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Abstract: Most non-trivial data processing scenarios using Hadoop typically involve launching more than one MapRe-
duce job. Usually, such processing is data-driven with the data funneled through a sequence of jobs. The
processing model could be expressed in terms of dataflow programming, represented as a directed graph with
datasets as vertices. Usingfuzzy timestampsas a way to detect which dataset needs to be updated, we can
calculate a sequence in which Hadoop jobs should be launched to bring all datasets up to date. Incremental
data processing and parallel job execution fit well into this approach. These ideas inspired the creation of
the hamake utility. We attempted to emphasize data allowing the developer to formulate the problem as a
data flow, in contrast to the workflow approach commonly used. Hamake language uses just two data flow
operators:fold andforeach, providing a clear processing model similar to MapReduce, but on a dataset level.

1 MOTIVATION AND
BACKGROUND

Hadoop (Bialecki et al., 2012) is a popular open-
source implementation of MapReduce, a data pro-
cessing model introduced by Google (Dean and Ghe-
mawat, 2008).

Hadoop is typically used to process large amounts
of data through a series of relatively simple oper-
ations. Usually Hadoop jobs are I/O-bound (Weil,
2012; Gangadhar, 2012), and execution of even triv-
ial operations on a large dataset could take significant
system resources. This makes incremental processing
especially important. Our initial inspiration was the
Unix makeutility. While applying some of the ideas
implemented bymaketo Hadoop, we took the oppor-
tunity to generalize the processing model in terms of
dataflow programming.

Hamake was developed to address the problem of
incremental processing of large data sets in a collabo-
rative filtering project.

We’ve striven to create an easy to use utility that
developers can start using right away without com-
plex installation or extensive learning curve.

Hamake is open source and is distributed
under Apache License v2.0. The project is
hosted at Google Code at the following URL:
http://code.google.com/p/hamake/.

2 PROCESSING MODEL

Hamake operates onfiles residing on a local or dis-
tributed file system accessible from the Hadoop job.
Each file has a timestamp reflecting the date and
time of its last modification. A file system direc-
tory or folder is also a file with its own timestamp.
A Data Transformation Rule (DTR)defines an opera-
tion which takes files as input and produces other files
as output.

If file A is listed as input of a DTR, and fileB is
listed as output of the same DTR, it is said that“B
depends on A.”Hamake uses file time stamps for de-
pendency up-to-date checks. DTR output is said to be
up to dateif the minimum time stamp on all outputs
is greater than or equal to the maximum timestamp on
all inputs. For the sake of convenience, a user could
arrange groups of files and folders into afilesetwhich
could later be referenced as the DTR’s input or output.

Hamake uses fuzzy timestamps1 which can be
compared, allowing for a slight margin of error. The
“fuzziness” is controlled by a tolerance ofσ. Times-
tampa is considered to be older than timestampb if
(b−a)> σ. Settingσ = 0 gives us a non-fuzzy, strict
timestamp comparison.

Hamake attempts to ensure that all outputs from

1The current stable version ofhamake uses exact (non-
fuzzy) timestamps.
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a DTR are up to date2 To do so, it builds adepen-
dency graphwith DTRs as edges and individual files
or filesets as vertices. Below, we show that this graph
is guaranteed to be aDirected Acyclic Graph(DAG).

After building adependency graph, a graph reduc-
tion algorithm (shown in Figure 1) is executed. Step
1 uses Kahn’s algorithm (Kahn, 1962) of topological
ordering. In step 6, when the completed DTR is re-
moved from the dependency graph, all edges pointing
to it from other DTRs are also removed.
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Figure 1:Hamake dependency graph reduction algorithm.

The algorithm allows for parallelism. If more than
one DTR without input dependencies is found during
step 1, the subsequent steps 2-6 can be executed in
parallel for each discovered DTR.

It should be noted that if DTR exectuion has
failed,hamake can and will continue to process other
DTRs which do not depend directly or indirectly on
the results of this DTR. This permits the user to fix
problems later and re-runhamake, without the need
to re-process all data.

Cyclic dependencies must be avoided, because a
dataflow containing such dependencies is not guaran-
teed to terminate. Implicit checks are performed dur-
ing the reading of DAG definitions and the building
of the dependency graph. If a cycle is detected, it is
reported as an error. Thus the dependency graph used
by hamake is assured to be adirected acyclic graph.

2Becausehamake has no way to update them, it does
not attempt to ensure that files are up to date, unless they
are listed as one of a DTR’s outputs.

However,hamake supports a limited scenario of
iterative processing with a feature calledgenerations.
Each input or output file can be marked with agen-
erationattribute. Any two files referencing the same
path in the file system while having different gener-
ations are represented as two distinct vertices in the
dependency graph. This permits resolution of cyclic
dependencies within the context of a singlehamake
execution.

One useful consequence ofhamake dataflow be-
ing a DAG is that for each vertex we can calculate the
list of vertices it depends on directly and indirectly us-
ing simpletransitive closure. This allows us to easily
estimate the part of a dataflow graph being affected by
updating one or more files, which could be especially
useful for datasets where the cost of re-calculation
is potentially high due to data size or computational
complexity.

Hamake is driven by dataflow description, ex-
pressed in a simple XML-based language. The full
syntax is described in (Orlov and Bondar, 2012). The
two main elements,fold and foreach, correspond to
two types of DTRs. Each element has input, output,
and processing instructions. The execution of pro-
cessing instructions brings the DTR output up to date.

Fold implies a many-to-one dependency between
input and output. In other words, the output depends
on the entirety of the input, and if any of the inputs
have been changed, the outputs need to be updated.
Foreachimplies a one-to-one dependency where for
each file in an input set there is a corresponding file in
an output set, each updated independently.

Hamake dataflow language has declarative se-
mantics making it easy to implement various dataflow
analysis and optimization algorithms in the future.
Examples of such algorithms include: merging
dataflows, further execution parallelization, and anal-
ysis and estimation of dataflow complexity.

3 PARALLEL EXECUTION

While determining the sequence and launching of
Hadoop jobs required to bring all datasets up-to-date,
hamake attempts to perform all required computa-
tions in the shortest possible time. To achieve this,
hamake aims for maximal cluster utilization, running
as many Hadoop jobs in parallel as cluster capacity
permits.

There are three main factors that drive job
scheduling logic: file timestamps, dependencies, and
cluster computational capacity. On the highest level,
DTR dependencies determine the sequence of jobs to
be launched.
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In the case offold DTR, a single Hadoop job, PIG
script or shell command, may be launched, and hence
there is no opportunity for parallel execution. In the
example shown in Figure 2, since filesetB depends on
all files in filesetA, a single job associated withfold
DTR will be executed.

 A  B fold

a
1

b
1

a
2 job

a
3

b
2

Figure 2: Decomposition offold DTR.

A foreachDTR works by mapping individual files
in filesetA to files in filesetB. Assuming that fileset
A consists of 3 files:a1, a2, a3, the dependency graph
could be represented as shown in Figure 3. In this
case, we have an opportunity to execute the three jobs
in parallel.
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Figure 3: Decomposition offoreachDTR.

The Hadoop cluster capacity is defined in terms
of the number ofmap slotsandreduce slots. When
a DTR launches a Hadoop job, either directly as de-
fined bymapreduceprocessing instruction or via PIG
script, a single job will spawn one or moremapper
or reducertasks, each taking one respective slot. The
number of mappers and reducers launched depends
on many factors, such as the size of the HDFS block,
Hadoop cluster settings, and individual job settings.
In general,hamake has neither visibility of nor con-
trol over most of these factors, so it does not currently
deal with individual tasks. Thushamake parallel ex-
ecution logic is controlled by a command line option
specifying how many jobs it may run in parallel.

4 EXAMPLE

In a large, online library, thehamake utility can be
used to automate searches for duplicates within a cor-
pus of millions of digital text documents. Documents
with slight differences due to OCR errors, typos, dif-
ferences in formatting, or added material such as a
foreword or publishers note can be found and re-
ported.

To illustratehamake usage, consider the simple
approach of using theCanopy clustering algorithm
(McCallum et al., 2000) and avector space model
(Manning et al., 2008) based on word frequencies.
The implementation could be split into a series of
steps, each implemented asMapReduce job:

ExtractText Extract a plain text from native docu-
ment format (e.g. PDF).

Tokenize Split plain text into tokens which roughly
correspond to words. Deal with hyphens, com-
pound words, accents, and diacritics, as well as
case-folding, stemming, or lemmatization, result-
ing in a list of normalized tokens.

FilterStopwords Filter outstopwords, like a, the, and
are.

CalculateTF Calculate a feature vector of term fre-
quencies for each document.

FindSimilar Run Canopy clustering algorithmto
group similar documents into clusters usingco-
sine distanceas a fast approximate distance met-
ric.

OutputResult Output document names, which are
found in clusters with more than one element.

Each of the six MapReduce jobs produces an out-
put file which depends on its input. For each docu-
ment, these jobs must be invoked sequentially, as the
output of one task is used as input of the next. Ad-
ditionally, there is a configuration file containing a
list of stop words, and some task outputs depend on
this file content. These dependencies could be repre-
sented by a DAG, as shown in Figure 4, with vertices
representing documents and jobs assigned to edges.
The XML file describing this dataflow inhamake lan-
guage is shown as Listing 1.

Listing 1: hamakefile, describing process for detecting du-
plicate documents.

1<?xml v e r s io n =” 1 . 0 ” encod ing=”UTF−8” ?>
2<p r o j e c t name=” F indSim i la rBooks ”>
3
4 <property name=” l i b ” v a l u e=” / l i b / ” />
5
6 <f i l e s e t i d =” i n p u t ” pa th =” / doc ” mask=”∗ . pd f ” />
7 <f i l e i d =” o u t p u t ” pa th =” / r e s u l t . t x t ” />
8
9 <f o r e a c h name=” E x t r a c t T e x t ”>

10 <input>
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11 <inc lude i d r e f =” i n p u t ” />
12 </ input>
13 <output>
14 <f i l e i d =” p l a i n T e x t ” pa th =” / t x t /${ f o r e a c h : f i l e n a m e} ” />
15 </ output>
16 <mapreduce j a r =” ${ l i b } / hadoopJobs . job ”
17 main=” T e x t E x t r a c t o r ”>
18 <parameter>
19 <l i t e r a l v a l u e=” ${ f o r e a c h : p a t h} ” />
20 </ parameter>
21 <parameter>
22 <r e f e r e n c e i d r e f =” p l a i n T e x t ” />
23 </ parameter>
24 </ mapreduce>
25 </ f o r e a c h>
26
27 <f o r e a c h name=” Token ize ”>
28 <input>
29 <f i l e i d =” p l a i n T e x t ” pa th =” / t x t ” />
30 </ input>
31 <output>
32 <f i l e i d =” t o k e n s ” pa th =” / t o k e n s /${ f o r e a c h : f i l e n a m e} ” />
33 </ output>
34 <mapreduce j a r =” ${ l i b } / hadoopJobs . job ”
35 main=” Token ize r ”>
36 . . .
37 </ mapreduce>
38 </ f o r e a c h>
39
40 <f o r e a c h name=” F i l t e r S t o p W o r d s ”>
41 <input>
42 <f i l e i d =” stopWords ” pa th =” / s topwords . t x t ” />
43 <f i l e i d =” t o k e n s ” pa th =” / t o k e n s ” />
44 </ input>
45 <output>
46 <f i l e i d =” te rms ” pa th =” / te rms /${ f o r e a c h : f i l e n a m e} ” />
47 </ output>
48 <mapreduce j a r =” ${ l i b } / hadoopJobs . job ”
49 main=” Token ize r ”>
50 . . .
51 </ mapreduce>
52 </ f o r e a c h>
53
54 <f o r e a c h name=” C a l c u l a t e T F”>
55 <input>
56 <f i l e i d =” te rms ” pa th =” / te rms ” />
57 </ input>
58 <output>
59 <f i l e i d =” TFVector ” pa th =” / TF” />
60 </ output>
61 <mapreduce j a r =” ${ d i s t } / hadoopJobs . job ”
62 main=” C a l c u l a t e T F”>
63 . . .
64 </ mapreduce>
65 </ f o r e a c h>
66
67 <f o l d name=” F i n d S i m i l a r ”>
68 <input>
69 <f i l e i d =” TFVector ” pa th =” / TF” />
70 </ input>
71 <output>
72 <inc lude i d r e f =” c l u s t e r s L i s t ” pa th =” / c l u s t e r s ” />
73 </ output>
74 <mapreduce j a r =” ${ l i b } / hadoopJobs . job ”
75 main=” Canopy ”>
76 . . .
77 </ mapreduce>
78 </ f o l d>
79
80 <f o l d name=” O u t p u t R e s u l t ”>
81 <input>
82 <f i l e i d =” c l u s t e r s L i s t ” pa th =” / c l u s t e r s ” />
83 </ input>
84 <output>
85 <inc lude i d r e f =” o u t p u t ” />
86 </ output>
87 <mapreduce j a r =” ${ l i b } / hadoopJobs . job ”
88 main=” Ou tpu tS im i la rBooks ”>
89 . . .
90 </ mapreduce>
91 </ f o l d>
92</ p r o j e c t>

The first DTR (lines 10-25) converts a document
from a native format such as PDF to plain text. The
input of the DTR is a reference to the/doc folder,
and the output is the/txt folder. TheforeachDTR es-
tablishes one-to-one dependencies between files with
identical names in these two folders. The Hadoop

ExtractText

Tokenize

stop

words FilterStopWords

CalculateTF

FindSimilar

/doc

/txt

/tokens

/terms

/tf

results

/clusters

OutputResults

Figure 4: Directed acyclic graph of a data flow for duplicate
document detection.

job which performs the actual text extraction is de-
fined using themapreduceelement. It will be in-
voked byhamake for each unsatisfied dependency.
The job takes two parameters, defined withparame-
ter elements - a path to an original document as the
input and a path to a file where the plain text version
will be written. The remaining five DTRs are defined
in a similar manner.

Hamake, when launched with this XML dataflow
definition, will execute a graph reduction algorithm,
as shown in Figure 1, and will find the first DTR
to process. In our example, this isExtractPlainText.
First,Hamake will launch the corresponding Hadoop
job and immediately following, execute DTRs which
depend on the output of this DTR, and so on until all
output files are up to date. As a result of this data
flow, a file namedresults.txtwith a list of similar doc-
uments will be generated.

This data flow could be used for incremental pro-
cessing.

When new documents are added,hamake will re-
frain from running the following DTRs:ExtractText,
Tokenize, FilterStopWords, andCalculateTFfor pre-
viously processed documents. However, it will run
those DTRs for newly added documents and then, re-
runFindSimilarandOutputResults.
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If the list of stop words has been changed,
hamake will re-run only FilterStopWords, Calcu-
lateTF, FindSimilar, andOutputResults.

5 RELATED WORK

Several workflow engines exist for Hadoop, such as
Oozie (Yahoo!, 2012), Azkaban (Linkedin, 2012),
Cascading (Wensel, 2012), and Nova (Olston et al.,
2011). Although all of these products could be used to
solve similar problems, they differ significantly in de-
sign, philosophy, target user profile, and usage scenar-
ios limiting the usefulness of a simple, feature-wise
comparison.

The most significant difference between these en-
gines andhamake lies in theworkflowvs. dataflow
approach. All of them use the former, explicitly spec-
ifying dependencies between jobs.Hamake, in con-
trast, uses dependencies between datasets to derive
workflow. Both approaches have their advantages,
but for some problems, the dataflow representation as
used byhamake is more natural.

Kangaroo (Zhang et al., 2011) is using similar
data-flow DAG processing model, but not integrated
with Hadoop.

6 FUTURE DIRECTIONS

One possiblehamake improvement may be better
integration with Hadoop schedulers. For example,
if Capacity Scheduleror Fair Scheduleris used, it
would be useful forhamake to take information about
schedulerpoolsor queuescapacity into account in its
job scheduling algorithm.

More granular control over parallelism could be
achieved if thehamake internal dependency graph
for foreachDTR contained individual files rather than
just filesets. For example, consider a dataflow consist-
ing of three filesetsA, B, C, and twoforeachDTR’s:
D1, mappingA to B, andD2, mappingB to C. File-
level dependencies would allow some jobs to run from
D2 without waiting for all jobs inD1 to complete.

Another potential area of future extension is the
hamake dependency mechanism. The current imple-
mentation uses a fairly simple timestamp compari-
son to check whether dependency is satisfied. This
could be generalized, allowing the user to specify cus-
tom dependency check predicates, implemented ei-
ther as plugins, scripts (in some embedded scripting
languages), or external programs. This would allow
for decisions based not only on file meta data, such as
the timestamp, but also on its contents.

Several hamake users have requested support
for iterative computations with a termination con-
dition. Possible use-cases include fixed-point com-
putations and clustering or iterative regression algo-
rithms. Presently, to embed this kind of algorithm into
the hamake dataflow, it requires the use of thegen-
erationsfeature combined with external automation,
which invokeshamake repeatedly until a certain exit
condition is satisfied.Hamake users could certainly
benefit from native support for this kind of dataflow.
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