
GLOBAL SCHEDULING FOR THE EMBEDDED VIRTUALIZATION
SYSTEM IN THE MULTI-CORE PLATFORM

Tsung-Han Lin, Hitoshi Mitake, Yuki Kinebuchi and Tatsuo Nakajima
Department of Computer Science, Waseda University, Tokyo, Japan

Keywords: Virtualization, Scheduling, Embedded System, Operating System, Real-time System.

Abstract: In this paper, we are trying to address the global scheduling issues in the embedded multi-core virtualization
system. Virtualization system is widely being used in the embedded device nowadays, especially with the
multi-core platform also shown in the embedded system world. Global scheduling in the virtualization system
makes the real-time tasks in the GPOS (General Purpose Operating System) to have chance to be scheduled
against the tasks in the RTOS (Real-Time Operating System). We proposed using GPOS/RTOS mix scheduling
and VCPU migration to deal with global scheduling problem. Meanwhile, some issues like interrupt latency
in the GPOS and the priority inversion problem in the RTOS are also discovered while doing this research.
We would like to make more detail investigation about this issues to improve the quality of global scheduling
so we can construct a more ideal virtualization environment.

1 INTRODUCTION

Virtualization technique is originally used in the data
center or desktop environment to have multiple oper-
ating systems running on a single platform. System
consolidation cost can also be reduced by using this
technique. Famous works like VMWare1 and Virtul-
Box2 are all very mature systems.

Recently, it is been also widely used in the embed-
ded system platform ,such as L4 microkernel (Klein
et al., 2009). This development trend is also accel-
erated by the emerging of the multi-core platform in
the embedded system because extra computing power
can be used.

Installing a RTOS alongside with a GPOS in the
embedded virtualization system is a common setup
because some real-time jobs like radio transmission
can use RTOS to achieve real-time guarantee and
some normal desktop usage applications can leave to
the GPOS. But with the growth of real-time handling
ability in the GPOS, some tasks in it can also com-
pete the resources with those in the RTOS. For ex-
ample, with the addition of the rt-patch3, Linux now
can handle soft real-time jobs quite well. So even
in the GPOS/RTOS co-existing environment, users
may want to install some soft real-time jobs in the

1VMware, Inc., http://www.vmware.com
2Oracle Corporation, http://www.virtualbox.org
3https://rt.wiki.kernel.org/

GPOS such as audio/video applications that may need
to use some GPOS-provided features like GUI con-
trol and those applications and GUI supports are hard
to be adopted to the RTOS. However, lots of em-
bedded virtualization works tend to give the RTOS’
tasks the highest priorities, so these tasks can pre-
empt the executions of tasks in the GPOS, even if they
may have more urgent real-time handling require-
ments than those in the RTOS. This is also because the
virtualization layer has no way to know much about
the inner information of the GPOS, so they cannot tell
who is urgent or not. The real-time performance in the
GPOS will therefore suffer serious degradation.

Motivated by this fact, we are developing a global
scheduling framework to try to improve the real-time
responsiveness in the GPOS in our multi-core vir-
tualization work named SPUMONE. We proposed a
global scheduling scheme to solve the real-time per-
formance lost problem alongside with VCPU4 migra-
tion to better utilize the resources. A new scheduling
unit called rt-VCPU is being introduced in our work,
and is trying to give the virtualization layer more clues
about the scheduling information. During this inves-
tigation, we are facing some issues in the process of
development, such as interrupt latency and real-time
guarantee. More details of those issues are given in
the following sections.

4Virtual CPU, which is the basic scheduling unit of the
virtualization layer.

378 Lin T., Mitake H., Kinebuchi Y. and Nakajima T..
GLOBAL SCHEDULING FOR THE EMBEDDED VIRTUALIZATION SYSTEM IN THE MULTI-CORE PLATFORM.
DOI: 10.5220/0003906203780382
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 378-382
ISBN: 978-989-8565-00-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



The rest of the paper is organized as follows. A
previous virtualization work will be introduced in
the Section 2. Section 3 is talking about the pro-
posed global scheduling approaches in the virtualiza-
tion system. Some issues when dealing with global
scheduling is discussed in the Section 4. Some re-
lated works and conclusion are given in the Section 5
and 6 respectively.

2 VIRTUALIZATION SYSTEM:
SPUMONE

In our previous project, we have developed a virtual-
ization system named SPUMONE for the embedded
multi-core platform and is also shown in the Figure 1.
It is a very small virtualization layer in which it only
handles the VCPU scheduling and dispatch the inter-
rupt to the proper guest OSes. In the multi-core ver-
sion of SPUMONE, each CPU core has its own virtu-
alization layer instance, as one can see in the Figure 1.
This gives the overall system more scalability. More
detail information about SPUMONE can be found in
our previous work (Kinebuchi et al., 2009).

Core Core Core Core

SPUMONE SPUMONE SPUMONE SPUMONE

VCPU VCPU VCPU VCPU VCPU

App Driver Driver

App

RTOS RTOS Linux

App App App App

Driver Driver

Privileged Mode

User Mode

Figure 1: SPUMONE overall architecture in the multi-core
platform.

3 GLOBAL SCHEDULING

3.1 Background of Global Scheduling

Here we would like to use global scheduling and
VCPU migration techniques to improve the overall
system real-time responsiveness, especially for the
GPOS. Global scheduling in the virtualization envi-
ronment means scheduling the VCPUs of the RTOS
and the VCPUs of the GPOS at the same time, and
using some criteria to control the scheduling behav-
ior. In most of RTOS/GPOS co-existing embedded
virtualization works, SPUMONE included, the tasks
in the RTOS are always given the highest priori-
ties in the virtualization platform scheduling. There-
fore, the VCPUs that execute those tasks on behalf of

RTOSes can always preempt the execution of VCPUs
of GPOSes. This is because that traditionally when
designers want to have this kind of RTOS/GPOS vir-
tualization environment setup, they want to place all
real-time urgent tasks in the RTOS and not bothered
by the tasks in the GPOS, so the tasks in the RTOS
can run without any restriction.

Recently, however, with the improvement of real-
time handling in the GPOS, Linux for example, users
may also try to install some soft real-time required
tasks in the GPOS and use some utilities provided by
the GPOS, such as chrt command in Linux, to manip-
ulate the real-time attributes of the tasks and hope they
can be executed even more urgent than some tasks in
the RTOS. For instance, some streaming or graphic
handling applications need GUI (Graphical User In-
terface) to control the behavior of them; meanwhile,
they also require real-time responsiveness. So it is
better for those users to install them in the GPOS, be-
cause the GPOS handles the GUI applications better
than that of the RTOS, and hope the real-time han-
dling ability of the GPOS can achieve what they de-
sire to have.

3.2 Global Scheduling in SPUMONE

3.2.1 Basic Setup in SPUMONE

Trying to further investigate the global scheduling
problem, we plan to use our SPUMONE work to ex-
amine the issue.

Default setting in the SPUMONE, which is also
common to most embedded virtualization works, pro-
vides each guest OS some VCPUs, and SPUMONE
simply schedules these VCPUs while giving RTOS’
VCPUs the highest priorities to run and schedule
GPOS’ VCPUs using round-robin manner. As one
can see in this kind of setting, RTOS’ tasks always
run before or preempt the execution of the tasks in the
GPOS. The real-time tasks in the GPOS will therefore
suffer serious performance lost and lead to consider-
able deadline miss problems. What causes the prob-
lem is that SPUMONE or even other virtualization
works cannot identify the differences among a com-
mon task in the GPOS, a real-time task in the GPOS
and a task in the RTOS. So SPUMONE treats all tasks
in the GPOS as the same priority, and the real-time
tasks in it have therefore no chance to be scheduled
more promptly.

In order to address this phenomenon, here we
introduce a new scheduling unit for SPUMONE in
which the real-time tasks in the GPOS can use this
unit to let themselves have chances to be scheduled
against the tasks in the RTOS. A new type VCPU

GLOBAL SCHEDULING FOR THE EMBEDDED VIRTUALIZATION SYSTEM IN THE MULTI-CORE PLATFORM

379



r-VCPU r-VCPU rt-VCPU rt-VCPU nr-VCPU nr-VCPU

SMP RTOS SMP Linux

Core 0 Core 1

rt task rt task

Figure 2: Using different VCPUs to schedule.

called rt-VCPU is being used for this purpose in the
SPUMONE. This rt-VCPU can give SPUMONE a
hint that this VCPU may contain some important jobs
and has to be run in some degrees of urgency, so
SPUMONE can alter the scheduling algorithm to re-
flect the setting change. For example, in the Figure
2 5, some tasks which need real-time responsiveness
in the GPOS are bound to some rt-VCPUs and when
they are on the same physical core with r-VCPU,
some scheduling algorithm can be applied to improve
the real-time responsiveness of them.

By using a specific VCPU, rt-VCPU in this case,
to handle specific tasks, this also means that we have
to change those tasks’ CPU affinities either by users
or we have to modify the GPOS in order to get the in-
formation of who is urgent and has to be bound to that
specific VCPU. Here we simply ask users to manually
set the CPU-affinities of their desired tasks to a cer-
tain VCPU. It is also reasonable because users who
want their tasks to run urgently by manually setting
the real-time attribute of them can also easily set the
CPU-affinities according to designer-provided system
manual.

3.2.2 VCPU Operation, Scheduling and
Migration

Scheduling units of SPUMONE are now divided into
three kinds and we have to define the relations among
them and how they interact with each others.

We categorize possible scheduling situations into
three kinds and try to apply some scheduling strate-
gies to further analyze the effect of them:

1. r-VCPUs and nr-VCPUs share a PCPU6.

2. rt-VCPUs and nr-VCPUs share a PCPU.

3. rt-VCPUs and r-VCPUs share a PCPU.

In the first situation, it is obvious that r-VCPU is
5Now a normal VCPU for the GPOS which handles non-

real-time tasks is called nr-CPU and a normal VCPU for the
RTOS is called r-VCPU in order to ease of discussion later.

6Physical CPU or Physical Core.

the highest priority task for the virtualization layer, if
there is no any rt-VCPU involved which will be dis-
cussed in the situation 3 later. So an r-VCPU can pre-
empt the execution of nr-VCPU anytime it wants and
therefore the deadline of those tasks on the r-VCPU
can be guaranteed. Situation 2 is the same as that
of situation 1. Because rt-VCPU contains real-time
jobs which are critical than normal jobs in the same
system, let the execution of rt-VCPU prior to that of
nr-VCPU is reasonable.

But both situation 1 and 2 have a common issue
which we still need to do more investigations in the
future and it will be discussed in more detail in the
next section.

Situation 3 is the main operation we need to deal
with. Because different systems use different nota-
tions or approaches to assign real-time priority, we
plan to use the method similar in the (Kinebuchi et al.,
2008) to do the global scheduling of rt-VCPU and r-
VCPU. Winner of this scheduling strategy will keep
running its normal execution, but the loser cannot af-
ford idle waiting because either an r-VCPU or an rt-
VCPU is still a critical real-time handling job after
all, otherwise it would make no difference between a
real-time task and a non-real-time one. Luckily, in the
multi-core platform, there are other available comput-
ing resources, PCPUs, for designer to use. Therefore,
we will try to migrate the loser VCPU in this situation
3 to other PCPUs and schedule against the VCPUs
on that target PCPUs using the previous mentioned
strategies, situation 1 and situation 2. However, po-
tential scheduling problem in the RTOS, especially
for SMP RTOS, could also cause serious performance
degradation. We will, again, discuss this issue in the
following section.

4 DISCUSSION: GLOBAL
SCHEDULING ISSUES

Further discussions about some issues while dealing
with global scheduling in the embedded multi-core
virtualization design will be given in this section.

In the situation 1 and 2 mentioned in the previous
section, it is not the problem for most non-real-time
tasks to be preempted by the real-time tasks, but this
is not the case for the system interrupt handling tasks
in the GPOS. Albeit users can selectively change their
jobs’ real-time priority, but they cannot change that of
interrupt handling tasks. So there must be some ways
for the system to help itself not to affect the execution
and real-time responsiveness of them. For example,
in the Figure 3, two tasks in the Linux use two dif-
ferent VCPUs, one uses rt-VCPU and the other uses

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

380



nr-VCPU while the one that uses nr-VCPU is respon-
sible for handling interrupt. One possible serious per-
formance degradation would be that if a nr-VCPU is
to handle a frequently arrival interrupt source like net-
working device. If these interrupt requests are ignored
too often because of VCPU scheduling strategy, over-
all system will also suffer considerable performance
lost.

Figure 3: Interrupt handling delayed by rt-VCPU preemp-
tion.

We are trying to mitigate these kind of situations
by using the following three kinds of scheduling ap-
proaches for the GPOS VCPUs and measuring the ef-
fects of them:

� Tasks using rt-VCPU still can preempt the execu-
tion of interrupt-handling nr-VCPU. But we are
attempting to use a approach called Interrupt Co-
alescence to minimize the effect of preemption.
It is an approach that bundles multiple interrupt
requests and interrupts the system only once. It
can also effectively reduce some interrupt han-
dling overhead. Therefore, interrupt-handling nr-
VCPU can use this scheme to deal with highly ar-
rival interrupt request. Interrupt Coalescence it-
self, however, still have some other issues which
are beyond the scope of this paper, and we are in-
vestigating some variations of it and trying to find
a proper way to combine it with rt-VCPU schedul-
ing.

� Because in portable or mobile devices, network-
ing operations may play a very important role on
them, it is better to handle them first. An alterna-
tive here is we are considering to let interrupt to
be handled its top-half first for the nr-VCPU and
remaining bottom-half of interrupt handling is de-
ferred and scheduled against rt-VCPU and the
loser of scheduling is also migrated. In the Linux,
for example, top-half of interrupt handling only
does some important operations like setting reg-
isters and quick response to the interrupt source.

Some other not-so-important handling parts can
therefore be deferred later. The real-time respon-
siveness of those tasks may therefore not suffer
too many PCPU resource waiting.

� The third alternative is to simple change the
second approach mentioned above by letting rt-
VCPU always be scheduled before bottom-half
handling VCPU. So the resulting priority order
will be top-half interrupt handling first, then the
rt-VCPU and the bottom-half of interrupt han-
dling comes the last.

Meanwhile, there are some other issues when us-
ing our proposed virtualization setup.

� What is the best ratio of rt-VCPU/nr-VCPU com-
bination a GPOS should have? If in a 4-core SMP
Linux, for example, only one rt-VCPU is used,
all the real-time loading will be put on this rt-
VCPU. The real-time responsiveness of all these
tasks will be affected. On the other hand, if too
many rt-VCPUs are introduced into the system, it
will make no difference between normal jobs and
urgent jobs because users can assign all he wants
to all available rt-VCPUs. So the ratio has to be
carefully assigned and evaluated.

� There must be a situation in which two r-VCPUs
in the RTOS are sharing a data, but the rt-VCPU
won the scheduling battle. So one of the r-VCPUs
has to be migrated to another PCPU if the schedul-
ing strategy mentioned above is used here. Prior-
ity Inversion may therefore occurs. Hence, while
dealing with SMP RTOS, the use of migration
also has to be taken care of.

Using global scheduling and setting proposed in
this paper in the embedded multi-core virtualization
environment also has to consider those issues as well.

5 RELATED WORK

In most virtualization works using VCPU migration,
they focused on the subjects other than improving the
real-time responsiveness in the GPOS such as syn-
chronization problem or resource utilization.

Because the virtualization layer doesn’t know
much about the inner details of the guest systems,
manipulating or migration VCPUs could cause some
serious synchronization problems, lock holder pre-
emption for example. Authors (Mitake et al., 2011)
addressed this problem by dynamically migrating
VCPUs according to exception events. A balance
scheduling algorithm is proposed (Sukwong and Kim,
2011) in which they dynamically measured the load,

GLOBAL SCHEDULING FOR THE EMBEDDED VIRTUALIZATION SYSTEM IN THE MULTI-CORE PLATFORM

381



checking whether the capacity is full or not in a run-
queue, of a PCPU. Then dynamical VCPU assign-
ment is performed to separate two related VCPUs to
different runqueues to further improve the system per-
formance because these two VCPUs might be sharing
the same data structure.

For the time being, there is not a lot of works
found which is relating to our GPOS-real-time im-
provement VCPU scheduling work in the multi-core
platform. A similar global scheduling work (Kineb-
uchi et al., 2008) used mix prioirties from both RTOS
and GPOS to calculate global priority values that the
virtualization can use to globally schedule the tasks
in both guest systems to improve the overall real-time
responsiveness of the system. Its focus, however,
is on the single-core platform and no migration-like
operations are performed when resources conflict or
synchronization problem occur.

6 CONCLUSIONS

In this paper, we focus on dealing with the global
scheduling in the embedded multi-core virtualization
system. We proposed some scheduling strategies by
introducing a new scheduling unit called rt-VCPU to
give virtualization layer a hint and also use VCPU mi-
gration to balance the loading and real-time respon-
siveness of the overall system. Some issues that we
would like to address in more detail in this global
scheduling work are also given such as interrupt han-
dling latency in the GPOS and possible priority inver-
sion in the SMP RTOS. These are important and com-
monly seen issues in the embedded virtualization sys-
tem, so we have to consider them carefully and find
out the best system consolidation approach.

REFERENCES

Kinebuchi, Y., Morita, T., Makijima, K., Sugaya, M., and
Nakajima, T. (2009). Constructing a multi-os platform
with minimal engineering cost. In Analysis, Archi-
tectures and Modelling of Embedded Systems: Third
IFIP TC 10 International Embedded Systems Sympo-
sium, pages 195–206.

Kinebuchi, Y., Sugaya, M., Oikawa, S., and Nakajima,
T. (2008). Task grain scheduling for hypervisor-
based embedded system. In Proceedings of the 2008
10th IEEE International Conference on High Perfor-
mance Computing and Communications, pages 190–
197, Washington, DC, USA. IEEE Computer Society.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolan-
ski, R., Norrish, M., Sewell, T., Tuch, H., and Win-
wood, S. (2009). sel4: formal verification of an os

kernel. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, SOSP ’09,
pages 207–220, New York, NY, USA. ACM.

Mitake, H., Kinebuchi, Y., Courbot, A., and Nakajima, T.
(2011). Coexisting real-time os and general purpose
os on an embedded virtualization layer for a multi-
core processor. In Proceedings of the 2011 ACM Sym-
posium on Applied Computing, SAC ’11, pages 629–
630, New York, NY, USA. ACM.

Sukwong, O. and Kim, H. S. (2011). Is co-scheduling too
expensive for smp vms? In EuroSys, pages 257–272.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

382


