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Abstract: Simultaneous Localization and Mapping, SLAM, for mobile robots using a single camera, has attracted 
several researchers in the recent years. In this paper, we study the effect of feature point geometrical 
composition on the associated localization errors. The study will help to design an efficient feature 
management strategy that can reach high accuracy using fewer features. The basic idea is inspired from 
camera calibration literature which requires calibration target points to have significant perspective effect to 
derive accurate camera parameters. When the scene have significant perspective effect, it is expected that 
this will reduce the errors since it implicitly comply with the utilized perspective projection model. 
Experiments were done to explore the effect of scene features composition on the localization errors using 
the state of the art visual Mono SLAM algorithm.  

1 INTRODUCTION 

Simultaneous Localization and Mapping, SLAM is a 
fundamental problem in robotic research and there 
exist huge literature dealing with the problem from 
different perspectives and approaches.   

Traditionally, SLAM exploits sensors that can 
measure the depth of scene objects directly such as 
laser range finders, ultrasonic range sensors or stereo 
camera range finders. Although sensors which 
measure depth explicitly always provide better 
accuracy of SLAM, the sensors are expensive and 
may complicate product marketing and user 
acceptance. Therefore, it is challenging to use a 
single camera that can infer the depth implicitly 
from its motion. Using visual information to solve 
the SLAM problem is intuitive, because human 
seems to do this and further more, robots are usually 
equipped with cameras. 

The interest of using camera as the sole sensor 
for SLAM systems was active only recently because 
of the lack of robust techniques and the belief that it 
may be time consuming so that it may not work fast 
enough for real applications.  

Feature-Based visual SLAM techniques find 
distinct visual features in the scene and track them 
among  frames  to  recover camera motion and scene 

map (Davison et al., 2007), (Jeong et al., 2006), and 
(Lee et al., 2007). 

The observed features in the scene can be 
thought of as a camera calibration target and when 
observed through the motion, we can obtain 3D 
reconstruction which constitutes a sparse feature 
map.  

The best known solutions utilize either Extended 
Kalman Filter, EKF (Davison et al., 2007), or 
Particle filter (Eade et al., 2006). In this work, 
Extended Kalman Filter, EKF, was used to solve the 
SLAM problem from single video camera. (Civera 
et al., 2008) devised one of the successful 
approaches to solve the SLAM problem by using 
inverse depth parameterization. This 
parameterization solved the problem of representing 
distant points, with severe nonlinear effects due to 
the natural effects of depth. We adopt the inverse 
depth parameterization algorithm as implemented by 
(Civera et al., 2008). The point features used for 
solving SLAM were controlled based on their depth 
and the performance was explored.  

The key question is whether all detected features 
will contribute equally to the accuracy of solving 
SLAM. Intuitively, we believe that the geometry of 
points affects the SLAM performance. Distant 
features contribute to the estimation of robot rotation 
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angles but they are computationally expensive since 
they need to be represented in inverse depth with 
more parameters which slows down the SLAM 
algorithm. How much distant point features, and 
how much near point features are needed and useful 
is the question we try to answer in this paper.  

Intelligence will impose the constraint that we 
have to select points that will only improve the 
accuracy and hence we can justify the added 
computational complexity, and consequently added 
processing time.  

The objective is to find out selection rules of 
guaranteed beneficial feature points to the SLAM 
performance. This approach of feature management 
has not been considered before in the literature to the 
best of our knowledge. 

The paper is arranged as follows: The next 
section outlines the EKF SLAM algorithm based on 
inverse depth parameterization. The experiments are 
presented in Section 3. Section 4 present  the 
discussion and finally conclusions are given in 
Section 5. 

2 EKF SLAM ALGORITHM 

The Kalman Filter, KF, is a recursive Gaussian filter 
to estimate the state of continuous linear systems 
under uncertainty. The Extended Kalman Filter, 
EKF is an extension of the KF to model system non-
linearities and detailed information on the Kalman 
filters and probabilistic methods can be found in 
(Montemerlo et al., 2007), and (Thrun et al., 2005). 

The state vector can be described as follows:  ܺ = (rେ		qେ	 v		߱		ܻ)் (1) 

where rେ is the camera optical center position 
referred to world reference coordinates, qେ refers 
to the quaternion defining camera orientation; and 
linear and angular velocity v and ߱ relative to 
world frame W and camera frame C, respectively, ܻ 
represents an appended dynamic vector of observed 
feature positions.  

A constant acceleration is assumed in our state 
definition but the EKF will accommodate its 
changes as noise or disturbance. The dynamic model 
equations can be stated as follows:  ቀܸௐߗ ቁ = ቀܽௐ∆ߙݐ∆ݐቁ (2) 

௩݂ = ۈۉ
ۇ ାଵௐ߱ାଵௐݒାଵௐݍାଵௐݎ ۋی

ۊ = ۈۉ
ۇ ௐݎ + ௐݒ) + ܸௐ)∆ݍݐௐ + ߱))ݍ + ௐݒ(ݐ∆(ߗ + ܸௐ߱ + ߗ ۋی

 (3) ۊ

where ܽௐ	ܽ݊݀	ߙ are linear and angular 
acceleration, respectively, ݍ((߱ +  the (ݐ∆(ߗ
quaternion of the rotation vector (߱ +   .ݐ∆(ߗ

Here, the prediction is the standard for EKF, 
using the previous state vector and the dynamic 
model. The EKF update is done in two stages, one 
using low innovation inliers, and the other using 
high innovation inliers (Civera et al., 2010).   

In the inverse depth parameterization of 3D 
point, 6 elements vector is used to descibe features 
and can be defined by  

ܻ = ൫݅ݔ ݅ݕ ݅ݖ ߠ 		߶			ߩ൯்  (4) 

This vector describes a ray whose optical centre 
lies at (ݔ			ݕ			ݖ) from which the point has been first 
observed. ߠ, ߶ are the azimuth and elevation angles 
in the world frame, respectively, ߩ is the inverse 
depth of the point along the ray. ݕ represent 3D 
feature through this equation:  

ܻ = ݔݕݖ൩ + ߩ1 ,ߠ)݉ ߶) (5) 

where ݉ = (cos߶ sin ߠ , − sin߶ , cos߶ cos ்(ߠ  (6) 

The point observation can be represented as a 
ray from the camera to the point, expressed in the 
camera frame:  ℎ = ൫ℎ௫ ℎ௬ 		ℎ௭൯ (7) 

ℎ = ܴ௪ ቌߩ ቌ൭ݔݕݖ൱ − ௪ቍݎ ,ߠ)݉+ ߶)ቍ (8) 

The camera observes its projection in the image 
plane according to the camera pinhole model: 

ℎ = ቀݒݑቁ = ۈۉ
ݑۇ − ௫݂ ℎ௫ℎ௭ݒ − ௬݂ ℎ௬ℎ௭ۋی

 (9) 			ۊ

where u, v are the image centre coordinate, and f୶, f୷ are the focal lengths measured along x, y 
directions respectively. Because in the real world 
usually there is distortion, a distortion model has to 
be applied (Civera et al., 2008, 2010).     

3 EXPERIMENTS  

The code implemented by Civera, based on the 
inverse depth parameterization, is used throughout 
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this work (Civera website., 2011) together with the 
dataset provided. Figure 1 shows the program 
interface, inside which a) shows a frame from the 
used data set and the detected features with colour 
circles overlaid on it, and b) shows the map and the 
camera motion. 

In the code, the FAST corner detector is used to 
detect point features (Rosten and Drummond., 
2006), but it is possible to use any other detector. 
The only constrain is to have plenty of features to 
select among them.   

In camera calibration literature, features 
geometric diversity is known to affect the calibration 
accuracy (Tsai., 1987). Therefore, viewing features 
as a dynamic calibration target, we intuitively expect 
that the same could have a similar effect on robot 
localization accuracy.  

The feature diversity or composition is measured 
here in terms of what we call as the Perspective 
Factor, PF which is described by 

ܨܲ = ቆ1ܰ ට ܮ1 − 1∑ ൫݀ −	 ݀̅൯ଶୀ ቇ݀̅  
(10) 

where N is the number of frames, L is the features 
number, d୧ is the depth of the ith feature, and dത is 
the average depth. This value represents the standard 
deviation of features depth normalized by their 
average depth from camera. 

Through the experiments the values of the 
perspective factor and the averaged sum of squared 
error, SSE of the robot position and orientation were 
computed. 

The Perspective Factor values are controlled by 
removing some features, but with preserving the 
minimum number of features required in the 
experiment. 

The  case  where  the  whole  detected features is 

taken as a reference for our results, as we are 
concerned here with the relative relations not the 
absolute accuracy of the results (Kummerle et al., 
2009).  

We controlled the scene features at first by 
selecting, two terminal cases, namely near features, 
and distant features. The near features are defined to 
be less than 3 meters in this case. On the other hand, 
the distant features are considered to be more than 7 
meters. The position error in X, Z, and its’ 
uncertainty along the frames are registered. Also, 
The XZ motion of the camera is registered for each 
case.   

We examine the effect of selecting only the near 
or distant features on the accuracy of localization.  
Figure 2 shows the XZ path of the camera and the 
resulting errors and uncertainty in motion trajectory 
along the X and Z axes for near features, where the 
black (solid) line represents the error value and the 
red (dashed) lines represent the uncertainty bounds. 
While, Fig. 3 shows the case when distant points are 
only used.    

As shown in Fig. 2, the near features give good 
results in terms of the error values and the 
convergence of the uncertainty. In contrast, as 
shown in Fig. 3 the distant points give large values 
of errors, and uncertainty divergence. 

On the side of the XZ motion of the camera, the 
near points show good tracking of the reference 
path, but the distant points do not. 

From this part of the experiment it is shown that, 
the near features have strong effect on the 
localization accuracy.  

4 DISCUSSION  

The     localization    error    can    be  quantified   by 

 
(a)                                                                              (b) 

Figure 1: The program Interface, a) sample frame of the test scene, and b) the camera motion and the detected features with 
uncertainty represented by ellipses in XZ plane. 
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        (a)                                                              (b)                                                             (c) 

Figure 2: The camera path of experimental data set and associated localization error when using near features only. a) 
Camera motion path. The localization error (solid) and the associated uncertainty bounds (dashed) in b) errors of 
X-direction, and c) errors of Z-direction. 

 
                                            (a)                                                                (b)                                                             (c) 

Figure 3: The camera path of experimental data set and associated localization error when using distant features only. a) 
Camera motion path. The localization error (solid) and the associated uncertainty bounds (dashed) in b) errors of 
X-direction, and c) errors of Z-direction. 

computing the difference between the reference 
values and the estimated values of robot location or 
orientation through complete tour. This can be 
described by:  

ݎݎݎܧ = 1ܰ( − ଶே(	
ூୀ  (11) 

where p୰ୣ is the reference parameter of position or 
orientation and  p is the estimated value. 

Experiments are done using different values of 
the perspective factor. For each value of the 
perspective factors, the average sum of square errors 
of the camera position and orientation (X Z		ߴ) are 
computed. 

The effect of the perspective factor on the 
averaged SSE in (X, Z,	ߴ) is shown in Fig. 4.  

In the figure, each single point represents the error 
accumulated through the same tour for each value of 
Perspective Factor. The errors are shown for only 

these parameters since those are subject to main 
changes. An inverse relationship between them can 
be observed, when increasing the perspective factor, 
error values decrease. 

Euclidean distance is a good measure of total 
deviation from reference path and was used for 
representing the position errors (Funke et al., 2009). 
Figure 5 shows the relationship between the 
perspective factor and the Euclidean error distance 
of averaged SSE in position (X, Z).  

In general, by increasing the perspective factor, 
the errors are decreased. Therefore, we are advised 
to select among feature points (assuming we have 
plenty of points), the set of points which cause PF to 
have higher value. 

Correlation Coefficient (R2) declares the strength 
of the relation between two variables. 

ܴ2 = (∑ ݕݔ − ∑)ത)2ݕതݔ݊ 2ݔ − ∑)(ത2ݔ݊ 2ݕ −  ത2) (12)ݕ݊
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(a)                                                                      (b)                                                                 (c) 

Figure 4: The effect of the perspective factor on the localization errors measured in, a) X-direction, b) Z-direction, and c) ߴ-
orientation angular errors. 

 
Figure 5: The effect of perspective factor on the Euclidean error distance of camera localization. 

Correlation Coefficient between PF and the 
averaged SSE in (X Z		ߴ) were computed and its 
values are shown in Table 1. The high values, shows 
strong correlation between PF and the errors values. 

Table 1: The correlation coefficient between Perspective 
Factor and localization errors. 

Parameters Correlation Coefficient, R2 

Averaged SSE of X 0.8539 

Averaged SSE of Z 0.8704 

Averaged SSE of 	0.9427 ߴ 

This table confirms that Perspective Factor is a 
strong factor that limits the localization errors. 
Generally, to have higher localization accuracy, we 
should increase the perspective factor by proper 
selection of features. 

5 CONCLUSIONS 

In this paper, the effect of features geometric 
configuration was studied on the SLAM algorithm 
performance using Civera inverse depth algorithm. 
A new factor was introduced, called the Perspective 
Factor, which expresses the degree of features depth 
variance normalized by features average depth from 
camera. 

It was found that the localization error is highly 
correlated with the perspective factor. When features 
showed sufficient depth change compared to its 
mean depth from the camera, the estimation of the 
camera motion was more accurate because the 
feature geometrical content gave sufficient cues for 
the inference process.   

Hence, selecting features points based on 
perspective factor is useful to reduce localization 
error when we have plenty of features in the scene to 
select from. 
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