
DATA AND COMPUTATION INTEROPERABILITY IN INTERNET
SERVICES

Sergey Boldyrev, Dmitry Kolesnikov, Ora Lassila and Ian Oliver
Nokia Corporation, Espoo, Finland

Keywords: Service, Semantic Web, Data, Ontology, Computation, Privacy, Latency, Cloud Computing, Interoperability.

Abstract: Next generation distributed systems should be seamlessly spanned around heterogeneous concepts of the in-
formation providers, devices manufacturers and the cloud infrastructures. The enabling components such as
Data, Computation, Scalable performance and Privacy aspects should be elaborated and leveraged in order to
provide a foundation of such systems.

1 INTRODUCTION

The ICT industry is undergoing a major shift towards
cloud computing. From the technological standpoint,
this entails incorporating both “in-house” and out-
sourced storage and computing infrastructures, inte-
grating multiple partners and services, and providing
users a seamless experience across multiple platforms
and devices. On the business side, there is an antici-
pation of improved flexibility, including the flexibil-
ity of introducing new, multisided business models
where value can be created through interactions with
multiple (different types of) players. Many compa-
nies are trying to answer questions like “Who might
find this information valuable?”, “What would hap-
pen if we provided our service for free of charge”,
and “What if my competitor(s) did so?”. The an-
swers to such questions are hightlighting opportuni-
ties for disruption and identfication of vulnerabilities
(). Thus, slicing and investigating technological com-
ponents we are seeking the answers in further think-
ing and collabration work with industrial researches
and academic society.

In a world of fully deployed and available cloud
infrastructures we can anticipate the emergence of
distributed systems that can seamlessly span the “in-
formation spaces” of multiple hardware, software, in-
formation and infrastructure providers. Such systems
can take advantage of finely granular and accountable
processing services, can integrate heterogeneous in-
formation sources by negotiating their associated se-
mantics, and ultimately free users of mundane chal-
lenges and details of technology usage (such as con-
nectivity, locus of data or computation, etc.). We fore-

see greater reuse of information and computational
tasks.

In order for us to understand the opportunities and
– perhaps more importantly – the challenges of such a
future, we must establish a clear framework for inter-
operability. Aspects of data and computation seman-
tics, performance and scalability of computation and
networking, as well as threats to security and privacy
must be discussed and elaborated. This paper aims to
be the beginning of this discussion.

2 DATA

2.1 About Semantics

In the broader sense, in the context of data, the term
semantics is understood as the “meaning” of data.
In this document, we take a narrow, more pragmatic
view, and informally define semantics to be the set
of declared dependencies and constraints that define
how data is to be processed. In a contemporary soft-
ware system, some part of the system (some piece of
executable software) always defines the semantics of
any particular data item. In a very practical sense,
the “meaning” of a data item arises from one of two
sources:

1. The relationships this item has with other data
items and/or definitions (including the semantics
of the relationships themselves). In this case, soft-
ware “interprets” what we know about the data
item (e.g., the data schema or ontology). An el-
ementary example of this is object-oriented poly-

59Boldyrev S., Kolesnikov D., Lassila O. and Oliver I..
DATA AND COMPUTATION INTEROPERABILITY IN INTERNET SERVICES.
DOI: 10.5220/0003895300590063
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 59-63
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



morphism, where the runtime system can pick the
right software to process an object because the
class of the object happens to be a subclass of
a “known” class; more elaborate cases include
ontology-based reasoning that infers new things
about an object.

2. Some software (executing in the system runtime)
that “knows” how to process this data item di-
rectly (including the system runtime itself, as this
typically “grounds” the semantics of primitive
datatypes, etc.). In this case, the semantics is
“hard-wired” in the software.

All software systems have semantics, whether the se-
mantics is defined implicitly or explicitly. As for data
specifically, the semantics are typically defined ex-
plicitly, in the form of datatype definitions, class def-
initions, ontology definitions, etc. (these fall under
category #1 above; semantics of those things that fall
under category #2 are typically either implicit or in
some cases explicit in the form of external documen-
tation).

2.2 Constituent Technologies of “Data
Infrastructure”

From a practical standpoint, all applications need to
query, transmit, store and manipulate data. All these
functions have dependencies to technologies (or cat-
egories of technologies) which we in aggregate shall
call Data Infrastructure. The constituent technologies
themselves have various dependencies, illustrated (in
a simplified form) in Figure 1. From the data seman-
tics standpoint, we are mostly here focused on the
technologies inside the box labeled “Data Modeling
Framework”.

Application

Data Modeling Framework

Storage Infrastructure

Internal Data

Domain Models

Object Model

Queries

Query Language Serialization

Transmission

Schema Language

Query Engine Storage

Figure 1: Dependencies in “Data Infrastructure”.

Domain Models: Application semantics is largely
defined via a set of domain models which establish the
necessary vocabulary of the (real-world) domain of an
application. Meaningful interoperability between two
systems typically requires the interpretation of such
models.

Schema Language: Domain models are expressed
using some schema language. Typically such lan-
guages establish a vocabulary for discussing types
(classes), their structure and their relationship with
other types. Examples of schema languages include
SQL DDL, W3C’s OWL and XML Schema as well
as Microsoft’s CSDL. Class definitions in object-
oriented programming languages (e.g., Java) can also
be considered as schema languages.

Query Language: An application’s queries are ex-
pressed in some query language; this language may
either be explicit (such as SQL or SPARQL) or im-
plicit (in the sense that what effectively are queries
are embedded in a programming language). Queries
are written using vocabularies established by a query
language (the “mechanics” of a query) and relevant
domain models.

Serialization: For the purposes of transmission
(and sometimes also for storage) a “syntactic”, exter-
nal form of data has to be established. A standardized
serialization syntax allows interoperating systems to
exchange data in an implementation-neutral fashion.
Serialization syntaxes do not have to be dependent on
domain models.1

Object Model: Ultimately, there are some defini-
tions about the structure common to all data; we refer
to these definitions as an object model (in some litera-
ture and in other contexts, the term metamodel is also
used). Essentially, an object model is the definition
of “what all data looks like” and thus forms the basis
for a schema language, a query language and a seri-
alization syntax. Examples of object models include
W3C’s XML DOM and RDF.2

2.3 On Metadata and Provenance

Interoperable exchange of data can often benefit from
metadata to describe the data being interchanged.
Typically, such exchange occurs in use cases involv-
ing management of data that originates in multiple

1In practice, developers often have a hard time separat-
ing conceptual views of data, domain models, and like, from
concrete, syntactic manifestations of data. This has lead to
all kinds of unnecessary dependencies in the implementa-
tions of large systems. Consider yourselves warned.

2We are referring to RDF’s graph-based metamodel, not
RDF Schema which should be considered a schema lan-
guage.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

60



sources (and may – independently of sources – have
multiple owners) and/or data that is subject to one or
more policies (security, privacy, etc.). Much of the
metainformation we aspire to record about data is in
various ways associated with data provenance. Over
the years lots of work has been invested in provenance
in various ways – () provides a general overview of
these efforts in the database field. In cases where a
multi-cloud solution is used to implement workflows
that process data, we may also be interested in solu-
tions for workflow provenance.

In practice, incorporating all or even any metain-
formation into one’s (domain) data schema or ontol-
ogy is difficult, and easily results in a very compli-
cated data model that is hard to understand and main-
tain. It can, in fact, be observed that provenance-
related metadata attributes (such as source and owner)
are cross-cutting aspects of associated data, and by
and large are independent of the domain models in
question. The problem is similar to the problem of
cross-cutting aspects in software system design, a sit-
uation3 that has led to the development of Aspect-
Oriented Programming ().

From the pragmatic standpoint, the granularity of
data described by specific metadata is an important
consideration: Do we record metadata at the level of
individual objects (in which case “mixing” metadata
with the domain schema is achievable in practice), or
even at finer (i.e., “intra-object”) granularity; a possi-
ble solution to the latter is presented in ().

3 COMPUTATION

From the computation perspective we are faced with a
task to enable and create consistent (from the seman-
tics standpoint) and accountable components that can
be leveraged and reused in a larger, distributed infor-
mation system. This translates to several pragmatic
objectives, including (but not limited to) the follow-
ing:

� Design and implementation of scenarios where
computation can be described and represented in a
system-wide understandable way, enabling com-
putation to be “migrated” (transmitted) from one
computational environment to another. This trans-
mission would involve reconstruction of the com-
putational task at the receiving end to match the
defined semantics of task and data involved. It
should be noted that in scenarios like this the se-
mantics of computation are described at a fairly

3The motivating situation is sometimes referred to as the
“tyranny of dominant decomposition” ().

high, abstract level (rather than, say, in terms of
low-level machine instructions).

� Construction of a system where larger computa-
tional tasks can be decomposed into smaller tasks
or units of computation, independent of what the
eventual execution environment(s) of these tasks
(that is, independent of hardware platforms or op-
erating systems).

Traditional approaches to “mobile code” have in-
cluded various ways to standardize the runtime exe-
cution environment for code, ranging from hardware
architectures and operating systems to various types
of virtual machines. In a heterogeneous configuration
of multiple device and cloud environments, these ap-
proaches may or may not be feasible, and we may
want to opt for a very high level (possibly purely
declarative) description of computation (e.g., describ-
ing computation as a set of goals to be satisfied).

High-level, declarative descriptions of computa-
tion (e.g., functional programming languages such as
Erlang) afford considerable latitude for the target ex-
ecution environment to decide how computation is to
be organized and effected. This way, computation can
be scheduled optimally with respect to various con-
straints of the execution environment (latency budget,
power or other resource consumption, remaining bat-
tery level, etc.) and decisions can also be made to
migrate computation to other environments if needed.

4 MANAGED CLOUD
PERFORMANCE

A new outlined paradigm of distributed systems re-
quires an explicit orchestration of computation across
Edge, Cloud and Core depending on components
states and resource demand, through the proper ex-
ploit of granular and therefore accountable mecha-
nisms. The behavior analysis of the software compo-
nents using live telemetry gathered as the cloud sus-
tain production load is mandatory.

End-to-end latency is seen by us as a major met-
ric for quality assessment of software architecture and
underlying infrastructure. It yields both user-oriented
SLA, the objectives for each Cloud stage. The ulti-
mate goal is the ability to quantitatively evaluate and
trade-off software quality attributes to ensure compet-
itive end-to-end latency of Internet Services.

On another hand, the task of performance analy-
sis is to design systems as cost effectively as possible
with a predefined grade of service when we know the
future traffic demand and the capacity of system el-
ements. Furthermore, it is the task to specify meth-

DATA�AND�COMPUTATION�INTEROPERABILITY�IN�INTERNET�SERVICES

61



ods for controlling that the actual grade of service is
fulfilling the requirements, and also to specify emer-
gency actions when systems are overloaded or techni-
cal faults occur.

When applying Managed Cloud Performance in
practice, a series of decision problem concerning both
short-term and long-term arrangements appears:

� provide granular latency control for diverse data
and computational load in hybrid Cloud architec-
tures;

� resolution short term capacity decisions include
for example the determination of optimal config-
uration, the number of lives servers or migration
of computation;

� resolution of long term capacity decisions such as
decisions concerning the development and exten-
sion of data- and service architecture, choice of
technology, etc;

� control of SLA at different levels, e.g. consumer
services, platform components, etc;

� quality assessment of distributed software archi-
tecture.

If performance metrics of a solution is inadequate
then business is impacted. It has been reported by
multiple sources (): 100ms of latency on Amazon cost
them 1% in sales; Goldman Sachs makes profit of a
500 ms trading advantage. Goldman Sachs used Er-
lang for the high-frequency trading programs.

The role of software behavioral analysis therefore
is crucial in order to achieve proper level of account-
ability of the whole system, constructed out of the
number of the granular components of Data and Com-
putation, thus, creating a solid fundament for the Pri-
vacy requirements.

5 PRIVACY IN THE CLOUD

The scope of privacy enforcement being proposed
here is to provide mechanisms by which users can
finely tune the ownership, granularity, content, se-
mantics and visibility of their data towards other par-
ties. We should note that security is very closely
linked with privacy; security, however, tends to be
about access control, whether an agent has access to a
particular piece of data, whereas privacy is about con-
straints on the usage of data. Because we have not
had the technological means to limit usage, we typi-
cally cast privacy as an access control problem; this
precludes us from implementing some use cases that
would be perfectly legitimate, but because the agent
cannot access relevant data we cannot even discuss

what usage is legal and what is not. In other words,
security controls whether a particular party has access
to a particular item of data, while privacy controls
whether that data can or will be used for a particular
purpose.

As Nokia builds its infrastructure for data, the
placement and scope of security, identity and analysis
of that data become imperative. We can think of the
placement of privacy as described in Figure 2 (note
that in this diagram, by “ontology” we really mean
semantics).

Figure 2: Privacy, overview.

Given any data infrastructure we require at mini-
mum a security model to support the integrity of the
data, an identity model to denote the owner or owners
of data (and ideally also provenance of the data) and
an ontology to provide semantics or meaning to the
data. Given these we can construct a privacy model
where the flow of data through the system can be
monitored and to establish boundaries where the con-
trol points for the data can be placed.

6 CONCLUSIONS

As stated in above, the rapidly shifting technology
environment raises serious questions for executives
about how to help their companies to capitalize on the
transformation that is underway. Three trends – any-
thing as a service, multisided business models and in-
novation from the bottom of the pyramid – augur far-
reaching changes in the business environment and re-
quire radical shifts in strategy. The fine-grained (and
thus easily accountable) software frameworks allow
customers to monitor, measure, customize, and bill
for asset use at much more fine-grained level than be-
fore. Particularly, b2b customers would benefit since
such granular services would allow the purchasing of
fractions of service and to account for them as a vari-
able cost rather than consider some capital invest-
ments and corresponding overhead.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

62



Therefore, the driving agenda above can be seen
as a creation of tools for the next developer and con-
sumer applications, computing platform and backend
infrastructure, backed up by application technologies
to enable qualitative leap in services’ offering, from
the perspectives of scalable technology and business
models with high elasticity, supporting future strate-
gic growth areas and maintenance requirements.

REFERENCES

G. Kiczales, “Aspect-Oriented Programming,” ACM Com-
puting Surveys, vol. 28, no. 4, 1996.

P. Buneman and W.-C. Tan, “Provenance in databases,” in
SIGMOD ’07: Proceedings of the 2007 ACM SIG-
MOD international conference on Management of
data. ACM, 2007, pp. 1171–1173.

H. Ossher and P. Tarr, “Multi-Dimensional Separation of
Concerns in Hyperspace,” in Proceedings of Aspect-
Oriented Programming Workshop at ECOOP’99,
C. Lopes, L. Bergmans, A. Black, and L. Kendall,
Eds., 1999, pp. 80–83.

O. Lassila, M. Mannermaa, I. Oliver, and M. Sabbouh,
“Aspect-Oriented Data,” accepted submission to the
W3C Workshop on RDF Next Steps, World Wide Web
Consortium, June 2010.

Marko A. Rodriguez, “The RDF virtual machine,” in
Knowledge-Based Systems, Volume 24, Issue 6, Au-
gust 2011, Pages 890-903.

Uday Reddy, “Objects as closures: abstract semantics of
object-oriented languages,” Published in: Proceedings
of the 1988 ACM conference on LISP and functional
programming , Proceeding LFP ’88, ACM New York,
NY, USA 1988.

QtClosure project https://gitorious.org/qtclosure
SlipStream project https://github.com/verdyr/SlipStream
Cisco System Inc, White Paper, Design Best Practices for

Latency Optimization
ELATA project https://github.com/fogfish/elata
Souder S., High Performance Web Sites, O’Relly, 2007,

ISBN 0-596-52930-9
The Psychology of Web Performance, http://www.website

optimization.com/speed/tweak/psychology-web-perfor
mance

L. Kleinrock, Queueing Systems, Wiley Interscience,
1976., vol. II: Computer Applications (Published in
Russian, 1979. Published in Japanese, 1979.)

http://tools.ietf.org/html/rfc3393
McKinsey Column, “Clouds, big data, and smart assets,”

Financial Times, Septemeber 22 2010.

DATA�AND�COMPUTATION�INTEROPERABILITY�IN�INTERNET�SERVICES

63


