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Abstract: Abstraction skill is difficult but essential when learning computer science and mathematics. In this paper, we
present an experience from the Computer Science Department of IUT de Montreuil in which mathematics
and computing teaching work together in order to provide abstract thinking skills to students. Our approach
is to connect mathematics and software engineering through a computer-supported approach which uses - in
mathematics and software engineering undergraduate courses- Alloy, a lightweight formal method from MIT.
Alloy serves as a continuum from micro-modelling activities -used to enforce an abstract understanding of
basic mathematic concepts- to real software modelling practice. It enables us to elaborate a kind of exploratory
learning where students are actively engaged.

1 INTRODUCTION

Abstraction is a vital skill when learning Computer
Science as well as Mathematics. Keith Devlin (De-
vlin, 2003) explains clearly the importance of ab-
straction for Computer Science : “ Once you real-
ize that computing is all about constructing, manip-
ulating, and reasoning about abstractions, it becomes
clear that an important prerequisite for writing (good)
computer programs is the ability to handle abstrac-
tions in a precise manner“. But learning abstraction is
hard and many students tend to stay at a low level of
abstraction, focusing immediately on the code rather
than the design.

The need for abstraction gives to mathematics
course an important part of computing curriculum.
But many students have a negative attitude.

Observing this difficulties raise the following
question: how mathematics and computing can work
together in order to provide abstract thinking skills to
students?

In this paper we address this question. As we
are concerned with Computer Science curriculum, our
first choice was to concentrate on software modelling
and on discrete mathematics, logic and sets. Indeed,
software modelling is a good way to practice ab-
straction and discrete mathematics is its mathematical
background. In order to connect as soon as possible

mathematical concepts with Computer Science, our
second choice was to introduce mathematical notions
with some kind of micro-modelling activities where
students use these notions to express things.

But in order to appropriate the notions our stu-
dents must take an active part. To address this
problem our third choice was to adopt a computer-
supported approach. with the help of Alloy (Jackson,
2006) (Alloy, 2007), a lightweight formal method
dedicated to rapid software modelling created by
Daniel Jackson’s, group at MIT. This tool allows us to
elaborate a pedagogy based on the Actions-Process-
Object model (Fenton and Dubinsky, 1996) which is
considered today as the central model of concept for-
mation.

Our proposal can be summarized as follows : our
approach is to connect mathematics and software en-
gineering through the use- in mathematics and soft-
ware engineering courses- of Alloy. Alloy serves as
a continuum from micro-modelling activities -used
to enforce an abstract understanding of basic math-
ematic concepts- to real software modelling practice.

This leads us to reorganize our curriculum as fol-
lows : the first mathematics course of our curriculum
is devoted to logic, sets functions and relations, in-
duction . . . . Every time a notion is introduced, the
students have an Alloy laboratory session whose role
is the appropriation of this new notion. Laboratory ex-
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ercises are elaborated following the APO model. At
the end of the course, as students familiarize them-
selves with the notions and the tool, some laboratory
sessions are devoted to introduce them to a model
driven approach of software engineering and to give
them a mathematical representation of key concepts
of computing such as inheritance, composition, ab-
stract classes . . .

Alloy is then from time to time used in Com-
puter science courses such as programming language,
database relational model, Uml modelling, when in-
troducing computing concepts or formalisms and in
order to give them a mathematical meaning. In this
way, the work made with mathematics and Alloy
doesn’t substitute for usual computing topics. It im-
proves them by giving them a common language.

The cross-disciplinary characteristic of Alloy labs
requires a mixed teaching team. Our team is com-
posed of 2 mathematics and one computing teacher.
Each lab session is elaborated in common and taught
in parallel.

2 RELATED WORKS

Computer-supported approach has been extensively
used in mathematic education in order to enforce stu-
dents motivation and to develop an active attitude.
A common approach is to use web technology as in
(Gregory, 2004). Other works (Siller and Greefrath,
2009) share with us a focus on mathematical mod-
elling but most of them use software tools as Com-
puter Algebra systems (CAS), Dynamic Geometry
Software (DGS) or Spredsheet programs (SP). Our
approach is very closed from (Fenton and Dubinsky,
1996). We adopt their APO model of concept for-
mation together with a computer-supported approach
The main differences are (1) that we use a lightweight
formal method while they use a programming lan-
guage, (2) that our approach doesn’t restrict to mathe-
matics but is cross-disciplinary. We use the same tool
to enforce an abstract understanding of basic math-
ematic concepts as well as to practice real software
modelling.

The idea to introduce Object-Oriented concepts
with the preliminary use of a modeling language is
also present in (Hadar and Hadar, 2007). In this paper,
authors insist on two properties of UML : abstraction
barrier and visual representation. Those properties are
also properties of Alloy and have motivate our choice.
The use of UML for Object-oriented concepts intro-
duction is also present in (Bennedsen and Caspersen,
2004). UML and Alloy serve the same goal : let the
students have the “big picture” of programs, but the

use of Alloy lets also the students have a mathemati-
cal understanding of O.O concepts.

The belief that the main intellectual challenge of
software engineering is abstraction and design is com-
monly shared and leads a lot of institutions to intro-
duce formal methods as soon as possible in under-
graduate curriculum. (Sotiriadou and Kefalas, 2000)
describes a formal method course in the second year
of the undergraduate curriculum which focuses on
software modelling and uses the Z formal specifica-
tion language. In Rochester Institute of Technology
(RIT) (Lutz, 2006), (Naveda et al., 2009) the soft-
ware engineering program has been redesigned in or-
der to expose students to both formal and informal
modelling throughout the entire curriculum. Discrete
mathematics take place in the first year and formal
methods for specification and design such as Z, VDM,
and more recently Alloy are introduced as soon as
possible.

In (Boyatt and Sinclair, 2008) a software design
undergraduate module which uses Alloy is described.
Like us, they highlight two characteristics of Alloy:
experiment and visualization which help shape the
mathematical understanding of a model and allow a
kind of exploratory learning. The fact that the use
of Alloy is compartmentalized in one module is men-
tioned in the paper as a limit of their approach. To this
effect, We can say that our work extends this work be-
cause of our use of Alloy as a continuum from mathe-
matic concepts learning to software design modelling.

Few works address our problem of how to decom-
partmentalize mathematics and computing learning.
We can cite (Sekerinski, 2009) where mathematics
is used as the unifying force of all core elements of
software design. But, in this approach the focus is
placed on specifications, algorithms and correctness
proofs with the use of Weakest Preconditions Calcu-
lus while we focus on mathematical modelling. We
can also cite (Cohoon and Knight, 2006) which de-
scribes efforts made at Virginia University to connect
software engineering and discrete mathematics. Their
solution differs from ours: they systematically moti-
vate introduction of discrete mathematic notions by
preliminary software engineering problem studies.

3 ALLOY

Like all formal method, Alloy is made of a language
and a tool which supports the language. An Alloy text
(a model) is made of sets and relations definitions and
of formulas expressing constraints over them. But
Alloy is a lightweight formal method i.e. a method
which has a formal basis but is limited in its scope.
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The limitation of Alloy is in the analyzer support-
ing the language: it uses SAT solving techniques to
check the model. The analyzer therefore doesn’t pro-
vide general results as theorem proving does, but it
gives a quick way of exploring instances of the model
and generating counterexamples.

Alloy provides two commands: run and check.
With the run command, Alloy tries to find instances
which satisfy definitions and constraints of the model.
If it succeeds, satisfiability of the model is proved, but
if it fails, we don’t have guarantee of unsatisfability.
The check command is used to check if a given for-
mula is a consequence of the model. In this case, The
analyzer tries to find a counterexample. A success
proves that the assertion is wrong, a failure doesn’t
prove anything.

Let us illustrate Alloy with a simple example, in-
spired from the famous scene of the Sergio Leone’s
film: the good, the bad and the ugly:
-“You see, in this world, there are two kinds of peo-
ple, my friend : those with loaded guns and those who
dig. You dig.”

We need a Human set partitioned by 2 disjoint sub-
sets GunMan and Digger and also a Hole set and a
Treasure set. We define 3 relations in order to ex-
press the facts that gunmen threats diggers, that dig-
gers dig holes and that holes contains treasures. The
Alloy model is given in listing 1.

Listing 1: The gunman model.
s i g Holef c o n t a i n : l one T r e a s u r e g
s i g T r e a s u r e fg
a b s t r a c t s i g Humanfg
s i g Digger ex tends Humanf d i g : s e t Holeg
s i g Gunman ex tends Humanf t h r e a t : s e t Digger g

Figures 1(a) shows an instance obtained with
the Run command. Our model, doesn’t enforce
the contain relation to be injective. Execut-
ing checkfinjective[contain,Treasure]g will
produce counterexamples as shown in figure 1(b).

4 LEARNING MATHEMATIC
NOTIONS WITH THE HELP OF
ALLOY

4.1 Visualization and Active Learning

Alloy doesn’t prove anything but provides a quick
way of exploring instances of models, generating
counterexamples and visualizing the results. In other

(a) (b)

Figure 1: An instance (a) and a counterexample (b).

words, the tool shows a representation of what the stu-
dent has written. The teacher can then adopt an atti-
tude where he never gives the answer to an exercise
but helps the student to find how the tool will give
it. This kind of iterative interaction with the tools im-
poses active learning, let the student be responsible
for what he says and allows him to interiorize the no-
tions.

4.2 A Constructivist Approach

In this section, we will explain how Alloy allows a
pedagogy based on the Action-Process-Object model
(Fenton and Dubinsky, 1996) which is considered to-
day as the central model of concept formation.

According to this model, three successive mental
constructions are needed in order to develop an under-
standing of a mathematical concept. At the first stage,
the learner performs actions on object, according to a
given algorithm. When the learner gains the ability to
refer to these actions using symbols or is able to imag-
ine the action without needing to perform it explicitly,
we say that the actions were transformed into a pro-
cess. The last stage is transforming the process into
an object: the learner can refer to the entity concept
much like he refers to a physical entity.

Let us consider again our GunMan example in
order to illustrate the elaboration of exercises corre-
sponding to the three stages of the APO model dedi-
cated to the learning of relation concept.

According to APO model, at the beginning of the
learning process, students need to work on concrete
examples and to follow step by step instructions. For
this purpose, it is convenient to work with a fix in-
stance of the model. Let us then add the Alloy text
of listing 2 to the model-listing 1 in which sets and
relations are extensionally defined:
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Listing 2: A fix instance of gunman model.
one s i g c h e s t , n ug ge t ex tends T r e a s u r e fg
one s i g theBad , theUg ly ex tends Digger fg
one s i g theGood , o t h e r ex tends Gunmanfg
one s i g h1 , h2 , h3 ex tends Hole fg
f a c t f
c o n t a i n = h1�>c h e s t + h2�>nu gg e t &&
t h r e a t = theGood�>t heUg ly + theGood�>theBad +

o t h e r�>theBad &&
d i g = theBad�>h1 + theUgly�>h3 + theBad�>h3
g

We can then ask the students to perform step by
step the compose definition and to interact with Alloy
for self-assessment as in the following exercise:

Exercise 1. Add the following 2 sentences to the
GunMan model and complete the mystery fact by
giving the tuples corresponding to the compose of
dig and contain:
fact mysteryf m1= //to be completedg
check f m1= dig.containg

After the definition has been processed, we can
move to a little more abstract level as in the following
exercise.

Exercise 2. Add the following 2 sentences to the Gun-
Man model and give a meaningful name to m2. You
can have help by exploring instances with Alloy:
fact f m1= dig.containg
fact f m2= threat.m1g

Understanding m2 supposes to take m1 as a whole,
as an object. To be able to give a meaningful name to
m2 (for instance possess), requires then a mental rep-
resentation of m2, i.e. of the compose concept itself.
Alloy visualization of instances and work in auton-
omy contributes strongly to this process.

The next step is to ask students to define their own
relations.

Exercise 3. Define the threatWith relation which
maps gunmen to gunmen who threat at least a same
person. Is your relation reflexive (to be test with Al-
loy)? How to proceed if we don’t want it to be reflex-
ive?

At this stage, students must be able to combine re-
lations in order to define a new one. Contrary to the
other steps, Alloy will be helpful only after they have
formulated a definition, as a test tool. Moreover they
are engaged in an iterative (micro-)modelization pro-
cess: using mathematic notions to express concrete
phenomenons.

Previous exercises work on concrete relations. It
is now time to free from them. Three kinds of activ-
ities are provided: Analyze of given models, model
design and mathematical problems. The first and the
second will be detailed in the next section. Mathemat-
ical problems are the way to connect the work done in
Alloy laboratory sessions with traditional paper and
pencil mathematic sessions. Here is an example:

Exercise 4. Is a symmetric and transitive relation
necessary reflexive? Use Alloy to check your guess
and then prove it on a paper.

We evaluate student’s ability to build an interac-
tion with Alloy in which the student role is restricted
to the formulation and the investigation of the prob-
lem. Alloy counterexamples should lead to under-
stand that only a total symmetric and transitive rela-
tion is necessarily reflexive. It can be first checked
with Alloy and then proved on paper.

5 A MODELLING-FIRST
APPROACH OF COMPUTING

As soon as students have acquired the basic mathe-
matical notions, they are able to model simple soft-
ware systems with Alloy. To begin software mod-
elling in the math course is interesting because in
math course students don’t ask for writing code. Stu-
dents don’t balk at doing such exercises because they
see the connection with computing. Furthermore,
modelization is an abstraction process and modeliza-
tion exercises are a perfect way to practice abstrac-
tion. From the computer science point of view, it
allows to expose our students to software modelling
from the beginning of our curriculum and to give a
mathematical intuition of basic concepts of comput-
ing.

5.1 Introducing Object Oriented
Notions

Let us take the example of a static description of a
multimedia library. Such a library has several media.
Each media has a unique reference, a unique title and
a unique borrower. Different media must have dif-
ferent reference. This exercise which is a standard
UML exercise can be modelled with Alloy with the
basic mathematical notions previously used as shown
in listing 3.

As it can be noticed, Alloy language has been
elaborated in order to be mathematically simple and
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Figure 2: Multi media library with meta model and in-
stance.

also to be closed to object programming and mod-
elling language. We define sets and relations over
sets, but it looks like class and instance variables. In
fact, it gives a mathematical semantic of object lan-
guage.

Listing 3: Multi media library model.
s i g MMLibf

medias : s e t Medium
g
a b s t r a c t s i g Mediumf

r e f e r e n c e : one Ref ,
b o r r o w e r : l one Pe r s on
g
f a c t f i n j e c t i v e [ r e f e r e n c e , Ref ] g
s i g Person , Ref , Timefg

s i g Book ex tends Mediumf
nbPage : one I n t
g
s i g Music ex tends Mediumf

d u r a t i o n : one Time
g

When students will be introduced to object program-
ming, they will have this kind of mathematical intu-
ition to engage with the subject.

The same work can be done with inheritance as
shown in listing 3. The Alloy keyword extends has
been first explained with notions like inclusion, parti-
tion and disjoint subsets. When students will be intro-
duced to inheritance, they will be able to look at in-
heritance as inclusion. This is the key for a good use
of inheritance in object conception, for understanding
that subclasses inherit instance variables and methods
from super-classes, and to understand Liskov Substi-
tution Principle.

There is also a strong connection between UML
class diagram and meta-models generated by Alloy,
as illustrated by figure 2. Our use of Alloy let students
have a unified view of programming and software de-
sign. Lastly, the generated instances of software mod-
els such as the second box of figure 2 help to consider
an object program as a graph, i.e. as a set of related

objects which cooperate. Introduction of notions as
responsibility delegation will be easier.

5.2 Introducing Theoretical Aspects of
Computing

As Alloy is a formal method, it obviously allows to
introduce theoretical notions such as specifications,
Pre/Post conditions, system invariant, algorithm re-
finement of specifications, finite state machines and
so on. Each of these topics relies on the possibility to
model the dynamic of a system. In this case, Alloy vi-
sualisation provides is a kind of symbolic execution of
the system which allows to test specifications. One of
the key point is that these notions can be introduced in
a simple way and without the need of proofs. Students
are in this way exposed to a declarative approach of
computing.

6 ASSESSMENT

In this section we will analyze to what extent we have
achieved our goals.

Is Alloy Really Simple to Use? One of our hypoth-
esis was the fact that Alloy, from our point of view,
seemed to be very simple to use. This point is con-
firmed. We didn’t provide any lessons devoted to the
use of the tool nor Alloy tutorial lab sessions. The
use of Alloy was explained degree by degree along
lab sessions devoted to mathematical exercises. The
most difficult issue for students is to engage interac-
tion with the tool. We relate this fact with the question
of active learning and explain it in the next subsection.

Does Computer Supported Education with Alloy
Help Active Learning? We have insisted all over
this paper that simplicity and visualization tool of-
fered by Alloy is a key point for active learning. The
teacher never gives the response to an exercise but
helps the student to find the way Alloy will give it.
It is in our opinion a key point to let the students be
active. But active learning -even with a well adapted
tool as Alloy- had to be imposed. Students resist to
engage in this kind of self exploratory learning and
teachers have to struggle in order to impose it. Fur-
thermore, our hypothesis that students will enjoy do-
ing maths with computer turns out to be false. More
precisely, Alloy labs students assessment follows a
cycle. They enjoy in the beginning, they don’t like
when they realize that it requires to be active and it is
better at the end when they get accustomed. We think
that the reasons are: (1) to be active needs efforts, (2)
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doing maths with Alloy is forgetting calculus and fo-
cusing on concept meaning. It is precisely what our
students rarely do before, and what is needed after. In
conclusion, despite the difficulties inherent to active
learning, our experience convince us to the relevance
of our approach.

Does Our Computer-supported Approach Help
Mathematic Education? One of our goals was to
enforce a deep understanding of basic mathematical
concepts. During Alloy labs, students manipulate
these basic notions as explained in section 4. This
kind of session is well achieved by a large part of stu-
dents. Moreover, encountered difficulties relate most
of the time to a real mathematic difficulty and very
rarely to an Alloy specificity : quantifier alternations,
implication . . . . In exams, Alloy exercises are gen-
erally well achieved. From this point of view, Al-
loy labs allow us to insist on difficult points and on
the necessity to master basic concepts. The point that
needs to be improved is the connection with the usual
paper and pencil mathematic activity. Even if Al-
loy labs are inside the mathematic course, even if we
elaborate exercises which show the connection and
even if teachers point out connections during lessons,
students tend to compartmentalize usual mathematics
and Alloy activity. We think that the reason is that
seeing connections needs to master the field and it has
convinced us to work on many more decompartmen-
talizations.

Does Our Approach Help Computing Education?
The question of the connection between mathemat-
ics and computing was asked to the students and sur-
prisingly, a lot of them answered positively. It con-
vinces us to the relevance of : (1) beginning with logic
sets and discrete mathematics, (2) having a team com-
posed with both mathematic and computing teachers,
(3) using mathematic to model software systems. No
doubt, placing mathematical modeling in mathematic
course is efficient. It is very surprising to see students
writing mathematical model docilely in math courses
while they balk at writing UML model in usual soft-
ware engineering courses Our approach doesn’t com-
pletely remedy the student dislike to abstract design of
software. Students prefer writing code to modelling
but, due to our experience, they have better abstract
skills for modelling and they know, because they prac-
tice models from the beginning of their studies that it
cannot be ignored.

7 CONCLUSIONS

We have described in this paper a computer-supported

experience from the Computer Science department of
IUT de Montreuil-Paris 8, whose goal is to connect
mathematics and software engineering through the
use-in mathematics as well as in software engineering
course- of the lightweight formal method Alloy. Al-
loy serve as a continuum from micro-modelling activ-
ities -used to enforce an abstract understanding of ba-
sic mathematic concepts- to real software modelling
practice. We explained our original use of this tool
for teaching mathematic concepts following the APO
model and for introducing O.O. concepts.

In conclusion, we think that our approach bene-
fits to Mathematics as well as to Computer Science:
from the Mathematics point of view, the break with
methods used before in math teaching gives a boost
and develops problem solving skills. From the com-
puter scientist point of view, it allows to expose our
students to software modelling from the beginning of
our curriculum , as it is recommended by many cur-
rent approaches, in order to move our students from
procedural thinking to abstract one.
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