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Abstract: Recently, the software of embedded systems grows increasingly complicated due to controversial needs of
both rich functionalities and strict interrupt responsiveness. In order to deal with it, realtime virtualization
technology for embedded systems is attracting interests. Virtualization allows multiple operating systems to
run concurrently with minimal modifications, thus reduce the engineering cost. However, as the security of
embedded systems getting more concerns in these days, current design of realtime hypervisor often makes
it difficult to ensure the security without hardware virtualization support which is not widely available in the
world of embedded systems. In this paper, we introduce Secure Pager which utilizes a common hardware
design called core-local memory combined with check-sum based protections to enforce the spatial isolation
without specific hardware virtualization support.

1 INTRODUCTION

In recent years, virtualization technology has been
proved as an effective approach to improve the over-
all system performance and eliminate the manage-
ment cost. Besides, it is also an attractive approach
for the embedded system development. In order to
effectively virtualize the hardware resource, most of
previous works either rely on hardware virtualization
support, such as Intel VT and AMD-V, or require a
large amount of modification to guest OSes. How-
ever, since only a limited number of embedded ar-
chitectures currently support virtualization, develop-
ers have to port the existing software to processors
with such features, which incurs non-trivial engineer-
ing cost as a result. One of our goals is to provide the
same functionality while keeping the amount of mod-
ification to guest OSes as small as possible. On the
other hand, high responsiveness is another aspect that
should be maintained. As a result, current hypervi-
sors with realtime responsiveness (so calledrealtime
hypervisor) often do not support MMU virtualization
and have only one privileged access level among all
guest OSes. Nevertheless, there is growing concerns
in security issues on embedded system nowadays. For
example, there is an increasing number of both secu-
rity holes in the Android system and the malware tar-

geted on it, which made it difficult for realtime hy-
pervisors to ensure the security as the compromised
guest OS being able to attack the memory image of
other guest OSes.

In this paper, we propose the solution utiliz-
ing core-local memory for spatial isolation. Core-
local memory is an SRAM integrated in the pro-
cessor core which was originally designed for high-
speed data manipulation, such as multimedia encod-
ing/decoding. Moreover, multicore and many-core
processors in recent years are expected to utilized the
core-local memory in order to avoid bus contention.
Therefore we could conclude that core-local memory
is more common than hardware virtualization sup-
port. Several current architectures having core-local
memory are listed in Table 1.

There are four challenges in our approach:

• Require minimal modification to the guest OS.

• Utilize commonly supported hardware rather than
any other special hardware support.

• Keep the interrupt latency as small as possible
thus to ensure the responsiveness.

• Keep the implementation simple and possible to
be applicable to other platforms.
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Table 1: Architectures with core-local memory.

Architecture Core-local memory
ARM11 4 to 256KB

MIPS32 4KE Family Up to 1MB
SuperH Instruction: 8KB Data: 16KB

2 BACKGROUND

2.1 SPUMONE: The Realtime
Hypervisor

SPUMONE (Kanda et al., 2008) is a lightweight real-
time virtualization layer for embedded systems. The
original goal of SPUMONE is to realize both the
realtime constraints and rich functionality through
combining RTOS (realtime OS) and GPOS (general-
purpose OS) running on the same system concur-
rently. In order to achieve this goal, SPUMONE
only virtualizes the processor state and has only one
privileged access levels. SPUMONE also keeps the
amount of modification to guest OSes as small as
possible. In addition, SPUMONE has a simple de-
sign. The source code of SPUMONE is around 5K
LOC, which is far smaller than most of the modern
general-purpose hypervisors, such asXen(Barham et
al., 2003), secure-orientedBitVisor (Shinagawa et al.,
2009) andSecVisor(Seshadri et al., 2007).

On the other hand, the simplicity of design cre-
ates some potential security holes. For example, a
fundamental problem is that there is no spatial isola-
tion among guest OSes and SPUMONE, which means
that all images are allocated in the shared main mem-
ory without any protection. While the guest OSes and
SPUMONE are running at the same privilege level as
mentioned above, once a guest OS get compromised,
it is able to attack the other guest OS and SPUMONE
directly through memory access.

In this paper, we enhance the security of such type
of realtime hypervisor throughSecure Pager, which
ensures the spatial isolation of shared main memory.
The mechanism of Secure Pager is described in sec-
tion 4.

2.2 Related Work

Works on the memory protection in hypervisors has
been extensively carried out, often with specific hard-
ware support.SecVisoris a tiny hypervisor which en-
sures Linux’s kernel image integrity against code in-
jection attacks such as kernel rootkits. It protects the
kernel image by virtualizing the physical memory and

managing page tables. However, those protections
are established by CPU-based virtualization (AMD’s
Secure Virtual Machine technology(Advanced Micro
Devices, 2011)), which is hardly equipped in the em-
bedded systems. In addition, this mechanism is ca-
pable of protecting one single guest OS only which
means it is difficult for SecVisor to meet the needs of
recent advanced embedded systems.

SafeG(Sangorrin et al., 2010) is a dual-OS mon-
itor which enables RTOS and GPOS to run concur-
rently on the same machine. Because SafeG aims on
embedded systems, the realtime constraints are guar-
anteed. It also protects RTOS memory and devices
from illegal attack of GPOS. However, the SafeG
architecture takes advantage of CPU-based virtual-
ization (ARM TrustZone(Alves and Felton, 2004)),
which could not be applicable to old hardware archi-
tectures. Furthermore, it hasn’t been ported to a mul-
ticore environment. Unfortunately, it causes the vul-
nerability of cache attacks. Because caches are not
separated between RTOS and GPOS, non-trust GPOS
can affect the performance of secured RTOS by flush-
ing the cache.

On the other hand, the utilization of core-local
memory is getting more attention these days. There
is already a significant amount of study on the bene-
fits of using such kind of on-chip memory. (Banakar
et al., 2002) compared caches and on-chip memo-
ries from various aspects, with the results revealing
that the average area-time reduction was 46% when
caches are replaced by the on-chip memories, and the
average reduction of energy consumption was 40%.

Single-chip Cloud Computer(Held, 2010) in-
vented by Intel Labs also adopted software-managed
on-chip memories. Instead of using hardware-
managed caches, it enables application programmers
with flexible management of on-chip data. The
reduced energy consumption of on-chip memory
also meets the the limited power budget on many-
core. The developers ofSingle-chip Cloud Com-
puter believes that “software managed coherency on
non-coherent many-core is the future trend” (Jim
Held, SCC Symposium Materials, 2010, Software-
Managed Coherency, §6).

Cell Broadband Engine(Cell/B.E.) (Shimizu et
al., 2007) is a microprocessor architecture which
has strong hardware-based security mechanisms.
Cell/B.E. is a multicore architecture with 9 cores on
each processor, while one of them is a general purpose
core calledPowerPC Processor Element(PPE) which
controls the other cores, and the others are calledSyn-
ergistic Processor Element(SPE) which plays the ma-
jor role in computation. Each SPE core has its own
local storage which is physically inaccessible from
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other cores when they are in isolation mode. Because
of this absolute hardware-based isolation, even the
operating system can not access the data stored in the
locked local storage. In addition, before loading data
from main memory to local storage, authentication is
required to check whether the data has been modified
or not, by means of hardware key and a cryptographic
algorithm. However, establishing authentications by
hardware makes the system inflexible and hard to up-
date. By replacing the hardware-based authentication
mechanisms with minimal software, we believe that
more flexible and deployable secure environment can
be established in various modern processors of em-
bedded systems.

3 ASSUMPTIONS

First, we assume that multiple guest OSes are run-
ning on top of the virtualization layer in a multicore
processor environment, with the guest OSes and vir-
tualization layer running at the same privileged level.
In this model, the security of guest OSes is not en-
sured and thus any of them may be compromised by
rootkits. Then the compromised guest OS can per-
form attacks on other guest OSes and even the virtual-
ization layer directly through normal memory access.
In this situation, any internal secure module of virtual-
ization layer which resides in main memory becomes
failed to protect guest OSes and virtualization layer
itself. For simplicity, because we only focus on the
runtime protection, we assume that the booting pro-
cess of whole system would not be compromised.

We created the isolated and secure space in such
environment by utilizing the core-local memory, com-
bined with a checksum-based integrity management
scheme. It comes at the cost of not supporting MMU
virtualization, which indicates that our implementa-
tion can protect only an OS which is not utilizing
the address translation provided by MMU. (However,
many of embedded OSes do not utilize such feature.)
We implemented onTOPPERS(TOPPERS Project,
2004), which is a simple OS without virtual memory
management.

4 DESIGN

4.1 Core-local Memory based
Protection

As mentioned in section 1, we utilize the hardware
called core-local memory in a multicore processor to

Figure 1: Behavior of core-local memory.

ensure the memory space isolation. The idea is first
proposed by (Kinebuchi et al., 2010) to ensure the
security of hypervisors on general-purpose comput-
ers rather than embedded systems. Since the core-
local memory is inaccessible from the other cores, we
leverage on this characteristic to protect target guest
OS. Fig 1 shows the behavior of core-local memory.
In this situation, two guest OSes are running concur-
rently. Guest OS #1 is running on core 0 while guest
OS #2 is running on the other cores. The problem of
this situation is that guest OS #2 can attack the data
of guest OS #1 which is in the shared main memory if
guest OS #2 is running in the privileged mode. How-
ever, the data of guest OS #1 stored in the core-local
memory can not be accessed by anyone else.

The main challenge of core-local memory based
protection is to cope with the image size. Gener-
ally, the size of core-local memory is only a few hun-
dred kilobytes. Therefore, it is infeasible to execute
an entire modern OS and application on the core-
local memory directly. To solve this problem, we
implemented the checksum-based integrity manage-
ment which virtually extended the capacity of core-
local memory.

4.2 Checksum-based Integrity
Management

In this scheme, we assume that two OSes, TOPPERS
and Linux, are running on top of the virtualization
layer. The goal is to prevent the attack from Linux
to TOPPERS when Linux is compromised.

The kernel image of TOPPERS is allocated in
main memory which is shared by each core, but linked
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to the virtual address space. Thus, whenever the un-
mapped address space of TOPPERS being accessed,
the page fault events arise. Then the corresponding
space in main memory is loaded to the core-local
memory which is visible from the owner core only
throughSecure Pager. Secure Pager is implemented
as a part of SPUMONE. Each time Secure Pager loads
the data into the local memory, it first makes sure the
corresponding space is not compromised, then maps
virtual address to physical address within the local
memory. The whole process is depicted in Fig 2.

1) First, the boot loader relocates Secure Pager
into core-local memory, thus Secure Pager itself will
not be directly accessed by other guest OSes. Then
the boot loader relocates TOPPERS (running on core
0) and Linux (running on the other cores) into the
main memory. After loading of guest OSes, Secure
Pager calculates the hash values of TOPPERS per
page and save the results into a table before the boot-
ing process of Linux starts. This table is also located
in core-local memory, thus it can not be modified by
Linux. After then, the other cores are allowed to start
booting Linux.

2) Because TOPPERS are linked to the virtual ad-
dress space, if TLB1 does not contain the correspond-
ing page table entry at the time when a page of TOP-
PERS is accessed, it will trigger the page fault to oc-
cur. Consequently, Secure Pager handles it as general
page fault handler. We can directly handle the TLB in
the case of MSRP12 (Ito et al., 2008) used in our im-
plementation. The table stored with TLB entries for
the mapping between virtual and physical addresses
of core-local memory must not be located in the main
memory.

3) During the handling of page fault, the corre-
sponding page is copied from the main memory into
core-local memory. This process is called “swap-in”.
Then Secure Pager calculates the hash value of a page
and compares it with the previous hash value stored
in the table. If the value matches, Secure Pager loads
the corresponding page table entry into TLB and com-
pletes the page fault handling. On the other hand, if
the values mismatched, it indicates that certain mali-
cious modification from Linux to the memory space
of TOPPERS has occurred.

4) When core-local memory is full, Secure Pager
selects a pages to be reclaimed by LRU algorithm.
During the reclaim, Secure Pager re-calculates the
hash value of this page and updates the table. The

1TLB (Table Look-aside Buffer) is the cache containing
page table entries. It is designed for the CPU translating
from virtual address to physical address.

2MSRP1 is the 4-core SH-4A multicore processor de-
veloped by Renesas Technology Corp. and Hitachi, Ltd.

Figure 2: Checksum-based integrity management.

process is called “swap-out”. In case that the selected
page is not dirty, the page-copy and re-calculation
becomes unnecessary, thus Secure Pager only has to
overwrite it with a new page.

Putting it all together, Secure Pager can detect the
malicious modification from Linux to the main mem-
ory space of TOPPERS by checking the hash value,
while all in-use pages loaded in core-local memory
can not be accessed by Linux running on the other
cores. As a result, the compromisation of memory
space from Linux to TOPPERS is rather avoided or
detected by the Secure Pager.

5 EVALUATION

This section presents the evaluation methodology and
the result of Secure Pager. Because the mechanism
of Secure Pager relies singularly on page fault events,
significant overhead is imposed on the handling pro-
cedure of page faults and this overhead may be dis-
tributed over all aspects of system performance. Thus
we focus our evaluation on two microbenchmarks: (1)
page fault and (2) interrupt latency. We also observed
the performance overhead against the allowed swap
size.

Before going into details, we found two difficul-
ties in our evaluation. First, we tried to find sev-
eral benchmark suites on TOPPERS that can collec-
tively display many aspects of system performance,
because we can not predicate how would the over-
head of page fault handling be distributed. However,
we could not find such a set of benchmarks. Only
few “small” benchmarks specific to certain aspects
have been found and tested. For example,Thread
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Table 2: The detail of environment setup.

Architecture
ISA SH-4A with

Multicore Extension
CPU Frequency 400MHz
Local Memory 128KB

Guest OS
Linux 2.6.16

TOPPERS/JSP

Figure 3: Configuration of guest OSes.

Metric (Express Logic, Inc.) is a benchmark which
determines the realtime responsiveness by measuring
scheduling overhead. Even for this case, most of them
still face another problem: bad granularity for swap
size configuration.

In order to observe the overhead imposed by
swapping, we must eliminate the size of swap space
to force the generation of swapping, even when the
image of benchmark program fits into the local mem-
ory. However, most of the small benchmarks take no
more than dozens of kilobytes. In this case, it would
cause severe thrashing even with an one-page smaller
swap space, which is also a nonrealistic environment
for program execution. We address both of the dif-
ficulties by using a customizedhackbench(Yanmin,
2008). Because the configured tasks are statically al-
located and linked in TOPPERS, we can easily adjust
the image size by changing the number of tasks in
hackbench. We can also view the increase in runtime
of hackbenchas the overhead on overall performance.

5.1 Environment Setup

We took the evaluation on a multicore extension of
SH-4A platform which has 4 cores, with Linux as
the source of attack and TOPPERS as the protected
OS. The detail of our environment is listed in Table
2. Linux is running on the core 0-2, and TOPPERS
is running on the core 3. The configuration of our
system is depicted in Fig 3. Despite the platform has
a 128KB-sized local memory, we decided to define
a certain area of main memory as the local memory
rather than to use the local memory directly, thus to
gain the configurability during our evaluation.

5.2 Paging Overhead

The histogram of paging overhead over 1000 sam-
ples is presented in Fig 4. This result can be roughly
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Figure 4: The result of paging overhead.
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Figure 5: The result of interrupt latency.

separated into two groups, which is distinguished by
whether performing write-back of dirty pages or not.
Most of the cases take no more than 1ms, while rare
cases (<3%) take more than 1ms to complete the
swapping. The worst case does not exceed 1200µs.
Because the cost of searching a page for swap-out is
relatively trivial, this result do not change with the
swap size configuration.

5.3 Interrupt Latency

The histogram of interrupt latency over 1000 samples
is presented in Fig 5. The worst case (<3%) around
1200 -1300µs matches the result of paging overhead.
Though it depends on the behavior of each interrupt
events, most of the cases take no more than 800µs
to perform interrupt handling. For the same reason,
this result generally do not change with the swap size,
except for extreme conditions when severe thrashing
happens.

5.4 Result of Hackbench

Table 3 shows the result ofhackbench. In this
setup, when swap size is set to 45 pages or more,
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Table 3: The result of Hackbench.

Swap Size Swap Size Execution Time
(in # of pages) (in percentage) (µs)

45 100.00% 1048
44 97.78% 1057
43 95.56% 2704
42 93.33% 5137
41 91.11% 5271
40 88.89% 6995
39 86.67% 8933
38 84.44% 27372
37 82.22% 30290
36 80.00% 56797
35 77.78% 82853
34 75.56% 160433

1x

10x

100x

75%80%85%90%95%100%

O
ve

rh
ea

d

Swap Size

Figure 6: The result of Hackbench.

no page fault happens during the benchmark execu-
tion. Thus, theminimal required swap space with-
out Secure Pageris 45 pages, and is then referred as
100%. Apart from that, the memory footprint reaches
94 pages. Apparently the execution time increased
exponentially with smaller swap size. It is depicted in
Fig 6.

6 DISCUSSION

6.1 Portability

Since the design of Secure Pager relies solely on the
interception of page fault events, the implementation
is done in the realtime hypervisor and do not require
modification to Guest OSes. The only effort in adap-
tation of Guest OSes is to change the working ad-
dress space to virtual address space, which is simply
done by changes to linker script. Thus we can expect
that only minimal efforts has to be done when porting
Guest OSes other than TOPPERS to Secure Pager.

6.2 Performance

The evaluation results in the previous section shows
the overhead is severely increased when decreasing
the swap size. From the result, we can tell that the re-
alistic ratio of swap space tominimal required space
without Secure Pageris above 85%. However, this
amount only accounts for 41% of the memory foot-
print. On the other hand, though it depends on the
behavior of the actual running program, we can opti-
mistically run a program on the local memory such
has a far smaller size compared to the binary size,
with the overhead lower than 10x. The rest of the
performance overhead could be overcome easily by
using processors with higher frequency. (This would
introduce the cost to replace old hardware, but the ef-
fort to port old software is still eliminated.)

In terms of interrupt latency, the worst case around
1200µs is small enough for general-purpose applica-
tions. Moreover, because our evaluation is done on
main memory, we can expect further speedup by run-
ning on the local memory directly, as a result of fewer
access cycles. This may eventually lead to a latency
around hundreds of microseconds, which should be
suited for most applications that require only weak
realtime responsiveness.

Throughout the results, the cost for swapping and
checksum calculation accounts for almost whole of
the performance overhead. Thus we could expect
by utilizing hardware support for hash calculation to
eliminate the cost. Further, local memory on real
CPUs often accompanied with a block transfer mode
which enables high-throughput page access between
local memory and main memory. This kind of fea-
tured was not used in our evaluation because our goal
was to determine the limitation by using minimal sup-
port from hardware. By utilizing this feature, we
should be able to eliminate the cost for swapping ef-
forts to smaller degrees, thus improve the overall per-
formance.

7 CONCLUSIONS

In this research, we introduced Secure Pager, which
has realized memory space isolation in realtime hy-
pervisor without hardware virtualization support. Se-
cure pager’s high portability enables old software to
utilize its feature with nearly no porting efforts. More-
over, it maintains the realtime responsiveness to a cer-
tain degree, which could be further improved by faster
hardware. The simplicity of our approach also makes
it applicable to other realtime hypervisors.

Although many realtime hypervisors have been
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proposed, currently there is no well-established sce-
nario for real applications using such kind of software
architecture. One application of Secure Pager is to
protect a monitoring service that detects rootkits for
Linux. By means of Secure Pager, it could avoid ma-
licious access from Linux to the memory image of the
monitoring service. In spite of the case, we are look-
ing forward to have more applications to exploit this
feature.
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