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Abstract: In this paper, we present an analysis of human motion that can assist the recognition of human actions irrespec-
tive of the selection of particular features. We begin with an analysis on the entire set of preclassified motions
in order to derive the generic characteristics of articulated human motion and complement the analysis by
a more detailed inter-class analysis. The statistical analysis concerns features that describe the significance-
contribution of the human joints in performing an action. Furthermore, we adopt a hierarchical analysis on the
human body itself in the study of different actions, by grouping joints that share common characteristics. We
present our experiments on standard databases for human motion capture data as well as a new commercial
dataset with additional classes of human motion and highlight certain interesting results.

1 INTRODUCTION

Research interest has been largely stimulated by the
analysis of human motion as it constitutes a key com-
ponent in a plurality of disciplines. Common applica-
tions range from human action recognition, human-
machine interaction, skill learning and smart surveil-
lance to applications within the entertainment indus-
try such as character animation, computer games and
film production.

As manifested by earlier research (Mihai, 1999),
(Kovar and Gleicher, 2004), (Thomas et al., 2006),
(Poppe, 2010) the study of human motion is not a new
research field, however, most of the focus has so far
been directed towards 2D image-based human motion
representations. In contrast, with the evolution of mo-
tion capture hardware-software and recently with the
advent of affordable depth acquisition devices such
as the Kinect (Microsoft, 2010), part of research is
shifting towards 3D (spatial) representations of hu-
man motion extracted from a hierarchical represen-
tation of the human pose, i.e. a skeletal structure.

Motion capture data (MOCAP) contain informa-
tion of the human pose as recorded during the exe-
cution of an action that is organized into a collection
of 3D points-joints together with the spatial position
or rotation of the corresponding coordinate frames.
These points comprise a skeletal representation of the
human pose wherein the motion of the points has been

acquired either directly from body sensors (optical or
magnetic) or tracked along the action sequence.

Previous studies on the characteristics of articu-
lated human motion such as (Fod et al., 2002), (Pullen
and Bregler, 2002), (Jenkins and Mataric, 2003),
(Barbič et al., 2004), (Okan, 2006) have been con-
ducted within various contexts, namely, 3D animation
compression, motion synthesis and motion indexing-
classification or segmentation. However, experiments
are usually performed on relatively small collections
of human motions with relatively limited variability
in the classes of motion.

In this work, we provide a comprehensive study
of human motion, through a statistical analysis of a
diverse set of human action categories using MOCAP
databases. Our experiments are performed on stan-
dard databases (CMU, 2003), (Muller et al., 2007)
and further extended on a commercial database (mo-
capdata.com, 2011), altogether highlighting impor-
tant characteristics of articulated human motion re-
lated to the correlation of human motion and hierar-
chy of the human kinematic chain in terms of body
part contribution. In particular, we perform a statisti-
cal analysis on various abstraction levels of the joint
representation of the human skeleton across different
datasets and investigate the variance within the in-
herent dimensionality of simple and complex actions.
The motivation of our study is to provide a deeper in-
sight into the characteristics of articulated human mo-
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tion in order to assist the process of machine recogni-
tion of human actions.

The remainder of the paper is organized as fol-
lows: in Section 2 we unfold the necessary formu-
lations with respect to the experimentation set-up, in
Section 3 we present the results of the human motion
analysis within various datasets and across different
classes and finally, in Section 4, we summarize the
conclusions.

2 HUMAN MOTION
REPRESENTATION

Commonly used representations for human motion
capture include the ASF/ACM, C3D and the BVH file
format (adopted in this work) that describes in plain
text the structure of the actor’s skeleton along with the
data acquired during the motion capture. In order to
avoid inconsistencies in the order of rotation angles,
for each joint within the BVH structure, we obtain a
structure built on top of the corresponding unit norm
quaternions. In detail, a quaternion q 2H is specified
as follows:

q = (a+ ib+ jc+ kd) (1)

where (a;b;c;d) 2 R and i; j and k form the basis of
H. The quaternion norm is given by jjqjj =

p
qq?,

where q? = (a� ib� jc�kd) is the quaternion conju-
gate. We use unit-norm quaternions qw to indicate the
rotation of the w-th joint by an angle q around a unit
vector û:
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An action A is described by n frames Fj, j =
1; : : : ;n, wherein each frame Fj of the motion capture
sequence captures the pose of the human skeleton (as
shown in Figure 1) that consists of m joints .

Figure 1: The skeletal representation of human joints for a
subset of frames of a MOCAP sequence.

We note here that for our experimental analysis,
we have considered only actions for which n > 4m,
that is, only action sequences with sufficient time du-
ration. Our goal is to study inter as well as intra-class
variations in the dimensionality of human actions, in
order to establish the conditions for classification.

The first step is to obtain a covariance matrix of
the pose for each frame Fj based on the quaternion
structure. To this end we follow both (Cheong Took
and Mandic, 2011) and (Ginzberg and Walden, 2011)
to establish a correspondence between the domain of
a quadrivariate random variable in R4 and the quater-
nion domain H.

Let us consider the real components of the quater-
nion q as qa = [a;b;c;d]. Then, for a given pose in
a frame Fj, for example of m joints, we can set the
real quaternion values of the joints as real-valued m-
dimensional jointly Gaussian random variables as fol-
lows.

Let the values a;b;c;d be m-dimensional columns
vectors, then for each frame Fj we obtain a 4m dimen-
sional Gaussian vector:

r =
h
a>; b>; c>; d>

i
(3)

The real covariance E(rr>) = Sr of this vector is de-
fined as usual:

Sr =

0B@ Saa Sab Sac Sad
Sab Sbb Sbc Sbd
Sac Sbc Scc Scd
Sad Sbd Scd Sdd

1CA (4)

Sr is a 4m�4m matrix of the covariance of all the real
valued quadrivariate vectors in R4 associated with the
quaternions specified by the m joints in the pose of
the action at Fj. Looking at Sr as a block matrix then
Sxy is a m�m matrix. In particular, if we subtract
the mean value µr from r then, from the eigen decom-
position of Sr = ULU>, we obtain the 4m directions
of the hyper-ellipsoid specified by Sr. In particular,
UUT = I, L is the matrix of positive eigenvalues, re-
turning the length of the axes of the hyper ellipsoid,
namely, the length li of the i-th hyper ellipsoid axis is
li = 2

p
li, li the i-th eigenvalue of L, and its direction

is specified by ui the i-th eigenvector of U.
Since the hyper ellipsoid is centered, according to

the transformation, the n-variate Gaussian distribution
associated with each centered pose of action A can be
specified as follows, where x is a real valued vector
4m�1 of a pose:

N (xj04m�1;Sr) =
1

2pn=2jSrj1=2 expf�1
2

x>S
�1
r xg

(5)
Therefore several distance transforms can be used to
verify both intra and inter classes distances, like the
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Mahalanobis distance or the Kullback-Leibler diver-
gence for the Gaussian pdf related to different poses
or different actions.

According to (Cheong Took and Mandic, 2011)
and (Ginzberg and Walden, 2011) the second-order
information carried by the random vector quaternion
valued q are not fully specified by the above covari-
ance matrix, hence the following transformation is in-
troduced:

A =

0B@ I iI jI kI
I iI � jI �kI
I �iI jI �kI
I �iI � jI kI

1CA (6)

Here I is a m�m identity matrix. However to obtain
the transformation the quaternion vector needs to be
augmented with its involutions, namely self-inverse
mapping �iqi,� jq j, and �kqk (see (Cheong Took
and Mandic, 2011)), thus q = Ar, where q =
[q;qi;q j;qk] and qi = �iqi, q j = � jq j and qk =
�kqk. Then the covariance of a m dimensional Gaus-
sian random variable q is:

Sq = E(qqH) = ASrAH

conversely

Sr =
1
16

AH
SqA

(7)

Here qH is the conjugate transpose of q. We note
that the covariance Sq of the random variate q com-
prise the above mentioned involutions. It turns out
that a quaternion is not correlated with its vector in-
volutions, hence the covariance Sq can be simpli-
fied yielding Sq = diagfSqq;Sqiqi ;Sq jq j ;Sqkqkg, Sqq =

EfqqHg;Sqi = EfqqiHg, Sq j = Efqq jHg and Sqk =

EfqqkHg. Therefore, finally, the Mahalanobis dis-
tance for a multivariate quaternion-valued random
vector q, augmented with its involutions, is:

qH
S
�1
q q (8)

For each pose of any action A we have obtained
the covariance parameter of the 4m-variate Gaussian
random variate associated with it, both in terms of the
real values of the pose and of its augmented quater-
nion values.

Now, it is easy to see that the above representation
of a pose is independent of the length of an action,
and it depends only on the number of joints, namely
on the pose at each frame Fj. Clearly this turns out to
be a problem only for comparison between different
data sets, as in the same data sets all poses have the
same number of joints.

Therefore, in order to suitably compare actions Ak,
k = 1; ::, across different datasets it is necessary to
align two poses with respect to the number of joints.

In order to obtain the number of joints whose quater-
nions have to be combined we proceed as follows.

First we compute the distribution of joints across
two poses, say X and Y and then we compute the av-
erage quaternion about the exceeding joints. We re-
call that the average quaternion can be estimated by
solving the following optimization problem (Markley
et al., 2007):

q̄ = argmax
q2S3

qTMq

with: M =
n

å
1

wiqiqT
i and

S3 denoting the unit 3-sphere

(9)

A solution to this problem can be computed by
taking the eigenvector of M which corresponds to its
largest eigenvalue. All weights wi were taken equal
to 1 for the successive analysis. In this process joints
corresponding to fingers and toes were not consid-
ered mainly due to the high noise level which de-
graded the quality of these joint measurements in all
datasets. These average quaternions have been suc-
cessively treated analogously to what has been shown
previously by computing the covariance matrix and
performing its eigen decomposition.

Let J be the number of joints of a pose X of action
Ai and let W be the number of joints of a pose Y of
action B. Assume that J <W (the same reasoning can
be applied in the inverse case), then let d j =W=J, and
let:

C = d(1; : : : ;J)d je (10)

Here d�e is the ceiling operator, and C is the cumula-
tive number of joints that should be combined so as
to map W joints onto J joints. Further, to obtain the
inverse cumulative operation C�1 we define

C? = [C1; C2�C1; : : : ;CW�1�CW�2]
> (11)

Hence the length of both C and C? is J. It is easy to
see that:

åC? =W (12)

Now, for each joint j, the graph of its connecting
joints is defined, then C tells which joint j is inter-
ested in the average, and C? tells how many joints of Y
needs to be averaged at j, so as two obtain two poses
with the same number of joints.

For example if J = 7 and W = 19
then C = (3; 6; 9; 11; 14; 17; 19)> and
C? = (3; 3; 3; 2; 3; 3; 2)>, hence at the joint
j = C(4) = 11, we have that C?(4) = 2, hence two
joints of the graph of j = 11 will be averaged as
indicated in (9).
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Figure 2: Top row: Eigenvalues of the CMU, HDM05 and MEJ datasets respectively. Bottom row: Eigenvalues of all the
sequences of the CMU, HDM05 and MEJ datasets respectively.

3 EXPERIMENTS

In this section we present our experiments regard-
ing the analysis of the human motion across different
MOCAP datasets and highlight the significance of the
results in the context of action recognition. The anal-
ysis was performed on the following, publicly avail-
able, MOCAP datasets:

- The Carnegie Mellon University (CMU) dataset
(CMU, 2003).

- The Hochschule der Medien (HDM05) dataset
(Muller et al., 2007).

- The Mocapdata Eyes Japan (MEJ) dataset (mocap-
data.com, 2011).

whose characteristics are given in Table 1:

Table 1: Characteristics of MOCAP datasets used in the
experiments.

Dataset actors classes motions fps joints
CMU 144 23 2605 120 31

HDM05 5 28 293 120 31
MEJ 3 18 675 30 19

The classes of human motion within the datasets
capture an extensive range of human actions, from
common and simple actions such as walking and
jumping to more complex such as sporting, danc-
ing, martial arts, manipulation actions and gestures.

Figure 3: Covariance coverage w.r.t. the number of dimen-
sions considered.

Figure 4: Limbs level: Covariance coverage w.r.t. the num-
ber of dimensions considered.

The motion sequences differ in the number of skeletal
joints considered as well as the frame rate, however
the results are not biased by these factors.

In Figure 2 the covariances of all the individual
motion sequences as well as the resulting mean eigen-
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Figure 5: Limbs level: Top row: Average eigenvalues of the CMU, HDM05 and MEJ datasets respectively. Bottom row:
Eigenvalues of all the individual sequences of the CMU, HDM05 and MEJ datasets respectively.

values of the real valued poses qa (see Section 2) is
presented for the three aforementioned datasets.

It is evident that the variances of the motion se-
quences follow a specific pattern irrespectively of the
particular action being performed. In particular, we
observe a high degree of correlation of human motion
that is quantitatively demonstrated in Figure 3, that
presents the number of dimensions necessary to cover
90% and 95% of the pose variances for each dataset.
Figure 4 shows the number of dimensions necessary
to cover 90% and 95% of the variance, by grouping
joints that belong to the same skeletal limb.

Figure 5 shows the variance of the motion se-
quences for each dataset by performing the analysis
on the limbs level. One can note that also in this case
a small portion of the overall dimensions carries most
of the information with the eigenvalues decreasing ex-
ponentially like before.

Besides considering motion sequences from dif-
ferent datasets we have also analysed the variances
and the real valued eigenvalues of sequences of differ-
ent actions taken from the same dataset. For each of
the datasets, Figure 6 shows the two actions for which
the respective eigenvalues decay with the lowest rate,
in other words, the most complex actions, as well as
the two actions for which the eigenvalues decay with
the highest rate, i.e. the simplest actions. Figure 6
also presents the average eigenvalues obtained from
all the sequences of the respective dataset for compar-
ison. Semi-logarithmic scaling has been used in order

to highlight the differences in the eigenvalues distri-
bution. Finally, in Figure 7, we show the number of
dimensions necessary to cover 90% and 95% of the
variances for the respective action classes within each
dataset. These results indicate that, as intuitively ex-
pected, the correlation in the dimensions describing a
human motion is lower for more complex actions and
higher for simple actions like gestures or manipula-
tion of objects. However, even for the most complex
actions, the necessary dimensionality remains rela-
tively low.

4 CONCLUSIONS

In this work we have considered several motion
sequences taken by various available datasets. As has
been experimentally shown, an analysis of the cor-
relation of the motion sequences shows that the ma-
jority of the information regarding the human mo-
tion resides in a lower dimensional space. Moreover,
the trend by which the amount of information carried
by the components is decreasing in the fine resolu-
tion level (considering all the joints) is similar to the
coarse resolution level, i.e. at the limb level. Finally,
we also highlighted that individual actions which are
considered as more semantically ”complex” give a
spectrum that decays with a lower rate compared to
the one resulting from ”simpler” actions. These con-
siderations further support the argument that human
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Figure 6: Eigenvalues of different actions for the CMU, HDM05 and MEJ datasets respectively (semilogarithmic scale).

Figure 7: Covariance coverage of different actions for the CMU, HDM05 and MEJ datasets respectively.

motion can be classified using a representation which
considers a relatively low number of dimensions.
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