
FSMesh 
Flexibly Securing Mashups by User Defined DOM Environment 

Yi Wang, Zhoujun Li 
State Key Laboratory of Software Development Environment, Beihang University, 37 xueyuan road, Beijing, China 

Tao Guo, Zhiwei Shi 
China Information Technology Security Evaluation Center, Beijing, China 

Keywords: Mashup, Html5, Sandbox, Web Workers, Web Application. 

Abstract: A growing trend of nowadays web sites is to combine active content (applications) from untrusted sources, 
as in so-called mashups, in order to provide more functionality and expressiveness. Due to the potential risk 
of leaking sensitive information to these third-party sources, it is urgent to provide a secure “sandbox” for 
playing the untrusted content and allow developers to apply flexible security policy at the same time. In this 
paper, we propose and implement a new safe framework to prevent untrusted applications from interfering 
with each other based on HTML5 technology. By creating a separated fake DOM environment in the 
background, developers can load untrusted content into the “sandbox” and apply their custom security 
policy in real window or server side when receiving script generated messages from it. The advantage is that 
it is very flexible as the security policy is also written in JavaScript and requires minimum learning efforts 
for web developers. The drawback is that it is based on element “web workers” and method “postMessage” 
introduced in HTML5 and can’t be run in older browsers without these supports. 

1 INTRODUCTION 

A mashup is a web page that integrates content and 
executes JavaScript from different sources. By 
combining multiple separated services into a new 
application, a mashup generates valuable product. 
Facebook applications, gadgets on the iGoogle 
homepage, and Google Maps embedded in hybrid 
applications are all well known and successful 
mashup examples in real world. In most cases, web 
pages that display advertisements from ad networks 
are also mashups, since they also employ JavaScript 
for animations and interactivity. The evolution 
within web 2.0 has made mashup an inevitable and 
important part of web application but flawed with 
security problems. 
 
*This work has been partially supported by the National Natural 
Science Foundation of China (No.60973105, No.61170189), the 
Research Fund for the Doctoral Program of Higher Education No. 
20111102130003 and the Fund of the State Key Laboratory of 
Software Development Environment under Grant No.SKLSDE-
2011ZX-03. 

 

HTML Lexer

HTML Parser

                        Syntax
                   Decisions

Document Generator

JavaScript Lexer

JavaScript Parser

                        Syntax
                   Decisions

JavaScript Runtime 
Environment

Document Object 
Model API

HTML Code

J

A

HTML Parse TreeB

JS CodeC

JS Parse TreeD

E Instructions

F

H
TM

L 
C

od
e 

vi
a 

do
cu

m
en

t.w
ri

te
()

, i
nn

er
H

TM
L 

et
 a

l.

Ja
va

Sc
ri

pt
 C

od
e 

vi
a 

ev
al

()
 e

t a
l.

Te
xt

 N
od

e

B'

P

St
ri

ng
 V

al
ue

Q

Pl
ai

n 
Te

xt

R

H
TM

L 
Pa

rs
eT

re
e 

vi
a 

do
cu

m
en

t.c
re

at
eE

le
m

en
t()

 e
t a

l.

 
Figure 1: Functional diagram of browsers’ HTML 
interpretation process. 

96 Wang Y., Li Z., Guo T. and Shi Z..
FSMesh - Flexibly Securing Mashups by User Defined DOM Environment.
DOI: 10.5220/0003899000960102
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 96-102
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

If inserted into the web page directly, these third-
party code fragments will run with the same 
privileges as trusted, first-party code served from the 
originating site. Hence, the trusted site is susceptible 
to attacks by maliciously crafted pieces of code. 
Malicious code may deface web sites to lay down 
functionality and hijack user sessions or leak cookies 
to cause disasters on user privacy. When simply 
embedding code in frames, security threats still arise 
as techniques such as CSRF (cross-site request 
forge), clickjacking and frame busting may easily 
circumvent weak border between the frame and the 
main window. Moreover, the none or all security 
insurance provided by SOP(same origin policy) of 
frames will not enable web developers enough 
flexibility in controlling the security level of certain 
mashups.  

There are various ways to secure mashups, from 
static code transformation to dynamic running 
protection. But all these methods will ultimately 
undergo the browser’s native HTML interpretation 
process as depicted in Figure 1(Mike Ter Louw and 
V. N. Venkatakrishnan, 2009) and we argue that if 
such process can be reproduced in a user customed 
way, many problems will be solved without making 
modification to the browser or untrusted code.  

In this paper, we propose an emulated DOM 
environment “sandbox” framework called FSMesh 
within which the untrusted code will be parsed and 
safely executed in the web workers(Ian Hickson, 
2011) similar to browser’s interpretation process. But 
its critical window APIs have been implemented with 
different operation semantics so as to provide web 
developers the mechanism to communicate with real 
window and flexibly setup the security policy for 
certain external source. As our tool is totally 
implemented in JavaScript and can be easily 
imported as a library into the original web page. So 
this paper makes the following contributions: 
• New secure mashup’s framework 
• Flexible mechanism for web developer to setup 
custom security policy 
• Implement a prototype library compatible with 
html5 technology. 
The rest of this paper is structured as follows. In 
Section II and III, we respectively describe design 
and implementation of the framework. In Section 
IV, we present related work on securing mashups or 
advertisements. In Section V, we report empirical 
results and analysis. Section VI concludes. 

2 FSMesh DESIGN 

Suppose that a bulletin board web developer wishes 
to allow users to post contents with html tags and 
especially enable the execution of script within the 
blocks, he has to settle three challenges concerning 
functionality and security. First, posted contents 
with scripts may contain malicious code, thus 
security issue must be settled by restricting the 
accessibility of third-party script to the native 
window object but allowing the trusted script to 
access the untrusted DOM elements. Second, the 
normal user interaction with the third-party elements 
should be preserved as well as safely handling the 
event generated by the scripts from them since it is 
the primary requirement for rich internet application. 
Finally, flexible and fine-grained security policy 
must be able to be applied easily by web developers 
and requires little modification to the current version 
of web application and browsers. 

2.1 Architecture 

Main window

Web workers
1

Untr
ust

ed
 Con

ten
t

window,
document,
<script>s,

...

FSMesh(worker part)

Message 
processing 

Module

FSMesh(window part)

Secure Content

2

3

Message 
processing & 

security 
Module

4

5

XMLHttpRequest

 
Figure 2: The architecture of FSMesh framework. 

The architecture of our FSMesh framework and its 
inner interaction is depicted in Figure 2. Our 
approach is to initially relegate the untrusted html 
snippet into a newly created web workers with 
FSMesh library imported. The snippet is then parsed 
and executed under the isolated environment without 
any interference from the real window. We then 
detect effects generated by the script that would 
normally be observable by the user, as the scripts 

FSMesh�-�Flexibly�Securing�Mashups�by�User�Defined�DOM�Environment

97



 

have not been disabled by our approach. These 
effects are emulated, subject to policy-based 
constraints, outside the isolated environment for the 
user to observe and interact with by message passing 
mechanism. User actions obtained in the real 
window are also forwarded to the isolated 
environment to allow for a response by the script. 
Thus we enable a controlled interaction between the 
user and the isolated environment, while blocking 
several user-defined malicious behaviors. 

Web applications that display third-party content 
on client browsers are exposed to a wide variety of 
threats. Although our framework can alleviate 
content security threat, many other security threats 
posed by embedding untrusted code are out of the 
scope of our target. We do not address browser 
vulnerabilities attacks launched through plug-ins, 
vulnerabilities in image rendering and so on. We 
also do not protect attacks from opaque content (e.g., 
Flash), since many possible attack vectors from 
these binary formats require special treatment. 

2.2 Content Confinement using Web 
Workers 

For basic security policy, the developer wants to 
ensure outside script does not access the native 
global window object. To enforce the policy, we 
leverage the new element introduced in html5 “web 
workers” as the ideal environment to place user 
defined html parsing module and execute script. 
Web workers defines an API for running scripts, 
basically JavaScript, in the background 
independently of any user interface scripts. This 
allows for long-running scripts that are not 
interrupted by scripts that respond to clicks or other 
user interactions, and allows long tasks to be 
executed without yielding to keep the page 
responsive. To enforce the developer’s content 
security policy, scripts are executed in the FSMesh 
in web workers. The only way to communicate 
between the main window and web workers is 
message passing which means any access to code or 
data in main window is not permitted. Web workers 
is currently supported by some mainstream browser 
vender such as Safari, Chrome, Opera and Mozilla 
Firefox. 

2.3 Controlled Interaction between 
Environments 

As the web workers is running in the background, it 
has to invoke the native rendering mechanism of 
browser by sending secure content to the main 

window as known of a process called content 
mirroring. Moreover, user’s interaction with the 
content in main window will be passing forward to 
the web workers as scripts are all have to be 
executed in that environment for security insurance 
with the process called event forwarding. User 
custom security policy will be defined in main 
window by developers and applied during the two 
processes. 

2.3.1 Content Mirroring 

After content is parsed by the html parser into a 
document tree and onload scripts are executed on the 
web workers side, it will reflect the nodes of the 
document into the main window by transforming 
them into string and sending out via message 
passing. On the other side, when receiving the html 
string from web workers, main window will again 
parse it into document. But this time, no script will 
be executed as they have been already evaluated in 
web workers and also not allowed for security 
issues. The document will be transformed into 
secure content for them to fill in the block formerly 
removed.  

2.3.2 Event Forwarding 

To facilitate this interaction, events must be captured 
on secure content in the main window and forward 
these events to the web worker for processing. For 
example, if some element possesses onmousemove 
attribute and should invoke its script when mouse 
move over it, we replace the original script with 
clean “catching event” handler on the mirrored 
element. The handler only listens for the mouse-
move event and forwards it to the shadow page via a 
message. While the web worker receives such 
message, it will dispatch the same event to the 
element and execute the script safely. For event 
handler defined by “addEventListener” on normal 
document element, if it is related with keyboard or 
mouse event then we treat the element in the same 
way as above. Other kinds of event type or event 
handler registered with window are discarded. 

2.3.3 Policy Definition 

As mentioned earlier, access of elements will be 
regulated by the FSMesh security module where 
policy definition takes place. These policies are 
specified by defining validation procedures against 
possible malicious content leading to or 
communicating with outer space in the untrusted 
code. These cases are listed in Table 1 and only 

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

98



 

minimum trust level is defined (no trust). In this 
way, web developer can define any kind of ways to 
filter or validate the content or content will be 
eliminated without treatment.  

3 FSMesh IMPLEMENTATION 

The implementation of FSMesh framework is 
mainly consisted of DOM emulation module and 
message interaction module. For the first module, 
we port Envjs (server-side DOM environment 
implemented in JavaScript) (John Resig, 2011) of 
Rhino version to web worker for DOM emulation. A 
few changes are needed for original code base 
including replacing core part concerning platforms 
and work around internal limitations of web 
workers. For the message interaction module, as the 
core of security policy enforcement, we introduce 
content synchronization on both sides and filtering 
functions in the main window side. 

Table 1: Possible malicious content requiring security 
policy enforcement. 

Malicious 
content 

Example Default 
action 

‘href’ in <a> 
element 

<a href=”malicious.com”>… Remove 
‘href’  

‘action’ in 
<form> 
element 

<form action=”malicious.com”>… Remove 
‘action’  

‘src’ in 
<img> 
element 

<img src=”mal.com/mal.php”>… Remove 
‘src’  

http request <script> 
var xhr=new XMLHttpRequest(); 
xhr.open(method, url);                  
xhr.send(content); 
</script> 

No http 
request 
allowed 

location 
redirection 

<script> 
window.location=”malicious.com”; 
</script> 

Location 
not 
changed 

3.1 DOM Emulation 

Envjs contains a html5 parser together with 
definition of html elements that support parsing html 
string and execute script node inside. The Rhino 
version contains code that is specific for java 
environment which is unsuitable for web workers. 
Unlike server side program which has no restriction 
for system access, browsers limit web workers’ 
ability in writing files, setting read-only predefined 
properties(eg. location, navigator). We work around 

this problem by initially assigning “window” as a 
blank object and set its prototype to native web 
workers’ “this” instead of directly assigning 
“window” to be “this” . In this way, we can freely 
extends “window” object or will be forbidden when 
redefining read-only properties of web workers 
otherwise. Injected scripts will be evaluated in “this” 
and newly defined variables in “this” can be 
accessed transparently by “window” via the property 
finding mechanism through the prototype chain. 
This process is depicted in Figure 3. 

Some core window functions required to utilize 
native window of the main page is implemented as 
post message to real window with message type 
specified. When the main page received such 
messages, it will carry out corresponding actions if 
security policy permits. As it is not possible to send 
request to different origin web site for content by 
browser’s SOP rule, we work around the function of 
XMLHttpRequest by making the request to an 
interface of same web site with the url as an 
argument. Developer will set up the interface in the 
server side as a proxy to retrieve from outer web site 
for content. 

 
Figure 3: Relationship of “this” and “window” in web 
workers. 

3.2 Content Synchronization 

To reflect changes in web workers to main page and 
handle event generated in main page in web workers 
requires the developer to modify original contents in 
three ways. The first modification is to remove the 
post content. Second, we add the trigger scripts for 
every removed contents to initiate content passing. 
The third modification to the original page is to 
implement event handling procedures in order to 
pass correct event to the web workers. In the same 
time, corresponding receiving mechanism in the web 
workers side will be implemented for event to 
dispatch to the right element. 

3.3 Security Policy Enforcement 

Although scripts inside web worker have no access 

FSMesh�-�Flexibly�Securing�Mashups�by�User�Defined�DOM�Environment

99



 

to object reside in main window, some actions have 
to be realized in the main window when more 
authority is required. So it relies on the developer to 
decide the actions for different security policies. We 
now describe in detail the individual permissions 
granted by policies, how policies are specified, and 
how multiple policies are combined to form a 
composite policy. 

As described earlier in Table 1, we have to deal 
with the 5 cases where malicious actions can be 
taken when content are mirrored on the main 
window. FSMesh framework allows the developer to 
override 5 API implementations to achieve the goal 
of ensuring such security requirements to be met, 
described in Figure 4. The default behavior of these 
APIs is no operation which is highest in security 
level but lowest in functionality level. It depends on 
the specific cases to gain perfect trade-off between 
the two factors and decisions are made by the 
developers.  

 

setLocation( url ):  
Redirect the current location to url.  
makeHttpRequest( url, content ):  
Make a http request to url with content if ‘post’. 
linkFiltering( link ): 
Filter malicious href in <a> element. 
imgFiltering( src ):  
Filter malicious src in <img> element. 
formActionFiltering( form ):  
Filter malicious action in <form> element. 

Figure 4: Security policy in main window. 

4 EVALUATION 

We evaluated FSMesh by self-made testing mashups 
with regard to security and overhead performance. 
For the case of security, the mashups are mostly 
extracted from cross site scripting website consisted 
of various kinds of script attacks from third-party 
code. For the case of overhead performance, we 
made incremental size of mashups to investigate the 
time delay and memory cost caused by message 
passing and html parsing of FSMesh framework. 

4.1 Security Insurance 

We set up Apache web server on our computer with 
main test page as the index page and choose Firefox 
4.0 as the our testing web browser. We then inject 
various kinds of script blocks into the mashups in 
the main page aiming to test prevention ability 
against different objectives. These script codes 
together with their attack goal are shown in Table 2. 

Our experiments results support our claims that it 
provides strong defense against several potential 
attack vectors in which mashups are often exposed.  

It should be noted that although attackers may 
inject code that can override the core function of the 
part of web workers for FSMesh and may transfer 
malicious content as messages to main window. But 
they won’t be able to find a way to change the code 
of the main window’s part which ensures the 
enforcement of security policy as the only 
communication method between the two parts is 
message passing.  

4.2 Overhead Performance 

To measure mashups rendering latencies caused by 
our FSMesh framework, we placed incremental size 
of mashups both on original main page and on 
modified FSMesh page instrumented with time 
benchmarking code. There were a total of 10 
instances of mashups with size from 10 nodes to 
1000 nodes. The test pages are rendered in Firefox 
v4.0.1 on an AMD Athlon X2 4450 (2.30 GHz) PC 
with 2.0GB RAM. Each modified FSMesh page 
import our implementation source code (663 kB of 
JavaScript), which was cached by the web browser 
and is not optimized. Time and memory cost are 
measured for the 10 test pages with and without 
FSMesh framework and result for each case is the 
average of 10 tests for accuracy. 

Results of this experiment are shown in Figure 5. 
Upper line in Figure 5a shows the time required to 
render mashups in FSMesh with increasing number 
of nodes, while the lower line indicate the same case 
for normal rendering. Figure 5b shows the space cost 
for both situations with upper line representing 
FSMesh and lower line as normal rendering.  

It is clear to see that the time latency is 
comparably high for our framework and unlike 
native rendering, it increase dramatically as the 
number of nodes rise. The reason for this is mainly 
because html parsing is a time and space consuming 
task and web workers’ implementation in Firefox 
still has issues in trace jit optimization. To settle this 
single problem, it may suffice to replace the our 
prototype javascript implementation with native 
compiled version installed as a plugin in browser. 
Another way is to extend the functionality of web 
worker to support built-in parsing and DOM 
manipulating. But these approaches will contradict 
our main idea of non-modification to web browsers, 
as web browser should only be responsible for 
browsing the content of web pages. Thus, optimizing 
the performance of javascript engine will be an 

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

100



Table 2: FSMesh prevents scripts’ attack actions by execute in web workers. 

Attack Objective Injection codes No FSMesh FSMesh 

Execute arbitrary 
code in window 

<img src=JavaScript: alert('XSS') /> execute execute in WW 

<script src=http://xss.org/xss.js></script> execute execute in WW 

window.location=“http://malicious.com/”; redirect no redirect 

var style = document.defaultView. 
getComputedStyle (link, null); 

get style get style in WW 

<img src=nonexistent.gif onload=alert(1)>"; execute execute in WW 

window.prompt(“enter your password”); execute execute in WW 

document.write(“<script>alert(/XSS/)</script>”); execute execute in WW 

Confidential information 
leak 

document.write(“cookie is:”+document.cookie); output cookie output nothing 

xhr.open(“POST”,malicious_url); 
xhr.send(document.cookie); 

post cookie to 
malurl 

action filtered 

Frame busting top.location=”http://malicious.com/”; redirect No redirect 

Content integrity 
violation 

var elm=document.getElementById 
(“some_id_in_main_page”); 

get element get element in WW 

var elems=document.getElementsByTagName(“a”); get elements get elements in WW 

Clickjacking <iframe src=”some_url”></iframe> iframe created iframe filtered 

 

0

500

1000

1500

2000

2500

3000

10 100 200 300 400 500 600 700 800 900

nodes

ms

With FSMesh

Without FSMesh

        

60

80

100

120

140

160

180

10 100 200 300 400 500 600 700 800 900

nodes

MB

With FSMesh

Without FSMesh

 
                                                   (a) Time Latency                                                                   (b) Memory Cost 

Figure 5: Rendering overhead with increasing number of DOM nodes. 

important area for future work in order to make such 
framework practical and it is actually possible. With 
the issues in web workers' trace jit optimization 
settled, as well as cutting off useless functions in our 
framework, the performance of FSMESH will be 
comparable to native compiled version. 

5 RELATED WORKS 

PostMessage (Hickson and Hyatt, 2011) and 
sandbox attribute (Hickson and Hyatt, 2011) are 
extensions in HTML5 and augments the origin-based 
separation of iframes. The sandbox attribute imposes 
a set of restrictions, preventing scripts or browser 

plugins to run or preventing forms from being 
submitted.  

MashupOS(H. J. Wang et al., 2007) argments 
html tags to support additional trust levels within a 
mashup. OMash(S. Crites et al., 2008) represent web 
pages as objects, which have public interfaces for 
interaction and encapsulates the internal state of a 
web page, including associated resources such as 
cookies. 

The ADsafe subset(D. Crockford 2011) , 
Facebook JavaScript (FBJS) (Facebook 2011) and 
Caja(M. S. Miller et al., 2011), which are secure 
JavaSript subsets, are active protection mechanism, 
which applies a rewriting process to normal 
JavaScript by rewriting variable and function names 

FSMesh�-�Flexibly�Securing�Mashups�by�User�Defined�DOM�Environment

101



 

to a unique namespace. Although specific issues 
with ADSafe and FBJS(S. Maffeis and A. Taly, 
2009) in the security of JavaScript subset are 
discovered, they do not break the fundamental of the 
language. More importantly, the security of caja-
based JavaScript subsets has been able to prove to be 
capability safe(S. Maffeis et al., 2010).  

ConScript enables the specification and 
enforcement of fine-grained security policies for 
JavaScript in the browser(B. Livshits and L. 
Meyerovich, 2009). Self-protecting JavaScript(P. H. 
Phung, 2009) provides similar security features, but 
does not require specific support within the browser. 
Policy enforcement is achieved by wrapping 
security-sensitive JavaScript operations before 
normal script execution.  

AdJail(M. Ter Louw et al. 2010) offers a 
technique to mediate access to advertisements, which 
are embedded as a DOM object and executed in an 
iframe while interacting with hosting page. Our work 
is comparable with AdJail in the way of seperating 
untrusted content and interacting with hosting page, 
but we make use of the more secure “web workers” 
element in HTML5 considering the drawback of 
frames. They utilize the html parsing and script 
execution by native frame window with hooked 
DOM manipulating APIs. But we argue that such 
process is not capable of controlling every phase of 
html parsing and browser behavior, and also too 
coarse in the case of applying particular security 
rules. Instead, by creating a fully implemented fake 
DOM environment in the secure web workers, we 
have everything at our hand. Thus, any attacks 
targeting at frame or navigation will be nullified 
while may easily compromise their technique. 

6 CONCLUSIONS 

In this paper, we present FSMesh as a solution for 
the problem of confinement of third-party mashups 
to prevents attacks on confidentiality and integrity. 
The new safe framework which is based on HTML5 
technology creates a separated fake DOM 
environment in the background which allows 
developers to load untrusted content into the 
“sandbox” and apply their custom security policy in 
real window. The benefit of FSMesh is both in 
flexibility security policy enforcement and minimum 
modification of original content. Our approach offers 
developers an easy solution for confining untrusted 
content in main stream browsers without steep 
learning curve or installing new software. Although 
the current framework suffers big overhead 

performance problem, we believe that it can be 
overcome by optimization. We plan to make the idea 
possible by first inspecting the source code of web 
workers for browsers and make extension for it to 
support the function of FSMesh. 

REFERENCES 

I. Hickson and D. Hyatt (2011). Html 5 working draft 
cross document messaging. http://www.w3.org/TR/ 
html5/comms.html#crossDocumentMessages. 

I. Hickson and D. Hyatt (2011). Html 5 working draft - the 
sandbox attribute. http://www.w3.org/TR/html5/the-
iframe-element.html#attr-iframe-sandbox. 

H. J. Wang, X. Fan, J. Howell, and C. Jackson (2007). 
Protection and communication abstractions for web 
browsers in mashupos. ACM SIGOPS Operating 
Systems Review, 41(6):16. 

S. Crites, F. Hsu, and H. Chen (2008). Omash: Enabling 
secure web mashups via object abstractions. In 
Proceedings of the 15th ACM conference on 
Computer and communications   security, pages 99-
108. ACM. 

D. Crockford (2011). Adsafe. http://www.adsafe.org/. 
Facebook (2011). FBJS. http://developers.facebook.com/ 

docs/fbjs/. 
M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay 

(2008). Caja: Safe active content in sanitized 
javascript. http://google-caja.googlecode.com/files/ 
caja-spec-2008-06-07.pdf. 

S. Maffeis and A. Taly (2009). Language-based isolation 
of untrusted javascript. In 22nd IEEE Computer 
Security Foundations Symposium, pages 77-91. 

S. Maffeis, J. C. Mitchell, and A. Taly (2010). Object 
capabilities and isolation of untrusted web 
applications. In Proceedings of IEEE Security and 
Privacy'10. IEEE. 

B. Livshits and L. Meyerovich (2009). Conscript: 
Specifying and enforcing fine-grained security policies 
for javascript in the browser. Technical report, 
Microsoft Research. 

P. H. Phung, D. Sands, and A. Chudnov (2009). 
Lightweight self-protecting javascript. In Proceedings 
of the 4th International Symposium on Information, 
Computer, and Communications Security, pages 47-
60. 

M. Ter Louw, K. T. Ganesh, and V. N. Venkatakrishnan 
(2010). Adjail: Practical enforcement of confidentiality 
and integrity policies on web advertisements. In 19th 
USENIX Security Symposium. 

John Resig (2011). Envjs – Bring the browser to the 
server. http://www.envjs.com/. 

Mike Ter Louw and V. N. Venkatakrishnan (2009). 
Blueprint: Robust prevention of cross-site scripting 
attacks for existing browsers. In IEEE Symposium on 
Security and Privacy, Oakland, CA, USA. 

Ian Hickson (2011). Web Workers.http://dev.w3.org/ 
html5/workers/. July 2011 

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

102


