
SERVICE-BASED APPLICATION DEVELOPMENT ON THE CLOUD
State of the Art and Shortcomings Analysis∗

Dinh Khoa Nguyen, Yehia Taher, Mike P. Papazoglou and Willem-Jan van den Heuvel
European Research Institute in Service Science (ERISS), Tilburg, The Netherlands

Keywords: Cloud Application, SaaS, PaaS, IaaS, State-of-the-Art.

Abstract: Recently, Cloud Computing has become an emerging research topic in response to the shift from product-
oriented economy to service-oriented economy and the move from focusing on software/system development
to addressing business-IT alignment. From IT perspectives, there is a proliferation of methods for cloud
application development. Such methods have clearly shown considerable shortcomings to provide an efficient
solution to deal with major aspects related to cloud applications. One of these major aspects is the multi-
tenancy of the Software-as-a-Service (SaaS) components used to compose Service-Based Applications (SBAs)
on the cloud. Current SaaS offerings are often provided as monolithicone-size-fits-allsolutions and give little
or no opportunity for further customization. As a result, monolithic SaaS offerings are more likely to show
failure in meeting the business requirements of several consumers. In this paper, we analyze the state-of-
the-art of the standardization and methodology support for SBA development on the cloud, identify some
shortcomings, and point out the need of a novel approach for breaking down the monolithic stack of cloud
service offerings and providing an effective and flexible solution for SBA designers to select, customize, and
aggregate cloud service offerings coming from different providers (Nguyen et al., 2011).

1 INTRODUCTION

Service-Oriented-Architecture(SOA) (Papazoglou
and van den Heuvel, 2006) is a philosophy of design
that can be informally described as “the software
equivalent of Lego bricks” where a collection of
mix-and-match units (called “services”) - each per-
forming a well-defined task - can reside on different
machines possibly under the control of a different
service provider, and are ready to be used whenever
needed. Enterprises typically use a single software
service to accomplish a specific business task, such
as billing or inventory control or they may compose
several software services to create a value-added
distributed service-based application (SBA) such as
customized ordering, customer support, procurement,
and logistical support.

However, a serious limitation of SOA is that it
does not make any assumptions regarding service de-
ployment and it leaves it up to the discretion of the
service developer to make this deployment choice,

∗The research leading to this result has received funding
from the Dutch Jacquard program on Software Engineering
Research via contract 638.001.206 SAPIENSA; and the Eu-
ropean Union’s Seventh Framework Programme FP7/2007-
2013 (4CaaSt) under grant agreement no 258862.

which is a daunting task and often leads to failure.
A dangerous “difficult-to-customize, one-size-fits-all”
philosophy permeates SOA development leading to
brittle implementations where once an application is
deployed it is bound to a particular infrastructure. In
addition, traditional SOA software development con-
centrates on a kind of “big design upfront” where the
prevailing belief is that it is possible to gather all of a
developer’s or customer’s requirements, upfront, prior
to coding a software solution. So despite its promises
SOA has so far failed to deliver promised benefits ex-
cept in rare situations leading yet again to a software
development crisis.

To address these serious shortcomings it is normal
to turn our attention toCloud Computingas it aim
to provide both the economies of scale of a shared
infrastructure as well as a flexible delivery model
that naturally complements the service orientation of
SOA. Cloud computing is a computing model for en-
abling convenient and on-demand network access to
a shared pool of configurable and often virtualised
computing resources (e.g., networks, servers, storage,
middleware and applications as services) that can be
rapidly provisioned and released with minimal man-
agement effort or service provider interaction (Arm-
brust et al., 2009). Cloud capabilities are defined and

395Nguyen D., Taher Y., P. Papazoglou M. and van den Heuvel W..
SERVICE-BASED APPLICATION DEVELOPMENT ON THE CLOUD - State of the Art and Shortcomings Analysis.
DOI: 10.5220/0003902103950400
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 395-400
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



provided as services where users of cloud-related ser-
vices are able to focus on what the service provides
them rather than how the services are implemented or
hosted. This begins to explain why the service orien-
tation provided by SOA needs the “cloud” as a natu-
ral deployment medium. In fact, the two concepts can
be paired to support service development and deploy-
ment and their merger can provide complete services-
based solutions. Cloud computing is typically divided
into three levels of hosting service offerings: Software
as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). These levels sup-
port the virtualisation and management of different
levels of the computing solution stack.

Having explained the benefit of our “SOA meets
cloud” vision, our contribution in this paper is an ex-
tensive state-of-the-art analysis on the current stan-
dardization and methodology support for SBA devel-
opment on the cloud, which then leads to identifying
some shortcomings of the current support. The rest of
the paper is organized as follows. Section 2 presents
an extensive state-of-the-art evaluation. Section 3
identifies shortcomings of existing support, and then
highlights some research questions and challenges de-
rived from the evaluation of the state-of-the-art. Fi-
nally, Section 4 concludes the paper.

2 STATE-OF-THE-ART
EVALUATION

Current SBA application development on the cloud
usually leads to a vendor lock-in approach, where
the constituting monolithic SaaS components are pre-
dominantly tethered to proprietary platforms and in-
frastructure of a cloud vendor and thus provide lit-
tle or no room for customization, extension and com-
position. That is because SBA developments do not
usually put focus on the deployment environment of
the constituent SaaS components. This limitation can
be addressed by breaking the monolithic SaaS offer-
ings into cloud services (XaaSs) across cloud com-
puting layers, i.e. SaaS, PaaS and IaaS. Following
the SOA principles and techniques, SBA develop-
ers can reuse and combine distributed cross-layered
XaaS functions. A SOA-enabling SBA development
on the cloud results in an amalgamation of on-premise
and external XaaSs that promotes the reusability and
composability of XaaSs across SaaS providers and
PaaS/IaaS cloud vendors. However, cloud comput-
ing is a relatively new research area and only a few
existing work supports our envisioned SBA develop-
ment methodology. Section 2.1 reviews and evaluates
the existing approaches towards a standardized XaaS

representation for supporting the platform-agnostic
vendor-independent SBA development on the cloud.
From the methodological point of view, Section 2.2
presents the related methodologies to develop SBAs
independent from the underlying cloud platform and
infrastructure.

2.1 Standardization Support for SBA
Development on the Cloud

While developing SBA on the cloud, the absence of
standardization across cloud vendors, results in un-
necessary complexity to obtain interoperability, high
switching costs and potential vendor lock-in. The
main concerns of cloud-based SBA development are
how to deal with the standardization and interoper-
ability between different cloud platforms (Tsai et al.,
2010), since cloud computing promises to allow de-
velopers to design and develop elastic and inexpen-
sive applications independent of platforms (Armbrust
et al., 2009). However, current cloud vendors have
different application models, many of which are pro-
prietary, vertically integrated cloud stacks that limit
the customizations of the underlying platform and in-
frastructure resources. There is currently little ef-
fort in supporting tools, techniques, procedures or
standard data formats or service interfaces that could
guarantee data, application and service portability.
In (Monteiro et al., 2011) the vendor lock-in problem
that prevents the interchangeability and interoperabil-
ity between the SaaSs has been addressed and subse-
quently a state-of-the-art in both standardization ef-
forts and on-going projects has been presented. Doc-
ument (Vambenepe, 2009) points out that concerning
the vendor lock-in there are still many unsolved com-
patibility issues beside the API compatibility, such as
the data format, billing, metering, error handling, log-
ging, or cloud management and administration. In
general, the current situation makes it difficult for
SBA developers to migrate data and service compo-
nents from one cloud vendor to another or back to an
in-house IT environment.

The ability to manipulate, integrate and customize
XaaS across different cloud providers for SaaS de-
velopment has been studied in (Keahey et al., 2009)
that has IaaS, application and deployment orchestra-
tors but falls short of proposing a solution for the
problem at hand. The DMTF has published stan-
dards such as the Open Virtualization Format (OVF)2

to provide an open packaging and distribution for-
mat for virtual machines, and the Virtualization Man-
agement (VMAN)3 specifications that address the

2OVF: http://www.dmtf.org/standards/ovf
3VMAN: http://dmtf.org/standards/vman

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

396



management lifecycle of a virtual environment to
help promote interoperable cloud computing service.
The OVF is considered nowadays as a standardized
means for describing single or multiple virtual ma-
chines. Using the OVF allows for specifying either
the technical offering of an IaaS provider or the re-
source requirements of a SaaS or PaaS provider. Sim-
ilar to OVF-based approaches, the Solution Deploy-
ment Descriptor (SDD) template4 proposed by OA-
SIS defines an XML schema to describe the charac-
teristics of an installable unit (IU) of software that
are relevant for core aspects of its deployment, con-
figuration, and maintenance. The benefits of this
work include: the ability to describe software solu-
tion packages for both single and multi-platform het-
erogeneous environments, the ability to describe soft-
ware solution packages independent of the software
installation technology or supplier, and the ability to
provide information necessary to permit full lifecy-
cle maintenance of software solutions. The work
in (Bernstein et al., 2009) targets the interoperability
between the federated clouds by providing a collec-
tion of proposals for “Inter-cloud” protocols and for-
mats. However, this work is still in the early stage
and targets only the interoperability between the data
centers, i.e. only on the infrastructure level.To unlock
the vendor lock-in problem concerning the APIs, the
Open Grid Forum’s Open Cloud Computing Interface
(OCCI) working group has been developing a uniform
API specification for remote management of Cloud
Computing infrastructure5. This will allow for the
development of interoperable tools for common tasks
including deployment, autonomic scaling and moni-
toring. The scope of the specification will be all high-
level functionality required for the life-cycle manage-
ment of virtual machines (or workloads) running on
virtualization technologies (or containers) supporting
service elasticity.

Approaching the cloud application development
from a different perspective, the Model Driven Engi-
neering (MDE) research community has realized the
benefit of combining MDE techniques with SaaS de-
velopment and suggested combining MDE with cloud
computing (Brunelière et al., 2010). As the arti-
cle describes, there is no consensus on the models,
languages, model transformations and software pro-
cesses for the model-driven development of cloud-
based SaaSs. Following the MDE vision, (Hamdaqa
et al., 2011) proposes a meta-model that allows cloud
users to design applications independent of any plat-
form and build inexpensive elastic applications. From

4SDD 1.0: http://docs.oasis-open.org/sdd/v1.0/os/
dd-spec-v1.0-os.html

5OCCI: http://occi-wg.org

their point of view, a SaaS application should avoid
the vendor lock-in problem concerning the underly-
ing platforms. This meta-model allows for describing
the capabilities, technical interfaces, and configura-
tion data for the virtualized infrastructure resources
of the cloud application service. Similarly, (Cai et al.,
2009) presents a different customer-centric cloud ser-
vice model. This model concentrates on aspects such
as the customer subscription, capability, billing, etc.,
yet does not cover other technical aspects of the cloud
services including the technical interfaces of the cloud
services, the elasticity, the required deployment en-
vironment, etc. Other existing models, e.g. (Thrash,
2010), also lack a formal structure and dentitions (re-
ducing their usability and reusability) or are not ex-
plicit and assume tacit knowledge.

In practice, an attempt to provide a template-based
approach for using cloud services is available from
Amazon through their AWS CloudFormation offer-
ing 6. This template provides AWS developers with
the ability to specify a collection of AWS cloud re-
sources and the provisioning of these resources in an
orderly and predictable fashion. Nevertheless, this
template works only for AWS cloud platform and in-
frastructure resources and thus lacks interoperability.

In summary, existing approaches mostly target the
infrastructure levels and covers only certain perspec-
tive of standardizations for cloud services, e.g. de-
scription format, APIs, protocol, definition models,
protocols, SLA, etc. The state of the art analysis has
shown that there is a lack of a uniform representation
for cross-layered XaaSs that unifies all views on an
XaaS, e.g. from the customer view on the APIs and
SLA, to the developers that are responsible for de-
ploying and maintaining that XaaS through the cloud.

2.2 Cloud-based SBA Development
Methodologies

Apart from the standardization supports for the inter-
operability and portability between cloud vendors, we
are also interested in the existing methodologies that
provide guidelines for developing composite SBA ap-
plications on the cloud, some of which are developed
based on the XaaS description standards mentioned in
the previous section 2.1.

La et al. propose in (La and Kim, 2009) a system-
atic process for developing high-quality cloud SaaSs,
taking into considerations the key design criteria for
SaaSs and the essential commonality/variability anal-
ysis to maximize the reusability. Although this ap-
proach claims to develop cloud-based SaaSs, it does

6AWS CloudFormation, http://aws.amazon.com/de/
cloudformation/

SERVICE-BASED�APPLICATION�DEVELOPMENT�ON�THE�CLOUD�-�State�of�the�Art�and�Shortcomings�Analysis

397



not discuss about the cloud support for the deploy-
ment environment of the SaaSs. Maximilien et al. in-
troduces in (Maximilien et al., 2009) a cloud-agnostic
middleware that can sit on top of many PaaS/IaaS of-
ferings and enable a platform-agnostic SaaS develop-
ment. They provide a meta-model for describing SaaS
applications and their needed cloud resources, and
APIs and middleware services for the deployment.
The connection between SOA and cloud computing
has been established by the Service-Oriented Cloud
Computing Architecture (SOCCA) proposed in (Tsai
et al., 2010). Using the SOCCA, developers can build
SBA applications following an integrated SOA frame-
work. Cloud platform and infrastructure resources
will be discovered by a Cloud Broker Layer and a
Cloud Ontology Mapping Layer for deploying the
SaaS components. The multi-tenancy feature of cloud
computing is also supported by SOCCA where mul-
tiple instances of SaaS applications or components
can be provided to multiple tenants. Although the
SOCCA is a useful reference architecture for develop-
ing cloud-based SBAs following the SOA paradigm,
a lot of supports are lacking here including a concrete
definition language for the SaaS components, a map-
ping approach for finding necessary cloud resources,
and the ability to specify and resolve end-to-end con-
straints of SaaS applications that might affect the un-
derlying cloud resources.

The Cafe application and component templates
in (Mietzner, 2010) are a relevant approach for cloud-
based SaaS development that provides an ad-hoc
composition technique for application components
and cloud resources following the Service Component
Architecture (SCA). However, this approach requires
SaaS developers to possess deep technical knowledge
of the application architecture and the physical cloud
deployment environment to select and compose the
right application components and cloud resources.

(Galán et al., 2009) uses the OVF to define a
service definition language for deploying complex
SaaS applications in federated IaaS clouds. These
SaaS applications consist of a collection of virtual
machines (VMs) with several configuration parame-
ters (e.g., hostnames, IP addresses and other applica-
tion specific details) for software components (e.g.,
web/application servers, database, operating system)
running on the VMs. The service definition language
enables also the specification of SaaSs’ Key Perfor-
mance Indicators (KPIs) and the elasticity rules that
prescribe what to do in case the KPIs do not meet the
expected levels. (Chapman et al., 2010) extends this
language into a service definition manifest to serve
as a contract between a SaaS provider and the in-
frastructure provider. In this contract, architectural

constraints and invariants regarding the infrastructure
resource provisioning for an application service are
specified and can be used for on-demand cloud in-
frastructure provisioning at run-time. KPIs moni-
toring mechanisms are also specified in the contract
for ensuring the timely scaling of the provisioned
infrastructure resources based on the specified elas-
ticity rules. Nevertheless, the existing work related
to the OVF targets the infrastructure level only, i.e.,
they allow the specification of architecture constraints
for deploying the applications directly on (federated)
data centres but do not cover the holistic picture of
a top-down development of SBAs on the cloud that
can guide developers in selecting, resolving and com-
posing cross-layered XaaS offerings. Using the ser-
vice definition manifest to specify the structure of a
SaaS application, i.e. the SaaS components and their
required Virtual Execution Environments (VEE), the
Reservoir architecture (Rochwerger and et al., 2009)
can automatically provision the VEE instances that
can run simultaneously without conflict on a federated
cloud infrastructure of multiple providers. KPI moni-
toring mechanisms and elasticity rules in the manifest
act as a contract that guarantees the required Service
Level Agreement (SLA) between the SaaS provider
and the Reservoir architecture.

Model-driven approaches are also employed for
the purpose of automating the deployment of com-
plex IaaS services on cloud infrastructure. For in-
stance, (Konstantinou et al., 2009) propose a virtual
appliance model, which treats virtual images as build-
ing blocks for IaaS composite solutions. Virtual ap-
pliances are composed into virtual solution model and
deployment time requirements are then determined in
a cloud-independent manner using a parameterized
deployment plan. In a similar way, (Chieu et al.,
2010) describes a solution-based provisioning mech-
anism using composite appliances to automate the de-
ployment of complex application services on a cloud
infrastructure.

In summary, the state of the art analysis has shown
that there is a need for a methodology that guides
cloud-based SBA developers to make informed de-
cisions for selecting, customizing, and composing
cross-layered XaaS offerings from multiple providers.
The methodology should obey the SOA principles and
techniques that promote the reusability, loose cou-
pling and composability of the underlying XaaSs.

3 SHORTCOMINGS OF
EXISTING APPROACHES

This section summarizes the shortcomings we iden-

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

398



Table 1: Summary of existing gaps and innovations needed to address them.

Shortcomings Research Challenges

RQ-1: Lack Of uniform representation of cross-

layered XaaSs

The state of the art analysis has shown that there is a lack of auniform representation for cross-layered

XaaSs that unifies all views on an XaaS, e.g. from the customerview on the APIs and SLA, to the

developers that are responsible for deploying and maintaining the XaaS through the cloud.

RQ-2: Lack of considering the appealing charac-

teristics of the cloud as a deployment environment

for the SaaSs

Although cloud-based development may benefit from adoptingthe SOA principles and techniques by

following the SOA developments methodologies, none of these methodologies consider the appealing

characteristics of the cloud as a deployment environment for the SaaSs.

RQ-3: Lack of a concrete definition language for

SaaS applications

Although there are some useful reference architectures fordeveloping cloud-based SaaSs following

the SOA paradigm, a lot of supports are lacking here including a concrete definition language for the

SaaS applications and components, a mapping approach for finding necessary cloud resources, and

the ability to specify and resolve end-to-end constraints of SaaS applications that might affect the

underlying cloud resources.

RQ-4: Lack of controlled support and optimisation

for end-to-end services

The cross-organisational nature of service systems and thepotential composition of services across

organisational boundaries requires that services are appropriately designed and effectively managed

end-to-end for operational and performance effectiveness. In service eco-systems end-to-end services

should be configured or re-configured according to QoS parameters, service preferences and require-

ments declared either by software developer or contained inthe terms of an agreed upon SLA.

RQ-5: Lack of matching service design options

with infrastructure

The volatile requirements of service-based applications place demands that the execution infrastructure

be appropriately configured in response to application characteristics, end-to-end QoS requirements,

or when further functional optimisation is required. Research is required on virtualisation techniques

for cross correlating service components at the application-level with the most appropriate platforms

and infrastructure.

RQ-6: Lack of achieving scalability in service eco-

systems

Smart Internet service eco-systems require a scalable infrastructure that can be scaled up or down based

on application demand, levels of QoS and availability of resources, dynamically evolving workloads,

while maintaining critical architectural constraints.

RQ-7: Lack of a unified service/cloud service en-

gineering methodology

This item is the common denominator of all previous open research problems. There is a clear neces-

sity for modern service engineering approaches to infuse cloud computing concepts and functionality

into service-oriented systems. In this way it is possible totake a unified holistic view of the complete

service-system solution lifecycle that causally connectshigh-level decisions at the application-level

down to the level of resource virtualisation and provisioning of physical resources.

tified while evaluating and comparing the different
approaches in the sate-of-the-art. Most of the re-
search activities contributing to the state-of-the-art
described in the previous section concentrate on plat-
form/infrastructure resource provisioning and attempt
to combine and optimize interrelated PaaS and IaaS
resources. However, we observe little research work
on the cloud application (SaaS) level that supports the
development of SBAs by utilizing distributed SaaS
components that are deployed on a federation of elas-
tic and heterogeneous PaaS and IaaS resources. Cur-
rent approaches for cloud-based SBA development
cannot meet this expectation and usually leads to
a vendor lock-in approach, where the constituting
monolithic SaaS components are predominantly teth-
ered to proprietary platforms and infrastructure of a
cloud vendor. This approach fails to follow the true
spirit of SOA that promotes the reuse of loosely cou-
pled services, thus makes it difficult for SBA develop-
ers to migrate the SaaS components from one cloud
vendor to another or back to an in-house IT environ-
ment.

Moreover, existing approaches hardly address
end-to-end non-functional requirements, and are not
closed-feedback loop, thus partitioning service sys-

tems that involve many providers thereby increasing
mean time to resolution of errors. For these method-
ologies scalability, optimal use of resources and con-
tinuous improvement of services are hardly consid-
ered. Further, they do not address the nature of the
execution environment that automates the end-to-end
services and their subsequent operation. None of the
current methodologies considers the appealing char-
acteristics of the cloud as a deployment environment.
This is where our approach differs by addressing the
challenges mentioned in Table 1. This table identi-
fies and summarizes open areas of research priority,
called research questions (RQs), with large potential
for major breakthrough.

4 CONCLUSIONS

This paper provided a survey on existing support for
SBA development on the cloud. As a summary, the
survey has shown that the current cloud solutions are
mainly fraught with the following shortcomings:
• They introduce a monolithic SaaS/PaaS/IaaS

stack architecture where a one-size-fits-all men-
tality prevails. They do not allow developers to

SERVICE-BASED�APPLICATION�DEVELOPMENT�ON�THE�CLOUD�-�State�of�the�Art�and�Shortcomings�Analysis

399



mix and match functionality and services from
multiple application, platform and infrastructure
providers and configure it dynamically to address
application needs.

• They introduce rigid service orchestration prac-
tices tied to a specific resource/infrastructure con-
figuration for the cloud services at the SaaS level.

The above points hamper the (re)-configuration and
customization of cloud applications on demand to
reflect evolving inter-organizational collaborations.
There is clearly a need for a SBA development
methodology that allows to mash up services from
a variety of cloud providers to create what has been
termed a cloud ecosystem. This type of integration
allows the tailoring of services to specific business
needs using a mixture of SaaS, PaaS and IaaS. In
this paper, we have also identified in Table 1 the re-
search questions and challenges as a roadmap for fu-
ture research towards such a novel SBA development
methodology.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A.,
Rabkin, A., and Zaharia, M. (2009). Above the
clouds: A berkeley view of cloud computing. Tech-
nical report.

Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., and
Morrow, M. (2009). Blueprint for the intercloud - pro-
tocols and formats for cloud computing interoperabil-
ity. In Proceedings of the 4th ICIW’09. IEEE.

Brunelière, H., Cabot, J., and Frédéric, J. (2010). Combin-
ing model-driven engineering and cloud computing.
In Proceedings of the 4th edition of Modeling, Design,
and Analysis for the Service Cloud.

Cai, H., Zhang, K., Wang, M., Li, J., Sun, L., and Mao, X.
(2009). Customer centric cloud service model and a
case study on commerce as a service. InProceedings
of the IEEE CLOUD’09.

Chapman, C., Emmerich, W., Márquez, F. G., Clayman, S.,
and Galis, A. (2010). Software architecture definition
for on-demand cloud provisioning. InProceedings of
the 19th ACM HPDC ’10, pages 61–72, NY, USA.
ACM.

Chieu, T., Mohindra, A., Karve, A., and Segal, A. (2010).
Solution-based deployment of complex application
services on a cloud. InProceedings of the IEEE
SOLI’10.

Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I., Gil, V.,
and Vaquero, L. M. (2009). Service specification in
cloud environments based on extensions to open stan-
dards. InProceedings of the 4th COMSWARE ’09,
pages 19:1–19:12, NY, USA. ACM.

Hamdaqa, M., Livogiannis, T., and Tahvildari, L. (2011). A
reference model for developing cloud applications. In
In proceedings of CLOSER’11.

Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J.
(2009). Sky computing.IEEE Internet Computing,
13(5):43–51.

Konstantinou, A. V., Eilam, T., Kalantar, M., Totok, A. A.,
Arnold, W., and Snible, E. (2009). An architecture for
virtual solution composition and deployment in infras-
tructure clouds. InProceedings of the 3rd workshop
VTDC ’09, pages 9–18, NY, USA. ACM.

La, H. J. and Kim, S. D. (2009). A systematic process for
developing high quality saas cloud services. InPro-
ceedings of the 1st CloudCom ’09, pages 278–289,
Berlin, Heidelberg. Springer-Verlag.

Maximilien, E. M., Ranabahu, A., Engehausen, R., and An-
derson, L. C. (2009). Toward cloud-agnostic mid-
dlewares. InProceeding of the 24th ACM SIGPLAN
OOPSLA ’09, pages 619–626, NY, USA. ACM.

Mietzner, R. (2010).A method and implementation to define
and provision variable composite applications, and its
usage in cloud computing. Dissertation, Universität
Stuttgart, Germany.

Monteiro, A., Pinto, J., Teixeira, C., and Batista, T. (2011).
Cloud interchangeability - redefining expectations. In
Proceedings of CLOSER’11.

Nguyen, D. K., Lelli, F., Taher, Y., Parkin, M., Papazoglou,
M. P., and van den Heuvel, W.-J. (2011). Blueprint
template support for engineering cloud-based ser-
vices. InProceedings of ServiceWave’11, pages 26–
37.

Papazoglou, M. P. and van den Heuvel, W.-J. (2006).
Service-oriented design and development methodol-
ogy. Int. J. Web Eng. Technol., 2(4):412–442.

Rochwerger, B. and et al. (2009). The reservoir model and
architecture for open federated cloud computing.IBM
Journal of Research and Development, 53(4).

Thrash, R. (2010). Building a cloud computing specifica-
tion: fundamental engineering for optimizing cloud
computing initialtives. CSC Whitepaper.

Tsai, W.-T., Sun, X., and Balasooriya, J. (2010). Service-
oriented cloud computing architecture. InProceed-
ings of the 7th ITNG’10, pages 684–689. Ieee.

Vambenepe, W. (2009). Reality check on cloud portability.
SD Times.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

400


