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Abstract: Paper presents a family of parameterized hash functions allowing for flexibility between security and 
performance. The family consists of three basic hash functions: HaF-256, HaF-512 and HaF-1024 with 
message digests equal to 256, 512 and 1024 bits, respectively. Details of functions' structure are presented. 
Method for obtaining function's S-box is described along with the rationale behind it. Security 
considerations are discussed. 

1 INTRODUCTION 

In many cryptographic applications it is necessary to 
generate a shortened form of a much longer 
message. The shortened form called digest of the 
message or hash value, is produced by means of a 
hash function. A hash function h operates on an 
arbitrary- length message m and returns a hash value 
h(m) of a fixed length. Cryptographic hash functions 
have many information security applications. We 
use hash function to verify message integrity. Keyed 
hash function is used for message authentication. 

Recently we can see substantial effort in 
designing of new cryptographic hash functions. For 
example, as many as 64 proposals were submitted to 
NIST SHA-3 competition, for new hash function, in 
October 2008 (Regenscheid, 2009).  

Our objective is to ensure that the security of 
HaF is high and its performance is significantly 
satisfactory. 

The paper is organized as follows: Section 2 
presents general overview of the family of 
algorithms. Method for obtaining function's S-box, 
along with the rationale behind it, is described in 
Section 3. In Section 4 we discuss security 
considerations. Section 5 is devoted to reference 
implementation and the algorithm performance. 
Concluding remarks are presented in Section 6. 

2 PARAMETERIZED FAMILY 
HaF OF HASH FUNCTIONS 

2.1 Design Principles 

The following assumptions were taken into account 
during design process: 
 the family should be parameterized; 
 message digest length should be selectable; 
 flexibility between performance and security 
should be guaranteed; 
 iteration structure and compression function 
should be resistant to known attacks; 
 its iteration mode should be HAIFA (it provides 
resistance to long message second preimage attacks, 
and handles hashing with a salt) (Biham, 2006). 

2.2 Description of HaF 

The HaF family is formed of three hash functions: 
HaF-256, HaF-512 and HaF-1024, producing hash 
values (message digests) with the length equal to 
256, 512 and 1024 bits, respectively. The general 
model for HaF is based on Merkle-Damgård 
paradigm proposed by Biham and Dunkelman 
(Menezes, 1997); (Biham, 2006) (Figure 2.1). 

After formatting the original message m we have 
the message M. We divide M into blocks M0, M1,…, 
Mk–1, k ∈ {1,2,…}, and each block Mi is processed 
with the salt s by the iterative compression function 
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߮ (Biham, 2006). The output Hk is the final result of 
the function. 
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Figure 2.1: General model for HaF. 

2.2.1 Notation 

In the paper we use the following notation: 

a ⊙ b – multiplication mod (2n+1) of n-bit non-zero 
integers a and b; 
Ar – working variable, r = 0, 1,…, 15; 
Fj – step function, j = 0, 1,…, 15; 
GF(2) – Galois field of characteristic 2; 
length – bitstring representing the length of the 
original message m, |length| = 128; 
lsbq(v) – q least significant bits of the string v; 
IV – initial value; 
m – original message, |m| < 2128; 
M – formatted message; 

n – length of the working variable Ar (16 or 32 or 64 
bits); 
s – salt, |s| = 16n; 
|v| – length in bits of a string v; 
v  <<  t – t-bit left rotation of a string v, |v| = 16n; 
v ⊕ w – bitwise XOR of strings v and w, |v| = |w|; 
v  w – addition mod 2n of integers represented (in 
base 2) by strings v and w; 
p1(x) ⊗ p2(x) – multiplication of polynomials p1 and 
p2 modulo an irreducible polynomial R(x); 
xq – bitstring of the length q; x0 means the empty 
string; ߮ – compression function; 
|| – concatenation of bitstrings. 

2.2.2 Message Padding 

The original message m has to be formatted before 
hash value computation begins. The length of 
formatted message should be a multiple of 16n bits. 
The message m is formatted by appending to it a 
single 1-bit and as few 0-bits as necessary to obtain 
a string whose bit-length increased by 128 bits is a 
multiple of 16n. Finally we must additionally 
append original message length. As a result we 
obtain the formatted message M = M0 || M1 ||. . .|| Mk–

1 for some positive integer k, where Mi  is a block of 
M. Therefore, M = m || 10t || length, where t is the 
smallest nonnegative integer necessary to format m, 
and |M| = 16nk. 

2.2.3 Compression Function 

In the proposed schema the compression function is 
defined as follows: ߮: {0,1}μ × {0,1}η × {0,1}σ  → 
{0,1}ρ. The integers μ, η and σ are lengths of block 
Mi, chaining variable Hi, and salt s, respectively, 
where |Mi| = |Hi| = |s| = 16n and i = 0, 1,…, k–1. The 
integer ρ is the length of the resulting hash value 
h(m) = Hk, |h(m)| = 16n.  
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Figure 2.2: Method of one block processing. 
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The block Mi is processed in two rounds. The 
length of the block equals 16n bits, where n is a 
parameter depending on the hash value we want to 
obtain. For HaF-256, HaF-512 and HaF-1024 the 
parameter n equals 16, 32 and 64 bits, respectively. 
The parameter n indicates in fact the length of the 
working variable Ar used in the step function. 

The method of one block processing is depicted 
in Figure 2.2. Mi, Hi and s are inputs for ߮. Before 
processing in round  #l, l = 1 or 2, the block Mi  is 
modified. In the round #1 four least significant bits 
of  Ni = Mi ⊕ s indicate the number of bits the string 
Ni is rotated to the left: Ni

* = Ni  << lsb4(Ni). Before 
processing in the round #2 the blocks are permuted: 
Ni = Hi

* and Hi = Ni
*. After two rounds, the value Hi

* 

of chaining variable is split into 16 subblocks A0, A1, 
…, A15 of equal lengths. Each of them is modified by 
adding (mod 2n) the respective input subblock of Hi 
which is the input to the round #1. Next, all 
subblocks A0, A1, …, A15 are concatenated giving 
Hi+1 = A0 || A1 || … || A15. 

2.2.4 Round Function 

The round function (Fig. 2.3) has two inputs Ni, Hi 
and two outputs Ni

*, Hi
*. The input block Ni is 

rotated by the number of bits corresponding to 
lsb4(Ni) and added (mod 2 of respective bits) to Hi. 
Next the block Hi ⊕ (Ni<< lsb4(Ni)) is divided into 

16 subblocks of equal length: A0, A1, …, A15. They 
are processed by a step function. After processing 
they are concatenated giving Hi

*. The output Ni
* = Ni 

<< lsb4(Ni). 
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Figure 2.3: Round function. 

2.2.5 Step Function 

The essential part of the round is the step function Fj 
(Fig. 2.4). In each round the step function is 
executed 16 times, for j=0, 1, …, 15. 

Let GF[x]n be a set of polynomials over GF(2) of 
the degree smaller than n. If w(x) ∈ GF[x]n then w(x) 
= wn–1x

n–1 ⊕ wn–2x
n–2 ⊕ … ⊕ w2x

2 ⊕ w1x ⊕ w0 or 

 

Figure 2.4: Step function Fj. 
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simply w(x) = wn–1wn–2…w2w1w0, where wr ∈ GF(2) 
for r ∈ {0,1,…, n–1}. Let u(x), v(x), w(x) ∈ GF[x]n. 
We define two operations on polynomials, addition 
(⊕) and multiplication (⊗): u(x) = v(x) ⊕ w(x) ⇔ ut 
= vt ⊕ wt, t = 1,2,…, n, and u(x) = v(x) ⊗ w(x) = 
v(x)·w(x) mod R(x), where R(x) is a reduction 
polynomial of degree n. In the construction of the 
step function the multiplication of polynomials is 
performed four times: a0 ⊗ A0, a2 ⊗ A2, a3 ⊗ A3, 
and a5 ⊗ A5. The polynomials a0, a2, a3 and a5, 
presented in hexadecimal form, are given in Table 
2.1. 

Table 2.1: Polynomials used in step function. 

n R(x) Hexadecimal representation 

16 x16⊕x11⊕x10⊕x5⊕1 10C21 

32 x32⊕x7⊕x6⊕x2⊕1 1000000C5 

64 x64⊕x4⊕x3⊕x⊕1 1000000000000001B 

The reduction polynomials must be irreducible; 
they are presented in Table 2.2. 

Table 2.2: Reduction polynomials used in step function. 

n a0 a2 a3 a5 

16 89CB D949 0001 0001 

32 AC2D 
B263 

0000 
0110 

0000 
0001 

0000 
0001 

64 EDC0 
28B9 
A461 
A403 

0000 
2500 
0000 
0001 

0000 
0000 
0000 
0001 

0000 
0000 
0000 
0001 

After performing multiplications of polynomials 
a few additions modulo 2 (⊕) and additions modulo 

2n (⊞) are done (Fig. 2.4). In each step the masking 
constant c = 3236B539391FD066 (in hexadecimal 
representation) is used. The particular value of c 
depends on n and j, and is indicated by a window of 
the length n sliding (cyclically, if necessary) from 
left to right on bits of c. For example, if n = 16 and j 
= 0 then c = 3236; if n = 32 and j = 31 then c = 
391FD066; if n = 64 and j =5 then c = 
6D6A72723FA0CD9 (cyclic rotation of c to the left 
by 5 bits). 

In each step a substitution Sj
(n) depending (as the 

masking constant c) on n and j is used. It consists of 
four S-boxes S0, S1, S2 and S3, each of dimension 
16×16, working in such a way that for n = 16,  Sj

(16) 
= S(j) mod 4; for n = 32,  Sj

(32) = S(j) mod 4 || S(j+1) mod 4; and 
for n = 64,  Sj

(64) = S(j) mod 4 || S(j+1) mod 4 || S(j+2) mod 4 || 
S(j+3) mod 4. 

The multiplication modulo 2n + 1 of n-bit 
integers with the zero block corresponding to 2n is 

denoted by ⊙ (Lai, 1991). 

Table 2.3: Initial values of chaining variable. 

n H0 = h0 || h1 || h2 ||…|| h15 

16 
34D906D3E3E5298EAC26F9FD2AC5AD23 
DB84B0576C82CCA52517CF6B88B0A90C 

32 

34D906D3E3E5298EAC26F9FD2AC5AD23 
DB84B0576C82CCA52517CF6B88B0A90C 
0BC69C6F64D4B2664579E064AE220A5A 
3DA7C5451DA429EF2AE8BF289D0F01E5 

64 

34D906D3E3E5298EAC26F9FD2AC5AD23 
DB84B0576C82CCA52517CF6B88B0A90C 
0BC69C6F64D4B2664579E064AE220A5A 
3DA7C5451DA429EF2AE8BF289D0F01E5 
8C6595B7B088D0C74BB82BF3CFDE5AA1 
AB808B7E7425BC9EFA101925CBB0D528 
3FA76FCBDF7B50D776DE280C8E2EE8B1 
69D154F43B096994FDF52B5F148CC134 

The initial values H0 = h0 || h1 || h2 ||…|| h15 of 
chaining variable (depended on n) are given in Table 
2.3 (H0 for n = 64 is obtained as the hexadecimal 
form of consecutive 512 decimal places after the 
decimal point of π broken up into groups of 32). 
Before processing they must be assigned to A0 || A1 || 
A2 ||…|| A15 in such a way that hr = Ar, r = 0, 1,…, 15. 

2.3 Security Considerations 

The round function composed of 16 steps can be 
represented in the equivalent form as a linear shift 
register (FSR) over GF(2n) generating maximum 
length sequences, additionally equipped with 
nonlinear feedback NL, and clocked 16 times (Fig. 
2.5). The corresponding approach dealing with the 
use of feedback shift registers (over GF(2)) in the 
construction of hash functions has been presented in 
(Janicka-Lipska, 2004; Stokłosa, 1995). 

 

Figure 2.5: Equivalent form of round function. 
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Maximum 16-stages linear feedback shift 
register defined over GF(2n) generates the sequence 
of period length  T = 216n – 1 (n = 16 or 32 or 64). 
This period length is considerably decreased by the 
nonlinear circuit (NL in Fig. 2.5). The processing of 
every consecutive block Mi of the formatted message 
modifies initial content of the register and 
consequently changes the period (meant as a 
sequence of states) of the FSR. The same effect can 
be observed when adding Hi to the result of 
processing the input by two rounds to obtain Hi+1 
(Fig. 2.2). This implies that collisions exist but 
finding them is difficult. 

In order to achieve randomized hashing we use 
the construction (see Fig. 2.2) in which the random 
salt value s is added (mod 2) to each block Mi 
(Biham, 2006). 

The function defined by the nonlinear circuit is a 
nonlinear 8n-argument function, n = 16 or 32 or 64. 
For the function with such a number of arguments 
(128, 256 and 512, respectively) it is difficult, from 
the computational point of view, to perform the best 
affine approximation attack (Rueppel, 1986). Time 
needed for the attack is equal to time of the birthday 
attack, i.e. O(28n). 

The sequence produced by the nonlinear circuit 
is immune to correlation attack (Rueppel, 1986). 

3 S-BOXES 

3.1 Involutional S 

Let 2F  be the Galois field GF(2) and 
n
2F be the n-

dimensional vector space over 2F . A substitution 

operation or an n×n S-box (or S-box of the size n×n) 
is a mapping: 

nnS 22 FF: →  (1)

where n is a fixed positive integer, n ≥ 2.  An n-
argument Boolean function is a mapping: 

22 FF: →nf  (2)

An S-box S can be decomposed into the 
sequence S = (f1, f2, …, fn) of Boolean functions such 
that S(x1, x2, …, xn) = (f1(x1, x2, …, xn), f2(x1, x2, …, 
xn), …,  fn(x1, x2, …, xn)). We say that the functions 
f1, f2, …, fn are component functions of S.  

In case of HaF’s S-box n = 16. HaF’s S-box 
therefore is a function that takes 16 input bits and 
outputs also 16 bits – it is a 16×16 S-box. 
Additionally, it is generated in such a way that it is 

its own inverse, i.e., S−1 = S.  
HaF’s S-box has been generated using the 

multiplicative inverse procedure similar to AES 
[Daemen 1999] with randomly chosen primitive 
polynomial defining the Galois field. Nonlinearity of 
this S-box is 32510 and its nonlinear degree is 15. 
Sixteen Boolean functions that constitute this S-box 
have nonlinearities equal to 32510 or 32512. The 
degree of each function is equal to 15. 

The 16×16 S-box can be stored as a table of 
65536 word values. Index for this table is an input of 
the S-box function, i.e., x1, x2, …, x16. Values stored 
are S-box outputs (16 bits: f1(x1, x2, …, x16), f2(x1, x2, 
…, x16), …,  f16(x1, x2, …, x16)). To simplify the 
description of S-box generation let’s consider a 
smaller S-box of size 8×8. For presentation 
convenience such S-box can be displayed as a 2-
dimensional table (Table 3.1). The input represented 
as a two digit hexadecimal number HL is divided − 
the low order digit (L) is on the horizontal axis and 
the high order digit (H) is on the vertical axis. For 
example, to see what is the S-box output at input 6F 
take 6 on the vertical axis and F on the horizontal 
axis. The S-box output is DA. 

Table 3.1: Sample 8×8 S-box S. 

  L  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 
H  ------------------------------------------------ 
0 | 9E BC C3 82 A2 7E 41 5A 51 36 3F AC E3 68 2D 2A 
1 | EB 9B 1B 35 DC 1E 56 A5 B2 74 34 12 D5 64 15 DD 
2 | B6 4B 8E FB CE E9 D9 A1 6E DB 0F 2C 2B 0E 91 F1 
3 | 59 D7 3A F4 1A 13 09 50 A9 63 32 F5 C9 CC AD 0A 
4 | 5B 06 E6 F7 47 BF BE 44 67 7B B7 21 AF 53 93 FF 
5 | 37 08 AE 4D C4 D1 16 A4 D6 30 07 40 8B 9D BB 8C 
6 | EF 81 A8 39 1D D4 7A 48 0D E2 CA B0 C7 DE 28 DA 
7 | 97 D2 F2 84 19 B3 B9 87 A7 E4 66 49 95 99 05 A3 
8 | EE 61 03 C2 73 F3 B8 77 E0 F8 9C 5C 5F BA 22 FA 
9 | F0 2E FE 4E 98 7C D3 70 94 7D EA 11 8A 5D 00 EC 
A | D8 27 04 7F 57 17 E5 78 62 38 AB AA 0B 3E 52 4C 
B | 6B CB 18 75 C0 FD 20 4A 86 76 8D 5E 01 ED 46 45 
C | B4 FC 83 02 54 D0 DF 6C CD 3C 6A B1 3D C8 24 E8 
D | C5 55 71 96 65 1C 58 31 A0 26 6F 29 14 1F 6D C6 
E | 88 F9 69 0C 79 A6 42 F6 CF 25 9A 10 9F BD 80 60 
F | 90 2F 72 85 33 3B E7 43 89 E1 8F 23 C1 B5 92 4F 

 

Cryptographically strong S-box should possess 
some properties that are universally agreed upon 
among researchers. Such S-box should be balanced, 
highly nonlinear, have lowest maximum value in its 
XOR profile (difference distribution table), have 
complex algebraic description (especially it should 
be of high degree). The above criteria are dictated by 
linear and differential cryptanalysis and algebraic 
attacks. 

It is a well-known fact, that S-boxes generated 
using finite field inversion mapping fulfill these 
criteria to a very high extent. However, they are 
susceptible to (theoretical) algebraic attacks. To 
resist algebraic attacks multiplicative inverse 
mapping used to construct an S-box is composed 
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with an additional invertible affine transformation. 
This affine transformation does not affect the 
nonlinearity of the S-box, its XOR profile nor its 
algebraic degree. The best known example of such 
an S-box is the S-box of AES. It has been publicly 
known and it does not affect its security. 

The algorithm used for generating the S-box for 
the purpose of HaF function presented in this paper 
uses similar method of generating S-boxes. 
Additionally it takes into account results of some 
recent studies (Fuller, 2002; Fuller, 2003) and 
incorporates changes in the S-box generating 
procedure to make it even more secure. 

3.2 Generating Inverse Mapping 

HaF S-box is based on so called inverse mapping 
1−→ xx , where x-1 denotes the multiplicative 

inverse in a finite field GF(2n): 

1

0   for 0
( )

   for 0

x
S x

x x-

=
=

¹

ìïïíïïî
 (3)

As mentioned earlier, inversion mapping can be 
used to generate cryptographically strong S-boxes.  

For any prime integer p and any integer n (n = 
1,2,…), there is a unique field with pn elements, 
denoted GF(pn). In cryptography p almost always 
takes the value of 2. To generate an inverse mapping 
in GF(2n) we need an irreducible polynomial that 
defines a Galois field and another polynomial that 
would be a so called generator (see below). A 
polynomial is said to be irreducible if it cannot be 
factored into nontrivial polynomials over the same 
field. The n-bit elements of the Galois field are 
treated as polynomials with coefficients in F2. For 
example, in case of AES, where S-box is of size 8×8 
we operate mostly on bytes represented as 
b7b6b5b4b3b2b1b0 which corresponds to the following 
polynomial: 

b7x
7 + b6x

6 + b5x
5 + b4x

4 +  
b3x

3 + b2x
2 + b1x + b0 

(4)

where bi ∈ {0,1}. 
An irreducible polynomial mentioned above is 

used to calculate a multiplication in GF(2n). When 
two polynomials are multiplied the resulting product 
is a polynomial of degree at most 2(n–1) – too much 
to fit into n-bit data word that represents 
polynomials in GF(2n), so the intermediate product 
of this multiplication is divided by the irreducible 
polynomial and the remainder of this division is the 
result of the multiplication. For GF(2n) an 
irreducible polynomial should be of degree n. For 

example, in AES (with GF(28)) an irreducible 
polynomial selected for construction of the S-box is 
11B (in hexadecimal notation). 

A generator in Galois field is a polynomial 
whose successive powers take on every element 
except zero. Which polynomials are generators in a 
particular Galois field depends on the irreducible 
polynomial selected. So say polynomial 03 is a 
generator in GF(28) with irreducible polynomial 11B 
(as in AES), but it is not a generator in GF(28) with 
irreducible polynomial 1BD, for which the generator 
is for example 07.  

For n = 8 the nonlinearity of this mapping treated 
as an S-box is 112. For n = 16 it is 32512. In general 
case, the nonlinearity of such a mapping is 2n–1 – 
2n/2. 

However, such an S-box would always have 0 
and 1 as first two entries. This is because for x = 0, 
x-1 = 0 and for x = 1, x-1 = 1. These would be 
undesirable fixed points of an S-box. We remove 
them in the next step. 

3.3 Affine Transformation 

To avoid algebraic attacks (given multiplicative 
inversion's simple algebraic form) every element of 
the table of multiplicative inverses is changed using 
an affine transformation. Such transformation has to 
be a full permutation, so every element is changed 
and all possible elements are represented as the 
result of a change, so that no two different bytes are 
changed to the same byte. After applying this 
transformation the table is still a bijective mapping 
which is inversible and that is a prerequisite for most 
applications of S-boxes. In case of AES cipher this 
affine transformation is given by the following 
equation: 

iii

iiii

cbb

bbbb

⊕⊕

⊕⊕⊕=

++

++

8mod)7(8mod)6(

8mod)5(8mod)4(
'

 (5)

where c is an 8-bit constant (in case of AES it equals 
63 in hexadecimal notation). i is the bit position. 
This transformation can also be represented as 
matrix multiplication: 

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7
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(6)
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The algorithm used for generating S-box S of 
HaF function in this paper uses the same 
transformation, however adopted for 16×16 S-box 
size and with the constant part of this transformation 
(namely ci) taken at random so that resulting S-box 
does not have fixed points (such that S(x) = x). 
Particularly the two fixed points mentioned in the 
previous paragraph (0 and 1) are removed by this 
transformation. 

3.4 Removing Cycles 

One of the requirements for HaF S-box is the 
absence of cycles. Cycle is such a sequence of S-box 
values S0, S1, … Sk-1 where S(i+1) mod k= S(Si). HaF S-
box should have only one such cycle containing all 
the values of the S-box (a cycle for which k = 2n). 

The affine transformation described in previous 
paragraph changes number of cycles in an S-box, 
without changing its nonlinear properties. Note that 
fixed points are also short cycles where k = 1. 

Cycles are removed in a procedure with two 
steps. First step is actually the aforementioned affine 
transformation. It is applied repeatedly with a 
random value of c until the S-box with only 2 cycles 
is found. This might not always be possible. In such 
a case a new S-box has to be generated with another 
randomly chosen primitive polynomial using the 
inverse mapping as described earlier.  

When 2-cycle S-box is found we move on to the 
next step, which is performed together with 
removing the affine equivalence. 

3.5 Removing Affine Equivalence 

According to (Fuller, 2002; Fuller, 2003), S-boxes 
based on multiplicative inverse in a finite field have 
such a peculiar property that all component 
functions of the S-box are from the same affine 
equivalence class (all the output functions of the S-
box can be mapped onto one another using affine 
transformations). HaF’s S-box has been processed to 
remove this linear redundancy, so that all Boolean 
functions are now from different affine equivalence 
classes, while still maintaining exceptionally high 
nonlinearity of the inverse mapping. The proposed 
S-box has the maximum XOR difference 
distribution table value of 6, which is extremely 
good. 

Removing this linear redundancy in 2-cycle S-
box is carried out in such a way that it will at the 
same time reduce the number of cycles to only 1. It 
is done by choosing randomly two S-box entries x 
and y, each belonging to another cycle, and 

rearranging S-box entries in such a way, that both 
cycles are joined into one.  

After such change a test for linear redundancy is 
performed. If affine equivalence is still present 
(between any component functions) the change is 
reversed and different S-box entries are randomly 
selected and tested – this procedure is carried out 
until S-box without linear redundancy is found. If 
such an S-box cannot be found, we need to generate 
another S-box with inverse mapping. 

Many properties of Boolean functions covered 
by various cryptographic criteria (such as algebraic 
degree and nonlinearity) remain unchanged by affine 
transformations. Absolute values of Walsh transform 
as well as autocorrelation function are only 
rearranged by affine transformations. The frequency 
distribution of the absolute values in these 
transforms is invariant under such affine 
transformations. To prove that two functions are 
from different equivalence classes it is therefore 
sufficient to show that their respective Walsh 
transform or autocorrelation function frequency 
distribution is different. 

4 REFERENCE 
IMPLEMENTATIONS OF 
HaF-256 

HaF-256 algorithm was implemented using of C++ 
language and Microsoft Visual Studio 2008 
environment. Two reference implementations were 
separately developed and tested using of reference 
data. The results produced by the implementations 
were compared with each other in order to verify 
algorithm implementation accuracy. 

To evaluate performance a 20 MB text file was 
processed and the time was measured. Several 
options were considered. For Windows (64-bit 
Windows 7) two compilers were used: native Visual 
Studio  C++ compiler and Intel C++ compiler. The 
code was generated for 32-bit and 64-bit platforms. 

Table 4.1: Results of performance measurements. 

System Platform Compiler 
Performance 

[MB/s] 
Windows 7 32-bit VS2008 1.29 
Windows 7 64-bit VS2008 1.60 
Windows 7 32-bit Intel 2.99 
Windows 7 64-bit Intel 3.13 

Linux 32-bit GCC 0.74 
Linux 32-bit GCC -O 1.17 
Linux 32-bit GCC -O2 1.36 
Linux 32-bit GCC -O3 2.33 
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Linux (Fedora 9) GCC compiler was used 
without and with optimization. The code was 
generated for 32-bit platform only. PC machine with 
2.2 GHz Athlon-64 processor was used as a testing 
platform. The results are presented in Table 4.1. 

As shown in Table 4.1, the best result was 
obtained using Intel compiler. For 64-bit platform 
the performance was about 4.7% better than for 32-
bit platform. Bigger improvement may be expected 
for HaF-1024 implemented using 64-bit variables. 
For the sake of comparison we measured 
performance of one of the NIST SHA 3 competition 
finalists – BLAKE hash function [Aumasson, 2011], 
using the same computer. BLAKE algorithm is very 
simple and does not use S-boxes. Results are 
presented in Table 4.2. As we can see, BLAKE 
significantly outperforms HaF. But in some 
applications it does not matter. For example, it takes 
0.03 s to compute hash for a 100 kB message using 
HaF-256, whereas 0.0005 s is required for BLAKE-
256. 

Table 4.2: BLAKE-256 performance. 

Compiler 32-bit version 64-bit version 
VS2008 175 MB/sec 256 MB/s 

Intel C++ Compiler 204 MB/sec 240 MB/s 

5 CONCLUDING REMARKS 

Most cryptographic hash functions designers focus 
on high processing speed. Therefore relatively 
simple algorithms are preferred. Implementations of 
these algorithms may be vulnerable to fault attack 
and side channel attack. 

In HaF hash functions family processing scheme 
is more elaborated and we use relatively big 16 × 16 
S-boxes. It leads to more complex implementation. 

We expect it to give greater robustness against 
fault attack and side channel attack. 

We currently experiment with fault attacks on 
HaF implementation, so it should be possible to 
verify what are the advantages of this approach. 
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