
DECOUPLING CLOUD APPLICATIONS FROM THE SOURCE
A Framework for Developing Cloud Agnostic Software

Joaquín Guillén1, Javier Miranda2 and Juan Manuel Murillo2
1GloIn, Calle Azorín 2, Cáceres, Spain

2Department of Information Technology and Telematic Systems Engineering, University of Extremadura, Cáceres, Spain

Keywords: Cloud Computing, Utility Computing, Cloud Lock-in, Framework, Decoupled Cloud Applications.

Abstract: Cloud computing and the utility computing model have aroused the interest of multiple vendors to provide
their own public cloud services. Each vendor provides different services and establishes a series of
restrictions for all of the applications deployed within its infrastructure, which results in cloud applications
being modeled and developed for specific cloud environments. This leads to a tight coupling of applications
to the cloud in which they are deployed, thus complicating their migration to other clouds. In this paper a
different approach for developing cloud applications is proposed, based on the separation of cloud related
metadata from the source code that comprises an application deployed in a cloud. Separating metadata
related to how services are provided by the application and how it consumes cloud specific and remote
services will allow developers to be oblivious as to which cloud the application is being developed for. This
approach may be used both for developing new cloud applications as well as for migrating legacy software
to the cloud.

1 INTRODUCTION

Cloud computing has evolved considerably during
the past years into an alternative for many
companies as a means of hosting and maintaining
their enterprise applications (Wang et al., 2010).
Most public cloud providers follow a utility
computing business model which allows cloud users
to use Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) or Software as a Service (SaaS)
services that are provided on a pay-as-you-go basis
(Armbrust et al., 2009). The technical and financial
models adopted by cloud computing have awakened
the interest of many companies that have seen in
cloud computing an alternative to maintaining
private datacentres and a means of reducing costs.
Clouds allow companies to externalise their system
maintenance processes as well as providing them
with a scalable solution regarding the computing
resources they may require in any given moment and
the costs of using these resources.

An increasing demand for cloud services has
urged companies such as Amazon (Amazon, 2011),
Google (Google, 2011), Microsoft (Microsoft, 2011)
and IBM (IBM, 2011) to release their own public
clouds. The existent clouds allow their users to

deploy applications based on a series of services and
requirements that are independently defined by each
cloud provider (Maximilien et al., 2009). As a result
of this, applications developed for the cloud are
tightly coupled to the cloud infrastructure or
platform for which they have been developed (Tsai
et al., 2010).

Having to develop applications that are tightly
coupled to a particular cloud presents a problem for
companies. Lower service costs, better SLAs or even
customer demands may lead a company to consider
porting their cloud applications from one cloud to
another. In most cases this will require redesigning
and redeveloping the software in order to adjust it to
the targeted cloud’s requirements (Tsai et al., 2010).
Considering that the heterogeneous cloud model
provided by the industry is accompanied by the
previously mentioned restrictions, we feel that
additional tools are required for building cloud
applications.

This paper proposes an approach for building
applications that are loosely coupled to clouds. It
proposes a framework that allows software to be
developed without being conditioned by the inherent
requirements and limitations of the cloud in which
the application will be hosted. Information about

70 Guillén J., Miranda J. and Manuel Murillo J..
DECOUPLING CLOUD APPLICATIONS FROM THE SOURCE - A Framework for Developing Cloud Agnostic Software.
DOI: 10.5220/0003901700700075
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 70-75
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

how applications access both the cloud’s services as
well as services provided by external applications is
separated from the source code and managed by the
framework. The adoption of this software
development framework for cloud applications will
not only be intended for building new applications;
legacy software may also be migrated to the cloud
without having to redevelop most of its components.

The paper is organized as follows: Section 2
identifies several concerns that motivate our
proposal. Section 3 describes our proposal; in this
section we present a model containing cloud specific
metadata that must be managed separately from
cloud applications’ source code. Section 4 provides
information about the most relevant work related
with our proposal. Finally Section 5 gathers our
conclusions and the limitations that our work has,
this way presenting future work that will have to be
done.

2 MOTIVATION

Cloud computing service providers for IaaS and
PaaS type clouds declare a series of services and
restrictions aimed towards software developed for
their architecture. By providing developers with
tools and APIs that are integrated into each cloud’s
specific development process, cloud vendors
guarantee that software that is fully compliant with
their cloud’s requirements is built: Google App
Engine (Google, 2011), Amazon Web Services
(Amazon, 2011) and Microsoft Azure (Microsoft,
2011) are clear examples of this. They all provide
tools and SDKs for developers to be capable of
creating software for their clouds (Zhang, 2010). By
using these tools applications will be provided with
cloud specific libraries used for invoking cloud
specific services. This approach presents two main
inconveniences:

 Cloud specific service invocations will have
been hard coded into the software.

 Direct dependencies will be created between
the developed application’s classes and those
provided by the SDKs.

This creates a strong coupling between the software
and the underlying architecture which will prevent
applications from being migrated to different clouds.
Consequently a problem arises related to how
applications interact with their underlying
architecture as well as with remote clouds (Knorr et
al., 2008; Armbrust et al., 2009).

In most cases, cloud applications will have to
interact with other applications that may be hosted in

different clouds. In such cases the remote services
will be accessed in a different manner, depending on
the cloud in which they are hosted, i.e. resources
may be made available via SOAP, REST,
publish/subscribe messaging, etc. This type of
restriction introduces several problems in the
process of developing software for the cloud:

 Applications have to provide their services
based on the technological restraints of the
cloud environment in which they are hosted.

 Applications have to consciously publish their
services based on the technological restraints
of the cloud environment in which they are
hosted. For example, if the cloud only allows
SOAP services developers will have to code a
SOAP service.

 Applications have to consciously consume
services based on the technology in which
they are provided. For example, if the service
is provided as a SOAP service developers will
have to code a SOAP client.

 Applications will only be capable of
consuming services that comply with the set
of service types supported by the cloud in
which they reside.

Considering that companies may choose to
migrate their software from one cloud to another
based on customer demands, cost reduction purposes
and SLAs (Buyya et al., 2008), these limitations
must be treated cautiously. Under these
circumstances porting an application to a new cloud
will not only require redeveloping that application, it
may also require redeveloping all of its dependant
applications. This problem may be aggravated if the
application has to be divided into components that
are deployed in different cloud platforms. In this
case developers will have to integrate each
component into its correspondent cloud as well as to
redesign each individual component defining it as a
collection of service providers and consumers.

The motivations gathered in this section lead us
to consider that developing software for the cloud
must be complemented with a series of vendor
independent tools. These tools must allow
developers to decouple their software from specific
clouds, hence relieving the lock-in problem that
cloud users are exposed to (Chow et al., 2009).

3 APPROACH

As we mentioned previously, this paper proposes a
different approach for developing software for cloud
platforms aimed at decoupling the software from its

DECOUPLING�CLOUD�APPLICATIONS�FROM�THE�SOURCE�-�A�Framework�for�Developing�Cloud�Agnostic
Software

71

underlying stack. A cloud development framework
is presented as a means of attaching cloud agnostic
applications to specific cloud platforms. The
framework has been conceived based on a series of
principles that are commonly used in software
engineering for developing quality software. These
principles are enumerated in the following points:

 Inversion of control (IoC): this architectural
principle is an inherent feature of most
software development frameworks. It provides
frameworks with a means of controlling the
behaviour of applications in order to deal with
specific issues (Fowler, 2004).

 Dependency injection (DI): dependency
injection is a specific form of IoC, in which
objects use other objects in the system without
being aware of how they were created. Used
together with polymorphism it allows an
object to be unaware of the exact behaviour of
the object it is using (Fowler, 2004).

 Obliviousness: the obliviousness principle is
a consequence of using the two previous
principles; it allows developers to build
applications without having to consider
concerns that are taken care of by the
framework. This principle was originally
introduced in the scope of Aspect Oriented
Programming (Filman and Friedman, 2000).

 Service adapters: service adapters introduce
an intermediate layer between a service

consumer and a service that may be used for
many purposes such as data transformation.

The main idea behind our proposal is to separate
all of the dependencies between the developed
application and the cloud from the source code by
using the principles that we have enumerated. To do
so we have defined a data structure that will contain
information related to how each application will
interact with its underlying architecture as well as
with external applications hosted by other clouds.
We have chosen to represent this data structure as a
XSD diagram because it offers a simple way of
representing data that is not associated to a specific
programming language.

In Figure 1 we appreciate how an application
developed for the cloud will be defined as a
combination of service providers (cloud-provider
elements) and service consumers (cloud-consumer
elements). The following subsections explain how
the principles that we previously mentioned are
combined with this data structure in order to
decouple applications from specific cloud platforms.

3.1 Oblivious Service Providers

A cloud-provider element will allow the
framework’s inversion of control mechanism to
publish a service without it being hard coded into the
source code.

For each cloud-provider element a service will

Figure 1: Data structure for cloud related metadata.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

72

be published based on the class identified by the
class attribute. The technology in which the service
is provided, which must be supported by the cloud,
will depend on the value of the type attribute.
Publishing each different type of service will require
a different set of configuration parameters. This is
why a generic name-value configuration structure
has been chosen to configure each service.

By following this approach services can be
published without having to implement them in the
application’s source code. As a result applications
are further decoupled from the cloud in which they
are hosted.

3.2 Oblivious Service Consumers

Cloud applications will behave as service consumers
for two types of services: remote services and local
services. The latter may be provided by the cloud
infrastructure or by other applications hosted by the
same cloud. In order to avoid coupling the
application to its dependencies the proposed
framework allows developers to consume services
by injecting dependencies into class fields.

A cloud-consumer element will be used as part
of the cloud application’s metadata to configure the
services used by any class. Each cloud-consumer
element will have an id attribute, which identifies
the consumer in the framework, as well as a class
attribute, which will be used to associate the
consumer to a specific class of the application.
Additionally a sequence of field elements will be
declared as part of the cloud consumer which will
define the service clients that will be injected into
different class fields. Each field element will have a
name attribute, containing the name of the field in
which a service client will be injected, a type
attribute, indicating the type of service that will be
consumed by the client, i.e. SOAP, REST, CORBA,
DDS, and a class attribute containing the class name
of the instance that is being injected into the field.

3.3 Service Adapters

Service adapters are proposed as an additional
means for decoupling the developed software from
the underlying architecture as well as from other
consumed services.

Considering that the services and APIs exposed
by different cloud providers can be grouped into
different categories, i.e. security, persistence,
traceability, etc. We propose to provide adapters for
these services that will behave as service clients
injected into class fields. These adapters will be

configured in the same way as we explained in the
previous section. They will provide a common
interface for connecting an application to the
underlying cloud, but will however have specific
implementations for each cloud.

This approach will also be used to adapt
applications to local and remote services in those
cases in which data transformations or service
mappings have to be applied.

3.4 Legacy Software

Companies may choose to migrate an existent
enterprise application to one or several clouds. The
following steps will have to be taken to migrate
legacy software to the cloud:

 Identify cloud applications: the architect will
have to decide how the application will be
migrated to the cloud. He may decide to use a
single cloud or to migrate each tier or logical
component to a different cloud.

 Create independent projects: the legacy
software will have to be divided into separate
software projects, in which each project will
be hosted by a different cloud environment.

 Identify services provided by the
framework for each project: some of the
services consumed by the legacy software
may already be provided by the framework
(persistence, security, logging, etc.). In such
cases cloud-consumer elements will have to
be setup in order for the application to inject
these dependencies into the legacy software. If
the services offered by the framework cannot
easily be integrated into the legacy software, a
service adapter may be implemented.

 Identify service providers for each project:
each new cloud application will have to
provide a series of services. These services
will have to be identified and included as part
of the cloud application’s metadata following
the process explained in section 3.1.

 Identify service consumers for each project:
each new cloud application will consume a
series of services. The service consumers will
have to be identified and included as part of
the cloud application’s metadata, following
the process explained in section 3.2.

As a result of following these steps legacy
software can be migrated to one or several different
clouds. Following this approach will be a lot less
intrusive in the resultant code, since no
dependencies will be created towards a specific
cloud.

DECOUPLING�CLOUD�APPLICATIONS�FROM�THE�SOURCE�-�A�Framework�for�Developing�Cloud�Agnostic
Software

73

4 RELATED WORK

The lock-in problem that cloud developers are
exposed to when developing applications is a
recognised problem (Chow et al., 2009) that the
research community is trying to solve. The solutions
provided are commonly oriented towards modeling
applications for the cloud, or providing cloud
architectures that will allow applications to be
migrated between clouds. However, as far as we are
concerned, little work has been done to decouple the
final source code from the cloud’s infrastructure.

The work done in (Maximilien et al., 2009) is
probably the most related to our work. It proposes to
use a middleware that behaves as a cloud broker for
cloud clients. The middleware provides tools and
REST based APIs for deploying and consuming the
services exposed by each cloud; these are based on a
meta-model defined in the work as an abstract
representation of cloud functionalities. Applications
use the mechanisms provided by the middleware
APIs to invoke services that may be hosted in
different clouds. The goals of their work are similar
to ours, however the approach is different,
considering that intermediate management software
is placed between the applications and the clouds.
Additionally a tight dependency is created between
the applications and the middleware.

An approach for modeling cloud applications is
proposed by (Hamdaqa et al., 2011). In this work a
meta-model for cloud applications is defined which
is centralized in the definition of a cloud task as a
“composable unit, which consists of a set of actions
that utilize services to provide a specific
functionality”. The proposed meta-model is intended
to decouple the design process from specific cloud
platforms, however the approach does not cover
decoupling the source code from cloud platforms.
The proposal presented by (Frey et al., 2010) also
uses models; in this case the CloudMIG approach is
presented as a means of mapping models of existing
cloud environments to legacy software models and
transforming the result to cloud-specific code
through a series of iterations and result evaluations.
The source code generated by this proposal will be
tightly coupled to the cloud platform which it was
aimed at.

Another proposal that aims to allow clouds to
interact with each other is found in (Tsai et al.,
2010). In this case a Service Oriented Cloud
Architecture is proposed. The architecture
introduces an ontology mapping layer over the
services published by each individual cloud platform
as a means of masking the differences between each

individual cloud provider. Cloud brokers deploy
applications in one cloud or another depending on
the budget, SLAs and QoS requirements that are
negotiated with each provider. No restrictions are
made on how applications are developed; they may
still be tightly coupled to specific clouds and may be
developed with APIs provided by cloud providers.

All of these works allow developers to work
around the lock-in problem; they provide a series of
tools that make more flexible the process of
developing software for the cloud. However in all of
them developers continue to generate tightly coupled
software that cannot easily be migrated from one
platform to another or from cloud to non-cloud
environments.

5 CONCLUSION AND FUTURE
WORK

In this paper a cloud development framework has
been proposed that will allow developers to create
applications that are not tightly coupled to a specific
cloud. Cloud-related data about how the applications
use the SDKs and APIs provided by each vendor and
about how each application behaves as a service
provider and consumer, is separated from the source
code. As a result of this each application’s source
code is decoupled from its underlying architecture.

One of the main problems that companies have
to confront when it comes to deciding whether they
want to shift their business processes towards the
cloud is deciding whether the lock-in problem makes
it worth the while. Work is being carried out among
the research community to come up with solutions
for this problem; however the solutions provided
often propose changing the architectures used by
cloud providers or changing the software
development processes used by companies. These
types of solutions are not easily adopted by cloud
providers and users; in the first case because
providers are not interested in standardization, and
in the second case because users are not willing to
change their software development processes.

We believe that tools have to be provided in
order to make the cloud technology much more
accessible and flexible for providers and developers.
These tools should contribute to clarify the doubts
that many companies have regarding the cloud, and
allow them to rely on cloud computing as a viable
means of hosting their applications, thus allowing
cloud computing to exploit its full potential. This
was the idea that inspired us into writing this paper:
proposing a way of creating decoupled software for

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

74

the cloud without introducing any foreign elements
into the existent technology.

Future work involves extending the proposed
framework in order to manage QoS settings for each
cloud as well as enhancing the prototype of the
framework. Additionally we would like to
complement the framework with tools that will
allow developers to choose which cloud the software
will be deployed in and automatically generate a
cloud specific configuration, without having to
manually set the provider and consumer elements.
To do so we plan to use Model-Driven Software
Development to define a cloud meta-model that will
allow designers to model an application that will be
hosted in the cloud. The source code generated from
these models will contain a preconfigured cloud file
containing the application’s metadata. For those
cases in which applications are not created from
models, we plan to build a plugin for the Eclipse
IDE which will assist developers in the process of
configuring the application’s cloud-related metadata.

ACKNOWLEDGEMENTS

Spanish Ministry of Science and Innovation under
Project TIN2011-24278.
Junta de Extremadura, Fondos FEDER.

REFERENCES

Amazon (2011). Amazon Web Services, [Online],
Available: http://aws.amazon.com [14 Nov 2011].

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2009). Above the clouds: A berkeley
view of cloud computing. EECS Department, Univer-
sity of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28.

Buyya, R., Yeo, C. S., Venugopal, S. (2008). Market-
Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities.
2008 10th IEEE International Conference on High
Performance Computing and Communications, pages
5-13.

Chow, R., Golle, P., Jakobsson, M., Shi, Staddon, J.,
Masuoka, R., Molina, J. (2009). Controlling data in
the cloud: outsourcing computation without
outsourcing control. In Proceedings of the 2009 ACM
workshop on Cloud computing security, CCSW, pages
85-90.

Filman, R. E. & Friedman, D. P., 2000. Aspect-Oriented
Programming is Quantification and Obliviousness.
October, 2000(May), p.1-9.

Fowler, M., 2004. Inversion of Control Containers and the

Dependency Injection pattern. I Can, M(1), p.1-19.
Available: http://www.martinfowler.com/articles/injec
tion.html.

Frey, S., Hasselbring, W. (2010). Model-Based Migration
of Legacy Software Systems to Scalable and
Resource-Efficient Cloud-Based Applications: The
CloudMIG Approach. In Cloud Computing 2010:
Proceedings of the 1st International Conference on
Cloud Computing, GRIDs, and Virtualization, pages
155-158.

Google (2011). Google App Engine, [Online], Available:
http://code.google.com/appengine/ [14 Nov 2011].

Hamdaqa, M., Livogiannis, T., Tahvildari, L. (2011). A
Reference Model for Developing Cloud Applications.
In Proceedings of the 1st International Conference on
Cloud Computing and Services Science, pages 98-103.
SciTePress.

IBM (2011). IBM Smart Cloud Foundation, [Online],
Available: http:// www.ibm.com/cloud-computing/ [14
Nov 2011].

Knorr, E., Grumman, G. (2008). What cloud computing
really means [Online]. Available: http://www.info
world.com/d/cloud-computing/what-cloud-computing-
really-means-031.

Maximilien, E. M., Ranabahu, A., Engehausen, R.,
Anderson, L. C. (2009). Toward cloud-agnostic
middlewares. In OOPSLA09: 14th conference
companion on Object Oriented Programming Systems
Languages and Applications, pages 619–626.

Microsoft (2011). Microsoft’s Windows Azure, [Online],
Available: http://www.microsoft.com/windowsazure/
[14 Nov 2011].

Tsai, W., Sun, X., Balasooriya, J. (2010). Service-Oriented
Cloud Computing Architecture. In ITNG10 7th
International Conference on Information Technology:
New Generations, pages 684-689.

Wang, L., Laszewski, G., Younge, A., He, X., Kunze, M.,
Tao, J., and Fu, C. (2010). Cloud Computing: a
Perspective Study. New Generation Computing, 28(2),
pages 137-146.

Zhang, Q., Cheng, L., Boutaba, R. (2010). Cloud
computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications, 1(1),
pages 7-18.

DECOUPLING�CLOUD�APPLICATIONS�FROM�THE�SOURCE�-�A�Framework�for�Developing�Cloud�Agnostic
Software

75

