98.9)
MAHA LAND 50 (50) 0 (0)
GET LTR1 20 (20) 95 (95)
GET LTR2 20 (20) 100 (100)
GET LTR3 20 (10) 100 (100)
GET RTL1 20 (20) 95 (95)
GET RTL2 20 (20) 100 (100)
GET RTL3 20 (20) 100 (100)
GET EGO MOTION 80 (80) 88.8 (78.8)
GET TD 30 (30) 100 (96.7)

ble 1 refer to the source. Input frames were scaled to
240� 180, except clip BELA DOTS, which was pro-
cessed at its original resolution of 256�256 to avoid
that the artificial stimuli (dots) become too small for
the parameter set. Segmentation parameters Gh, Gi,
Gs, th, ti and ts were all set to 8. Minimum region
size for spatial frames is µs = 20 and for spatiotempo-
ral slices µst = 10 (see section 3.1). Except for our
GET clips all input was processed in gray-scale as
they were processed by the respective models.

Results of our system processing clips from (Be-
lardinelli et al., 2008) are depicted in figure 4. Their
approach is also based on spatiotemporal slices but
is pixel-based. Clip BELA DOTS shows circulating
dots, with one dot being faster than the rest (only the
motion of the target is indicated in the figure). Our
model was able to select the correct dot in almost
all frames (see table 1 for hit rates) and its spiral-
ing trace can be seen in the saliency volume visual-
ization. BELA SHAKE shows a surveillance scenario
(originally from (CAVIAR, 2001)), where two peo-
ple approach each other and shake hands. Saliency
peaks can be seen where the motion is taking place.
The remaining two clips shown in the figure have also
reasonable hit rates (the focus is on a plausible tar-
get the most time) but show a lot of activity in the

Figure 4: Results for clips from (Belardinelli et al., 2008).
Exemplary frames with FOA (red rectangle). Manually
added arrows indicate motion. Volumes show saliency maps
over time.

background, too. A medium amount of saliency is as-
signed to background regions when they are crossed
by the moving persons.

Figure 5 shows results from our model for clips
of people performing different actions. They were
also processed and depicted by (Seo and Milanfar,
2009). As the arrows in the figure indicate, dif-
ferent kinds of motion are contained. Some clips,
such as KTH P01 WALKING feature persons moving
through the complete image space, while others such
as KTH P02 BOXING show motion only in some part
of the person. The exemplary frames depicted for
WEIZ ELI BEND and WEIZ IRA JACK are examples
for relaxed hits as they strictly do not hit the moving
person, but they are clearly induced by the motion.

Next we look at figure 6, which shows our results
for scenes that also have been processed — and their
results depicted — by (Mahadevan and Vasconcelos,
2010). MAHA SKIING is heavily affected by noise
induced by snow and poor sight. This is reflected to
some degree by the hit rates. Overall, the saliency dis-
tribution looks reasonable. MAHA TRAFFIC shows a
traffic surveillance scene, of rather low contrast. Our
system performs good hitting targets in almost ev-
ery frame. For MAHA LAND we show a very poor
performance, the target is never hit. The scene con-
tains slight relative motion and ego motion as the
camera follows the target. Theoretically, the region-
based spatiotemporal approach can deal with this sort
of scenes, as moving background objects and a target
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Figure 5: (a) Results for the KTH set; (b) the Weizmann set. Both data sets were also used by (Seo and Milanfar, 2009).

Figure 6: Results for clips from (Mahadevan and Vasconce-
los, 2010).

(almost) static in image space should produce motion
signatures that contrast in orientation. However, in
this scene the background has a low contrast and so
orientation in spatiotemporal slices is more likely to
differ over time due to changes in the segmentations.
That the model is not principally unable to deal with
ego motion is demonstrated in the following, when
looking at GET EGO MOTION.

We now turn to results obtained from experiments
with our own stimulus material. Figure 7 shows clips
with a red ball in motion. Clips GET LTR1 and
GET RTL1 are exemplary for a series of three clips
each, where the red ball is rolling on tracks from left
to right (LTR) and right to left (RTL), respectively.
This simple motion is reliably highlighted (see Ta-
ble 1). The scenes also feature an identical but static
red ball, as a control, which demonstrates that mo-
tion and not a static attribute is the relevant feature.
The control ball is never selected by the model. In
GET EGO MOTION the ball was connected to the
camera to stay in a position which is static in image

Figure 7: Results of bottom-up processing with our own
stimulus material.

space, while the camera was panned and tilted ran-
domly. The model can handle this kind of ego motion
quite well. The saliency volume visualization shows
relatively high saliency values in the environment, but
highest saliency is still assigned to the target.

In figure 8 we show results of a top-down exper-
iment. The input clip contains a scene with two red
balls on tracks rolling in opposite directions. Ad-
ditionally, a horizontally flipped version of this clip
was used. A bottom-up processing of the clip (a
control) is shown in the figure as GET TD (Bottom-
Up), where high saliency values occur for both balls.
For GET TD (Top-Down LTR), a template was used
to bias the model to prefer the left-to-right moving
ball by the top-down mechanism described in section
3.4. The template with f

stX
T = 172� and f

stY
T = 160�

was obtained experimentally by roughly observing
the angles of motion signatures that led to the selec-
tion of the ball during bottom-up processing of clip
GET LTR1. The saliency volume visualization shows
the trace of the upper ball (it is only slightly visible
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Figure 8: Results of our top-down experiments. The left
row shows a bottom-up processing as a control.

Figure 9: Hit rates from the top-down experiment. Hatched
tips indicate hits that did not comply with the strict hit cri-
terion.

as it is occluded by the later frames). Additionally,
a saliency peak of the other ball (the prominent red
dot) can be seen in GET TD (Top-Down LTR), which
occurs due to the fact that the ball bounces off the bar-
rier, changing its direction to target direction towards
the end of the clip. To create the RTL template, the
previous template is horizontally flipped (subtracted
from 180�), f

stX
T = 8� while the Y -component is kept

as is. Results of the bottom-up control as well as pro-
cessing with templates for each direction are shown
in figure 9. All top-down processings eliminated
selections of the ball moving in the opposite direc-
tion and selected the target ball in a large portion of
frames. Due to perspective and physically different
balls, the projected motion differs in all variations.
Interestingly, the best result was observed for the ex-
perimentally determined template used on the flipped
clip. This shows that template creation (which in fu-
ture work will be done automatically by learning or
feedback-loops) is crucial. The selection frequency
can also be optimized by incorporating further fea-
tures, which is discussed in section 3.4.

4.2 Performance and Continuous
Processing

The system was implemented as nodes for ROS,
Robot Operating System (Quigley et al., 2009), which
run in parallel (or interleaved, depending on the
machine). In most of our tests, input data was
streamed in from image sequences and the system
produced output on the fly. Alternatively, it can

be connected to a camera, which was done for clip
GET EGO MOTION. The system was divided into
two main nodes that run in parallel. One continuously
collects frames to form processing volumes and sends
them to the second node, where all other processing is
done. This division allows the frame collector to con-
tinue during the saliency processing and avoids gaps
in the output. The input frame rate is adjusted so that
a new volume is prepared when the saliency process-
ing of previous one completed. With the configura-
tion used in the previously described experiments the
system was in a balanced state at approximately ten
frames per second.

As volumes must be collected first, a certain lag
between the input and output is unavoidable. Vol-
umes of ten frames each were used in our experi-
ments, so at ten frames per second, the oldest frame is
about a second old when the volume enters process-
ing. Additional to this conceptual lag (reducible when
higher frame rates become possible) the processing it-
self adds to the delay. Depending on the complexity
of the scene, it adds up to one or two seconds. A
camera processing lagged behind even more (up to 5
seconds), as the camera driver and image downscaling
produced additional load. These tests were performed
on a dual core system (2.4 GHz) without explicit op-
timization. There is some margin, as X�T and Y �T
stacks are processed sequentially now. Their process-
ing, as well as the initial segmentation, could be sepa-
rate parallel processes to better exploit multi-core ma-
chines.

We made the interesting observation that ignor-
ing the Y � T stack, which reduces processing time
to the half, has only little effect on the output quality
for most natural scenes. For some scenes, we col-
lected hit rates (relaxed and strict) for such a “half
processing”. Table 2 contains hit rate differences
to the full processing. Most of the scenes contain
mainly horizontal motion (as natural scenes usually
do) and it is no surprise that they were little affected.
MAHA TRAFFIC, however, has mainly vertical mo-
tion and still only five out of the 190 frames were
missed due to the reduction.

5 CONCLUSIONS

We demonstrated that motion saliency can be pro-
cessed in a region-based way. The results are brought
back into a spatial image space segmentation, which
consists of region-lists of the same form as used by
(Aziz and Mertsching, 2008a), so integration with
spatial saliency is possible and subject of future work.
The proposed method processes spatiotemporal and
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Table 2: Differences between a full processing and process-
ing only X�T . Strict values are given in round brackets.

Clip name Hit diff. Hit rate diff.
(frames) (Percentage Points)

BELA WALK 3 (1) 7.5 (2.5)
KTH P06 HANDWAVE 4 (4) 4 (4)
DARIA JUMP 0 (6) 0 (10)
MAHA TRAFFIC 5 (6) 2.6 (3.2)
GET LTR1 0 (0) 0 (0)
GET RTL1 -1 (-1) -5 (-5)
GET TD 2 (2) 6.7 (6.7)

spatial saliency independently, which enables differ-
ent spatial and temporal resolutions for this integra-
tion. The visualized output from the experiments
shows reasonable saliency deployment and the hit
counts reflect good results for most of the test clips
from a heterogeneous set. Top-down experiments
were conducted to show how the model can be in-
fluenced to prefer a direction of motion, the mecha-
nism can be extended to include further features. Our
system is able to perform online on continuous in-
put. The result lags behind up to a few seconds which
is due to the concept (collecting a volume first) and
computation time. We demonstrated that by using
only X � T slices, the lag can be reduced with only
little influence on the quality of the outcome. In fu-
ture work we will integrate spatiotemporal with spa-
tial saliency processing and focus on grouping the re-
gions to from “real” objects based on the attentional
results to enable a quantitative comparison with man-
ually marked test clips or eye-tracker data.
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